NST Part III Experimental and Theoretical Physics

## Particle Physics Major Option Exam, January 2006

## SOLUTIONS

## 2. Tau lepton decay:

Feynman diagram for $\tau^{-} \rightarrow \pi^{-} \nu_{\tau}$ decay:

$p_{4}$

The matrix element is

$$
M_{\mathrm{fi}}=\sqrt{2} f_{\pi} V_{\mathrm{ud}} G_{\mathrm{F}}\left(j \cdot p_{4}\right),
$$

where the lepton current is

$$
j^{\mu}=\bar{u}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) u\left(p_{1}\right) .
$$

In the $\tau^{-}$rest frame, and assuming a massless neutrino, the four-momenta can be taken to be

$$
p_{1}=\left(m_{\tau}, 0,0,0\right), \quad p_{3}=\left(p^{*}, p^{*} \sin \theta, 0, p^{*} \cos \theta\right), \quad p_{4}=\left(E_{\pi},-p^{*} \sin \theta, 0,-p^{*} \cos \theta\right)
$$

where $E_{\pi}^{2}=\left(p^{*}\right)^{2}+m_{\pi}^{2}$ and $p^{*}=\left|\boldsymbol{p}_{3}\right|=\left|\boldsymbol{p}_{4}\right|$.


For a particle of 4-momentum $p^{\mu}=(E, p \sin \theta \cos \phi, p \sin \theta \sin \phi, p \cos \theta)$, the spinors are

$$
u_{\uparrow}(p)=\sqrt{E+m}\left(\begin{array}{c}
\cos \theta / 2  \tag{1}\\
e^{i \phi} \sin \theta / 2 \\
\frac{p}{E+m} \cos \theta / 2 \\
\frac{p}{E+m} e^{i \phi} \sin \theta / 2
\end{array}\right), \quad u_{\downarrow}(p)=\sqrt{E+m}\left(\begin{array}{c}
-\sin \theta / 2 \\
e^{i \phi} \cos \theta / 2 \\
\frac{p}{E+m} \sin \theta / 2 \\
-\frac{p}{E+m} e^{i \phi} \cos \theta / 2
\end{array}\right)
$$

For a massless neutrino, only the left-handed helicity eigenstate $u_{\downarrow}\left(p_{3}\right)$ can contribute. Since the neutrino four-momentum is $p_{3}=\left(p^{*}, p^{*} \sin \theta, 0, p^{*} \cos \theta\right)$, the spinor $u_{\downarrow}\left(p_{3}\right)$ can be obtained from Equation (1) by setting $E=p=p^{*}, m=0, \phi=0$ :

$$
u_{\downarrow}\left(p_{3}\right)=\sqrt{p^{*}}\left(\begin{array}{c}
-\sin \theta / 2 \\
\cos \theta / 2 \\
\sin \theta / 2 \\
-\cos \theta / 2
\end{array}\right)
$$

The corresponding adjoint spinor is

$$
\bar{u}_{\downarrow}\left(p_{3}\right)=u_{\downarrow}^{\dagger}\left(p_{3}\right) \gamma^{0}=\sqrt{p^{*}}(-\sin \theta / 2 \quad \cos \theta / 2 \quad-\sin \theta / 2 \quad \cos \theta / 2) .
$$

The $\tau^{-}$is in a spin eigenstate with the spin pointing in the $+z$ direction. The spinor $u\left(p_{1}\right)$ describing this spin state can be obtained from $u_{\uparrow}(p)$ of Equation (1) by setting $\theta=0$ and taking the zero-momentum limit $E=m_{\tau}, p=0$ (the value of $\phi$ is irrelevant): ${ }^{1}$

$$
u\left(p_{1}\right)=\sqrt{2 m_{\tau}}\left(\begin{array}{l}
1  \tag{2}\\
0 \\
0 \\
0
\end{array}\right)
$$

The lepton current $j^{\mu}=\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) u\left(p_{1}\right)$ can now be evaluated using standard matrix multiplication:

$$
\left.\begin{array}{rl}
\frac{1}{2}\left(1-\gamma^{5}\right) u\left(p_{1}\right) & =\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right) \sqrt{2 m_{\tau}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{1}{2} \sqrt{2 m_{\tau}}\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right) . \\
\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{0} & =\sqrt{p^{*}}(-\sin \theta / 2
\end{array} \cos \theta / 2 \quad \sin \theta / 2 \quad-\cos \theta / 2\right) .
$$

which combine to give

$$
j^{\mu}=\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) u\left(p_{1}\right)=\sqrt{2 m_{\tau} p^{*}}(-\sin \theta / 2,-\cos \theta / 2,-i \cos \theta / 2, \sin \theta / 2) .
$$

The 4 -vector scalar product of the lepton current with $p_{4}$ is then

$$
\begin{aligned}
j^{\mu} \cdot p_{4} & =\sqrt{2 m_{\tau} p^{*}}\left(-E_{\pi} \sin \theta / 2-p^{*} \sin \theta \cos \theta / 2+p^{*} \cos \theta \sin \theta / 2\right) \\
& =-\sqrt{2 m_{\tau} p^{*}}\left(E_{\pi}+p^{*}\right) \sin \theta / 2 \\
& =-\sqrt{2 m_{\tau} p^{*}} m_{\tau} \sin \theta / 2
\end{aligned}
$$

[^0]where energy conservation, $m_{\tau}=E_{\pi}+p^{*}$, has been used in the last step. Hence
$$
M_{\mathrm{fi}}=\sqrt{2} f_{\pi} V_{\mathrm{ud}} G_{\mathrm{F}}\left(j^{\mu} \cdot p_{4}\right)=-2 f_{\pi} V_{\mathrm{ud}} G_{\mathrm{F}} m_{\tau} \sqrt{m_{\tau} p^{*}} \sin \theta / 2 .
$$

An angular distribution $\sin \theta / 2$ is to be expected for the overlap of two spin-half wavefunctions. In particular, the matrix element vanishes for $\theta=0$, where the $\tau^{-}$and $\nu_{\tau}$ spins are oppositely directed, and reaches a maximum for $\theta=\pi$, where the $\tau^{-}$and $\nu_{\tau}$ spins both point in the $+z$ direction.


If the $\tau^{-} \operatorname{spin}$ points in the $-z$ direction, the matrix element must vanish at $\theta=\pi$ and reach a maximum at $\theta=0$. The matrix element can be written down on symmetry grounds as

$$
M_{\mathrm{fi}}=-2 f_{\pi} V_{\mathrm{ud}} G_{\mathrm{F}} \sqrt{m_{\tau} p^{*}} m_{\tau} \cos \theta / 2 .
$$

Squaring the energy conservation equation $m_{\tau}=E_{\pi}+p^{*}$ gives

$$
\left(m_{\tau}-p^{*}\right)^{2}=E_{\pi}^{2}=\left(p^{*}\right)^{2}+m_{\pi}^{2} .
$$

This gives the centre of mass momentum as

$$
p^{*}=\frac{m_{\tau}^{2}-m_{\pi}^{2}}{2 m_{\tau}}
$$

When the $\tau^{-}$spin points in the $+z$ direction, the differential decay rate is then

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma}{\mathrm{~d} \Omega}=\frac{p^{*}}{32 \pi^{2} m_{\tau}^{2}}\left|M_{\mathrm{fi}}\right|^{2} & =\frac{1}{32 \pi^{2} m_{\tau}^{2}} \cdot \frac{m_{\tau}^{2}-m_{\pi}^{2}}{2 m_{\tau}} \cdot 2 f_{\pi}^{2}\left|V_{\mathrm{ud}}\right|^{2} G_{\mathrm{F}}^{2}\left(m_{\tau}^{2}-m_{\pi}^{2}\right) m_{\tau}^{2} \sin ^{2} \theta / 2 \\
& =\frac{f_{\pi}^{2} G_{\mathrm{F}}^{2}}{32 \pi^{2}}\left|V_{\mathrm{ud}}\right|^{2} m_{\tau}^{3}\left(1-\frac{m_{\pi}^{2}}{m_{\tau}^{2}}\right)^{2} \sin ^{2} \theta / 2
\end{aligned}
$$

where $\mathrm{d} \Omega=\mathrm{d} \cos \theta \mathrm{d} \phi$. When the $\tau^{-}$spin points in the $-z$ direction, the factor $\sin ^{2} \theta / 2$ is replaced by $\cos ^{2} \theta / 2$.

An unpolarised $\tau^{-}$sample is effectively an equal mix of $S_{z}=+\frac{1}{2}$ and $S_{z}=-\frac{1}{2} \tau^{-}$leptons, and the differential decay rate can be obtained by averaging over the two possible $\tau^{-}$spin states:

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} \Omega}=\frac{f_{\pi}^{2} G_{\mathrm{F}}^{2}}{64 \pi^{2}}\left|V_{\mathrm{ud}}\right|^{2} m_{\tau}^{3}\left(1-\frac{m_{\pi}^{2}}{m_{\tau}^{2}}\right)^{2}
$$

This decay rate is independent of $\theta\left(\right.$ since $\left.\sin ^{2} \theta / 2+\cos ^{2} \theta / 2=1\right)$, so that the decay is isotropic, as expected for an initially unpolarised sample.

The partial width for unpolarised $\tau^{-} \rightarrow \pi^{-} \nu_{\tau}$ decay is obtained by integrating over $\mathrm{d} \Omega$, giving a factor of $4 \pi$ :

$$
\Gamma\left(\tau^{-} \rightarrow \pi^{-} \nu_{\tau}\right)=\frac{G_{\mathrm{F}}^{2} f_{\pi}^{2}}{16 \pi}\left|V_{\mathrm{ud}}\right|^{2} m_{\tau}^{3}\left(1-\frac{m_{\pi}^{2}}{m_{\tau}^{2}}\right)^{2} .
$$

The branching ratio is

$$
\operatorname{BR}\left(\tau^{-} \rightarrow \pi^{-} \nu_{\tau}\right)=\frac{\Gamma\left(\tau^{-} \rightarrow \pi^{-} \nu_{\tau}\right)}{\Gamma}=\tau_{\tau} \Gamma\left(\tau^{-} \rightarrow \pi^{-} \nu_{\tau}\right)=\tau_{\tau} \frac{G_{\mathrm{F}}^{2} f_{\pi}^{2}}{16 \pi}\left|V_{\mathrm{ud}}\right|^{2} m_{\tau}^{3}\left(1-\frac{m_{\pi}^{2}}{m_{\tau}^{2}}\right)^{2}
$$

Estimating $\left|V_{\mathrm{ud}}\right| \approx 1$ (or $\left|V_{\mathrm{ud}}\right|^{2} \approx \cos ^{2} \theta_{\mathrm{C}} \approx 0.95$ to be more precise), taking $f_{\pi}=m_{\pi}$, and using $\tau_{\tau}=2.91 \times 10^{-13} \mathrm{~s}$ gives

$$
\begin{aligned}
\operatorname{BR}\left(\tau^{-} \rightarrow \pi^{-} \nu_{\tau}\right) & =\frac{\left(2.91 \times 10^{-13}\right)}{\left(6.582 \times 10^{-25}\right)} \frac{\left(1.166 \times 10^{-5}\right)^{2}(0.1396)^{2}}{16 \pi}(1.777)^{3}\left(1-\frac{(0.1396)^{2}}{(1.777)^{2}}\right)^{2} \\
& =12.9 \%
\end{aligned}
$$

## 3. Colour and partons:

Leading-order Feynman diagrams for $\mathrm{gg} \rightarrow \mathrm{t} \overline{\mathrm{t}}:$


Leading order Feynman diagram for $\mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{t} \overline{\mathrm{t}}$ :


Colour factors for $\mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{t} \overline{\mathrm{t}}$ : the $\mathrm{q} \overline{\mathrm{q}}$ and $\mathrm{t} \overline{\mathrm{t}}$ vertices contribute $\frac{1}{2} \lambda_{i j}^{a}$ and $\frac{1}{2} \lambda_{k l}^{a}$ respectively:

$$
C(i \bar{j} \rightarrow l \bar{k})=\frac{1}{4} \sum_{a=1}^{8} \lambda_{i j}^{a} \lambda_{k l}^{a} .
$$

For $r \bar{r} \rightarrow r \bar{r}$, we have $i=j=k=l=1$ :

$$
C(r \bar{r} \rightarrow r \bar{r})=\frac{1}{4} \sum_{a=1}^{8}\left(\lambda_{11}^{a}\right)^{2}=\frac{1}{4}\left[\left(\lambda_{11}^{3}\right)^{2}+\left(\lambda_{11}^{8}\right)^{2}\right]=\frac{1}{4}\left(1+\frac{1}{3}\right)=\frac{1}{3} .
$$

Similarly:

$$
\begin{gathered}
C(g \bar{g} \rightarrow g \bar{g})=\frac{1}{4}\left[\left(\lambda_{22}^{3}\right)^{2}+\left(\lambda_{22}^{8}\right)^{2}\right]=\frac{1}{4}\left(1+\frac{1}{3}\right)=\frac{1}{3} . \\
C(b \bar{b} \rightarrow b \bar{b})=\frac{1}{4}\left(\lambda_{33}^{8}\right)^{2}=\frac{1}{4}\left(\frac{-2}{\sqrt{3}}\right)^{2}=\frac{1}{3} .
\end{gathered}
$$

For $r \bar{r} \rightarrow g \bar{g}$, we have $i=j=1$ and $k=l=2$, so

$$
C(r \bar{r} \rightarrow g \bar{g})=\frac{1}{4} \sum_{a=1}^{8} \lambda_{11}^{a} \lambda_{22}^{a}=\frac{1}{4}\left(\lambda_{11}^{3} \lambda_{22}^{3}+\lambda_{11}^{8} \lambda_{22}^{8}\right)=\frac{1}{4}\left(1 \cdot-1+\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}\right)=-\frac{1}{6} .
$$

For $r \bar{g} \rightarrow r \bar{g}$, we have $i=1, j=2$ and $k=2, l=1$, so

$$
C(r \bar{g} \rightarrow r \bar{g})=\frac{1}{4} \sum_{a=1}^{8} \lambda_{12}^{a} \lambda_{21}^{a}=\frac{1}{4}\left(\lambda_{12}^{1} \lambda_{21}^{1}+\lambda_{12}^{2} \lambda_{21}^{2}\right)=\frac{1}{4}(1 \cdot 1+i \cdot-i)=\frac{1}{2} .
$$

In summary, the allowed colour factors contributing to the matrix element $M_{\mathrm{fi}}$ are

$$
\begin{gathered}
C(r \bar{r} \rightarrow r \bar{r})=C(g \bar{g} \rightarrow g \bar{g})=C(b \bar{b} \rightarrow b \bar{b})=\frac{1}{3} \\
C(r \bar{g} \rightarrow r \bar{g})=C(r \bar{b} \rightarrow r \bar{b})=C(g \bar{r} \rightarrow g \bar{r})=C(g \bar{b} \rightarrow g \bar{b})=C(b \bar{r} \rightarrow b \bar{r})=C(b \bar{g} \rightarrow b \bar{g})=\frac{1}{2} \\
C(r \bar{r} \rightarrow g \bar{g})=C(r \bar{r} \rightarrow b \bar{b})=C(g \bar{g} \rightarrow r \bar{r})=C(g \bar{g} \rightarrow b \bar{b})=C(b \bar{b} \rightarrow r \bar{r})=C(b \bar{b} \rightarrow g \bar{g})=-\frac{1}{6}
\end{gathered}
$$

In $\mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{t} \overline{\mathrm{t}}$ scattering in high energy hadron-hadron collisions, the initial state q and $\overline{\mathrm{q}}$ are not in a well-defined colour state, but rather each is effectively an equal mix (unpolarised mixture) of red, green and blue. The colour factor appearing in the $q \bar{q} \rightarrow t \bar{t}$ cross section (which contains $\left|M_{\mathrm{fi}}\right|^{2}$ ) is obtained by summing over all allowed colour configurations for the scattering, and averaging over the possible colours of the initial q and $\overline{\mathrm{q}}$ (factor of $1 / 3$ for each):

$$
\langle | C\left(\left.\mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{t} \overline{\mathrm{t}}\right|^{2}\right\rangle=\frac{1}{3} \cdot \frac{1}{3}\left[3 \times\left(\frac{1}{3}\right)^{2}+6 \times\left(-\frac{1}{6}\right)^{2}+6 \times\left(\frac{1}{2}\right)^{2}\right]=\frac{2}{9} .
$$

Consider the production of a $t \bar{t}$ pair in a hadron-hadron collision, due to the interaction of two partons with momentum fractions $x_{1}$ and $x_{2}$ :


The t quark has four-momentum (with $p=40 \mathrm{GeV}$ )

$$
p_{3}=\left(\sqrt{p^{2}+m_{t}^{2}}, p, 0,0\right)=\left(\sqrt{40^{2}+175^{2}}, 40,0,0\right)=(179.513,40,0,0) .
$$

Since the transverse momentum of the $\overline{\mathrm{t}}$ is the same as that of the t , namely 40 GeV , the $\overline{\mathrm{t}}$ momentum is $40 / \sin 50^{\circ}=52.216 \mathrm{GeV}$. Hence the $\overline{\mathrm{t}}$ four-momentum is

$$
p_{4}=\left(\sqrt{\left(p / \sin 50^{\circ}\right)^{2}+m_{t}^{2}},-p, 0, p \cot 50^{\circ}\right)=(182.624,-40,0,33.564)
$$

and the four-momentum of the $t \bar{t}$ system is

$$
p_{3}+p_{4}=(362.137,0,0,33.564) .
$$

The incoming partons have 4-momenta $\left(x_{1} P, 0,0, x_{1} P\right)$ and $\left(x_{2} P, 0,0,-x_{2} P\right)$. Conservation of energy and momentum then gives

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right) P=362.137 \mathrm{GeV} \\
& \left(x_{1}-x_{2}\right) P=33.564 \mathrm{GeV}
\end{aligned}
$$

At the Tevatron, with beam momenta $P=980 \mathrm{GeV}$, these equations give

$$
\begin{aligned}
& x_{1}=(362.14+33.56) /(2 \times 980)=0.202 \\
& x_{2}=(362.14-33.56) /(2 \times 980)=0.168
\end{aligned}
$$

At the LHC, with beam momenta $P=7000 \mathrm{GeV}$, we have

$$
\begin{aligned}
& x_{1}=(362.14+33.56) /(2 \times 7000)=0.028 \\
& x_{2}=(362.14-33.56) /(2 \times 7000)=0.023
\end{aligned}
$$

Measurements of parton distribution functions $q(x)$ and $g(x)$ show that quarks dominate for momentum fractions $x>0.15-0.2$, and gluons dominate below this. Hence, at the Tevatron, $\mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{t} \overline{\mathrm{t}}$ dominates, while at the LHC, the most likely production mechanism is $\mathrm{gg} \rightarrow \mathrm{t} \overline{\mathrm{t}}$.


[^0]:    ${ }^{1}$ Equivalently, we could use the spinor $u_{\downarrow}(p)$ of Equation (1) and set $\theta=\pi$, since a negative helicity particle travelling in the $-z$ direction $(\theta=\pi)$ has its spin pointing in the $+z$ direction, as required. This gives the same form for the spinor $u\left(p_{1}\right)$ as in Equation (2), up to an overall minus sign.

