Particle Physics Major Option Exam, January 2006

SOLUTIONS

2. Tau lepton decay:

Feynman diagram for $\tau^- \to \pi^- \nu_\tau$ decay:

The matrix element is

$$M_{\rm fi} = \sqrt{2} f_\pi V_{\rm ud} G_{\rm F}(j.p_4) ,$$

where the lepton current is

$$j^{\mu} = \overline{u}(p_3)\gamma^{\mu}\frac{1}{2}(1-\gamma^5)u(p_1) .$$

In the τ^- rest frame, and assuming a massless neutrino, the four-momenta can be taken to be

 $p_1 = (m_{\tau}, 0, 0, 0), \qquad p_3 = (p^*, p^* \sin \theta, 0, p^* \cos \theta), \qquad p_4 = (E_{\pi}, -p^* \sin \theta, 0, -p^* \cos \theta) ,$ where $E_{\pi}^2 = (p^*)^2 + m_{\pi}^2$ and $p^* = |\mathbf{p}_3| = |\mathbf{p}_4|.$

For a particle of 4-momentum $p^{\mu} = (E, p \sin \theta \cos \phi, p \sin \theta \sin \phi, p \cos \theta)$, the spinors are

$$u_{\uparrow}(p) = \sqrt{E+m} \begin{pmatrix} \cos\theta/2\\ e^{i\phi}\sin\theta/2\\ \frac{p}{E+m}\cos\theta/2\\ \frac{p}{E+m}e^{i\phi}\sin\theta/2 \end{pmatrix}, \qquad u_{\downarrow}(p) = \sqrt{E+m} \begin{pmatrix} -\sin\theta/2\\ e^{i\phi}\cos\theta/2\\ \frac{p}{E+m}\sin\theta/2\\ -\frac{p}{E+m}e^{i\phi}\cos\theta/2 \end{pmatrix}$$
(1)

For a massless neutrino, only the left-handed helicity eigenstate $u_{\downarrow}(p_3)$ can contribute. Since the neutrino four-momentum is $p_3 = (p^*, p^* \sin \theta, 0, p^* \cos \theta)$, the spinor $u_{\downarrow}(p_3)$ can be obtained from Equation (1) by setting $E = p = p^*$, m = 0, $\phi = 0$:

$$u_{\downarrow}(p_3) = \sqrt{p^*} \begin{pmatrix} -\sin\theta/2\\\cos\theta/2\\\sin\theta/2\\-\cos\theta/2 \end{pmatrix}$$

The corresponding adjoint spinor is

$$\overline{u}_{\downarrow}(p_3) = u_{\downarrow}^{\dagger}(p_3)\gamma^0 = \sqrt{p^*} \left(-\sin\theta/2 \quad \cos\theta/2 \quad -\sin\theta/2 \quad \cos\theta/2 \right)$$

The τ^- is in a spin eigenstate with the spin pointing in the +z direction. The spinor $u(p_1)$ describing this spin state can be obtained from $u_{\uparrow}(p)$ of Equation (1) by setting $\theta = 0$ and taking the zero-momentum limit $E = m_{\tau}$, p = 0 (the value of ϕ is irrelevant): ¹

$$u(p_1) = \sqrt{2m_\tau} \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} .$$
 (2)

The lepton current $j^{\mu} = \overline{u}_{\downarrow}(p_3)\gamma^{\mu}\frac{1}{2}(1-\gamma^5)u(p_1)$ can now be evaluated using standard matrix multiplication:

$$\frac{1}{2}(1-\gamma^5)u(p_1) = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \sqrt{2m_\tau} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{2}\sqrt{2m_\tau} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} .$$

$$\overline{u}_{\downarrow}(p_3)\gamma^0 = \sqrt{p^*} \left(-\sin\theta/2 \quad \cos\theta/2 \quad \sin\theta/2 \quad -\cos\theta/2 \right)$$

$$\overline{u}_{\downarrow}(p_3)\gamma^1 = \sqrt{p^*} \left(-\cos\theta/2 \quad \sin\theta/2 \quad \cos\theta/2 \quad -\sin\theta/2 \right)$$

$$\overline{u}_{\downarrow}(p_3)\gamma^2 = \sqrt{p^*} \left(-i\cos\theta/2 \quad -i\sin\theta/2 \quad i\cos\theta/2 \quad i\sin\theta/2 \right)$$

$$\overline{u}_{\downarrow}(p_3)\gamma^3 = \sqrt{p^*} \left(\sin\theta/2 \quad \cos\theta/2 \quad -\sin\theta/2 \quad -\cos\theta/2 \right)$$

which combine to give

$$j^{\mu} = \overline{u}_{\downarrow}(p_3)\gamma^{\mu} \frac{1}{2}(1-\gamma^5)u(p_1) = \sqrt{2m_{\tau}p^*} \left(-\sin\theta/2, -\cos\theta/2, -i\cos\theta/2, \sin\theta/2\right)$$

The 4-vector scalar product of the lepton current with p_4 is then

$$j^{\mu}.p_{4} = \sqrt{2m_{\tau}p^{*}}(-E_{\pi}\sin\theta/2 - p^{*}\sin\theta\cos\theta/2 + p^{*}\cos\theta\sin\theta/2)$$
$$= -\sqrt{2m_{\tau}p^{*}}(E_{\pi} + p^{*})\sin\theta/2$$
$$= -\sqrt{2m_{\tau}p^{*}}m_{\tau}\sin\theta/2$$

¹Equivalently, we could use the spinor $u_{\downarrow}(p)$ of Equation (1) and set $\theta = \pi$, since a negative helicity particle travelling in the -z direction ($\theta = \pi$) has its spin pointing in the +z direction, as required. This gives the same form for the spinor $u(p_1)$ as in Equation (2), up to an overall minus sign.

where energy conservation, $m_{\tau} = E_{\pi} + p^*$, has been used in the last step. Hence

$$M_{\rm fi} = \sqrt{2} f_\pi V_{\rm ud} G_{\rm F}(j^\mu.p_4) = -2 f_\pi V_{\rm ud} G_{\rm F} m_\tau \sqrt{m_\tau p^*} \sin \theta/2 \,] \, .$$

An angular distribution $\sin \theta/2$ is to be expected for the overlap of two spin-half wavefunctions. In particular, the matrix element vanishes for $\theta = 0$, where the τ^- and ν_{τ} spins are oppositely directed, and reaches a maximum for $\theta = \pi$, where the τ^- and ν_{τ} spins both point in the +z direction.

If the τ^- spin points in the -z direction, the matrix element must vanish at $\theta = \pi$ and reach a maximum at $\theta = 0$. The matrix element can be written down on symmetry grounds as

$$M_{\rm fi} = -2f_{\pi}V_{\rm ud}G_{\rm F}\sqrt{m_{\tau}p^*}m_{\tau}\cos\theta/2$$

Squaring the energy conservation equation $m_{\tau} = E_{\pi} + p^*$ gives

$$(m_{\tau} - p^*)^2 = E_{\pi}^2 = (p^*)^2 + m_{\pi}^2$$
.

This gives the centre of mass momentum as

$$p^* = \frac{m_{\tau}^2 - m_{\pi}^2}{2m_{\tau}}$$

When the τ^{-} spin points in the +z direction, the differential decay rate is then

$$\begin{aligned} \frac{\mathrm{d}\Gamma}{\mathrm{d}\Omega} &= \frac{p^*}{32\pi^2 m_\tau^2} |M_{\mathrm{fi}}|^2 = \frac{1}{32\pi^2 m_\tau^2} \cdot \frac{m_\tau^2 - m_\pi^2}{2m_\tau} \cdot 2f_\pi^2 |V_{\mathrm{ud}}|^2 G_{\mathrm{F}}^2 (m_\tau^2 - m_\pi^2) m_\tau^2 \sin^2\theta/2 \\ &= \frac{f_\pi^2 G_{\mathrm{F}}^2}{32\pi^2} |V_{\mathrm{ud}}|^2 m_\tau^3 \left(1 - \frac{m_\pi^2}{m_\tau^2}\right)^2 \sin^2\theta/2 \end{aligned}$$

where $d\Omega = d\cos\theta \,d\phi$. When the τ^- spin points in the -z direction, the factor $\sin^2\theta/2$ is replaced by $\cos^2\theta/2$.

An unpolarised τ^- sample is effectively an equal mix of $S_z = +\frac{1}{2}$ and $S_z = -\frac{1}{2} \tau^-$ leptons, and the differential decay rate can be obtained by averaging over the two possible τ^- spin states:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\Omega} = \frac{f_{\pi}^2 G_{\mathrm{F}}^2}{64\pi^2} |V_{\mathrm{ud}}|^2 m_{\tau}^3 \left(1 - \frac{m_{\pi}^2}{m_{\tau}^2}\right)^2 \; .$$

This decay rate is independent of θ (since $\sin^2 \theta/2 + \cos^2 \theta/2 = 1$), so that the decay is isotropic, as expected for an initially unpolarised sample.

The partial width for unpolarised $\tau^- \to \pi^- \nu_\tau$ decay is obtained by integrating over $d\Omega$, giving a factor of 4π :

$$\Gamma(\tau^- \to \pi^- \nu_\tau) = \frac{G_{\rm F}^2 f_\pi^2}{16\pi} |V_{\rm ud}|^2 m_\tau^3 \left(1 - \frac{m_\pi^2}{m_\tau^2}\right)^2$$

The branching ratio is

$$BR(\tau^- \to \pi^- \nu_\tau) = \frac{\Gamma(\tau^- \to \pi^- \nu_\tau)}{\Gamma} = \tau_\tau \Gamma(\tau^- \to \pi^- \nu_\tau) = \tau_\tau \frac{G_F^2 f_\pi^2}{16\pi} |V_{ud}|^2 m_\tau^3 \left(1 - \frac{m_\pi^2}{m_\tau^2}\right)^2 .$$

Estimating $|V_{\rm ud}| \approx 1$ (or $|V_{\rm ud}|^2 \approx \cos^2 \theta_{\rm C} \approx 0.95$ to be more precise), taking $f_{\pi} = m_{\pi}$, and using $\tau_{\tau} = 2.91 \times 10^{-13}$ s gives

$$BR(\tau^{-} \to \pi^{-} \nu_{\tau}) = \frac{(2.91 \times 10^{-13})}{(6.582 \times 10^{-25})} \frac{(1.166 \times 10^{-5})^2 (0.1396)^2}{16\pi} (1.777)^3 \left(1 - \frac{(0.1396)^2}{(1.777)^2}\right)^2 = \boxed{12.9\%}.$$

3. Colour and partons:

Leading-order Feynman diagrams for $\mathrm{gg} \to \mathrm{t} \overline{\mathrm{t}} \mathrm{:}$

Leading order Feynman diagram for $q\overline{q}\rightarrow t\overline{t};$

$$C(i\overline{j} \to l\overline{k}) = \frac{1}{4} \sum_{a=1}^{8} \lambda_{ij}^{a} \lambda_{kl}^{a} \, .$$

For $r\overline{r} \to r\overline{r}$, we have i = j = k = l = 1:

$$C(r\overline{r} \to r\overline{r}) = \frac{1}{4} \sum_{a=1}^{8} (\lambda_{11}^{a})^{2} = \frac{1}{4} \left[(\lambda_{11}^{3})^{2} + (\lambda_{11}^{8})^{2} \right] = \frac{1}{4} \left(1 + \frac{1}{3} \right) = \frac{1}{3}$$

Similarly:

$$C(g\overline{g} \to g\overline{g}) = \frac{1}{4} \left[(\lambda_{22}^3)^2 + (\lambda_{22}^8)^2 \right] = \frac{1}{4} \left(1 + \frac{1}{3} \right) = \frac{1}{3}$$
$$C(b\overline{b} \to b\overline{b}) = \frac{1}{4} (\lambda_{33}^8)^2 = \frac{1}{4} \left(\frac{-2}{\sqrt{3}} \right)^2 = \frac{1}{3} .$$

For $r\overline{r} \to g\overline{g}$, we have i = j = 1 and k = l = 2, so

$$C(r\overline{r} \to g\overline{g}) = \frac{1}{4} \sum_{a=1}^{8} \lambda_{11}^{a} \lambda_{22}^{a} = \frac{1}{4} \left(\lambda_{11}^{3} \lambda_{22}^{3} + \lambda_{11}^{8} \lambda_{22}^{8} \right) = \frac{1}{4} \left(1 \cdot -1 + \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} \right) = -\frac{1}{6}$$

For $r\overline{g} \to r\overline{g}$, we have i = 1, j = 2 and k = 2, l = 1, so

$$C(r\overline{g} \to r\overline{g}) = \frac{1}{4} \sum_{a=1}^{8} \lambda_{12}^{a} \lambda_{21}^{a} = \frac{1}{4} \left(\lambda_{12}^{1} \lambda_{21}^{1} + \lambda_{12}^{2} \lambda_{21}^{2} \right) = \frac{1}{4} \left(1 \cdot 1 + i \cdot -i \right) = \frac{1}{2}$$

In summary, the allowed colour factors contributing to the matrix element $M_{\rm fi}$ are

$$C(r\overline{r} \to r\overline{r}) = C(g\overline{g} \to g\overline{g}) = C(b\overline{b} \to b\overline{b}) = \frac{1}{3}$$
$$C(r\overline{g} \to r\overline{g}) = C(r\overline{b} \to r\overline{b}) = C(g\overline{r} \to g\overline{r}) = C(g\overline{b} \to g\overline{b}) = C(b\overline{r} \to b\overline{r}) = C(b\overline{g} \to b\overline{g}) = \frac{1}{2}$$
$$C(r\overline{r} \to g\overline{g}) = C(r\overline{r} \to b\overline{b}) = C(g\overline{g} \to r\overline{r}) = C(g\overline{g} \to b\overline{b}) = C(b\overline{b} \to r\overline{r}) = C(b\overline{b} \to g\overline{g}) = -\frac{1}{6}$$

In $q\overline{q} \rightarrow t\overline{t}$ scattering in high energy hadron-hadron collisions, the initial state q and \overline{q} are not in a well-defined colour state, but rather each is effectively an equal mix (unpolarised mixture) of red, green and blue. The colour factor appearing in the $q\overline{q} \rightarrow t\overline{t}$ cross section (which contains $|M_{\rm fi}|^2$) is obtained by summing over all allowed colour configurations for the scattering, and averaging over the possible colours of the initial q and \overline{q} (factor of 1/3 for each):

$$\left\langle |C(q\overline{q} \to t\overline{t})|^2 \right\rangle = \frac{1}{3} \cdot \frac{1}{3} \left[3 \times \left(\frac{1}{3}\right)^2 + 6 \times \left(-\frac{1}{6}\right)^2 + 6 \times \left(\frac{1}{2}\right)^2 \right] = \frac{2}{9}$$

Consider the production of a $t\bar{t}$ pair in a hadron-hadron collision, due to the interaction of two partons with momentum fractions x_1 and x_2 :

The t quark has four-momentum (with $p = 40 \,\text{GeV}$)

$$p_3 = (\sqrt{p^2 + m_t^2}, p, 0, 0) = (\sqrt{40^2 + 175^2}, 40, 0, 0) = (179.513, 40, 0, 0)$$

Since the transverse momentum of the \bar{t} is the same as that of the t, namely 40 GeV, the \bar{t} momentum is $40/\sin 50^\circ = 52.216 \text{ GeV}$. Hence the \bar{t} four-momentum is

$$p_4 = \left(\sqrt{(p/\sin 50^\circ)^2 + m_t^2}, -p, 0, p \cot 50^\circ\right) = (182.624, -40, 0, 33.564) ,$$

and the four-momentum of the $\ensuremath{\mathrm{t}\bar{\mathrm{t}}}$ system is

$$p_3 + p_4 = (362.137, 0, 0, 33.564)$$

The incoming partons have 4-momenta $(x_1P, 0, 0, x_1P)$ and $(x_2P, 0, 0, -x_2P)$. Conservation of energy and momentum then gives

$$(x_1 + x_2)P = 362.137 \,\text{GeV}$$

 $(x_1 - x_2)P = 33.564 \,\text{GeV}$

At the Tevatron, with beam momenta $P = 980 \,\text{GeV}$, these equations give

$$x_1 = (362.14 + 33.56)/(2 \times 980) = 0.202$$

$$x_2 = (362.14 - 33.56)/(2 \times 980) = 0.168$$

At the LHC, with beam momenta $P = 7000 \,\text{GeV}$, we have

$$x_1 = (362.14 + 33.56)/(2 \times 7000) = 0.028$$

$$x_2 = (362.14 - 33.56)/(2 \times 7000) = 0.023$$

Measurements of parton distribution functions q(x) and g(x) show that quarks dominate for momentum fractions x > 0.15-0.2, and gluons dominate below this. Hence, at the Tevatron, $q\bar{q} \rightarrow t\bar{t}$ dominates, while at the LHC, the most likely production mechanism is $gg \rightarrow t\bar{t}$.