Particle Physics Major Option Exam, January 2005 SOLUTIONS

1. CP Violation:

The processes $\overline{p}p \to K^+\pi^-\overline{K}{}^0$ and $\overline{p}p \to K^-\pi^+K^0$ are allowed by strangeness conservation, but $\overline{p}p \to K^+\pi^-K^0$ and $\overline{p}p \to K^-\pi^+\overline{K}{}^0$ are forbidden. Hence the charge of the K^{\pm} or π^{\pm} can be used to tag the initial K^0 or $\overline{K}{}^0$ flavour.

The $\pi^+\pi^-$ final state from a neutral kaon decay must have L = 0, and hence the parity is

$$P = P_{\pi} \cdot P_{\pi} \cdot (-1)^L = +1$$
.

Charge conjugation C on a $\pi^+\pi^-$ system has the same effect as parity P. Hence C = P = +1, and CP = +1.

The mass eigenstates

$$|\mathrm{K}_{\mathrm{S}}\rangle \propto |\mathrm{K}_{1}\rangle + \epsilon |\mathrm{K}_{2}\rangle, \qquad |\mathrm{K}_{\mathrm{L}}\rangle \propto |\mathrm{K}_{2}\rangle + \epsilon |\mathrm{K}_{1}\rangle$$

evolve as

$$|\mathbf{K}_{\mathrm{S}}(t)\rangle = |\mathbf{K}_{\mathrm{S}}\rangle \,\theta_{\mathrm{S}}(t) = |\mathbf{K}_{\mathrm{S}}\rangle \,e^{-im_{\mathrm{S}}t - \Gamma_{\mathrm{S}}t/2}, \qquad |\mathbf{K}_{\mathrm{L}}(t)\rangle = |\mathbf{K}_{\mathrm{L}}\rangle \,\theta_{\mathrm{L}}(t) = |\mathbf{K}_{\mathrm{L}}\rangle \,e^{-im_{\mathrm{L}}t - \Gamma_{\mathrm{L}}t/2}$$

The strangeness eigenstates K^0 and \overline{K}^0 are

$$\left| \mathrm{K}^{0} \right\rangle \propto \left| \mathrm{K}_{\mathrm{L}} \right\rangle + \left| \mathrm{K}_{\mathrm{S}} \right\rangle, \qquad \left| \overline{\mathrm{K}}^{0} \right\rangle \propto \left| \mathrm{K}_{\mathrm{L}} \right\rangle - \left| \mathrm{K}_{\mathrm{S}} \right\rangle \;.$$

A state which is initially pure K^0 therefore evolves with time as

$$\begin{aligned} \left| \mathbf{K}^{0}(t) \right\rangle &\propto \left| \mathbf{K}_{\mathrm{L}} \right\rangle \theta_{\mathrm{L}}(t) + \left| \mathbf{K}_{\mathrm{S}} \right\rangle \theta_{\mathrm{S}}(t) \\ &\propto \left(\left| \mathbf{K}_{2} \right\rangle + \epsilon \left| \mathbf{K}_{1} \right\rangle \right) \theta_{\mathrm{L}} + \left(\left| \mathbf{K}_{1} \right\rangle + \epsilon \left| \mathbf{K}_{2} \right\rangle \right) \theta_{\mathrm{S}} \\ &\propto \left| \mathbf{K}_{1} \right\rangle \left(\theta_{\mathrm{S}} + \epsilon \theta_{\mathrm{L}} \right) + \left| \mathbf{K}_{2} \right\rangle \left(\theta_{\mathrm{L}} + \epsilon \theta_{\mathrm{S}} \right) . \end{aligned}$$

$$(1)$$

Assuming that CP violation in the decay process itself can be neglected, the $\pi\pi$ final state, with CP = +1, arises entirely from the CP = +1 eigenstate K₁. Hence

$$\Gamma(\mathbf{K}_{t=0}^{0} \to \pi\pi) \propto \left| \left\langle \mathbf{K}_{1} \middle| \mathbf{K}^{0}(t) \right\rangle \right|^{2} \propto \left| \theta_{\mathrm{S}} + \epsilon \theta_{\mathrm{L}} \right|^{2}$$
$$= \left| e^{-im_{\mathrm{S}}t - \Gamma_{\mathrm{S}}t/2} + \epsilon \cdot e^{-im_{\mathrm{L}}t - \Gamma_{\mathrm{L}}t/2} \right|^{2}$$
$$= e^{-\Gamma_{\mathrm{S}}t} + \left| \epsilon \right|^{2} e^{-\Gamma_{\mathrm{L}}t} + 2\left| \epsilon \right| e^{-(\Gamma_{\mathrm{L}} + \Gamma_{\mathrm{S}})t/2} \cos(\Delta m \cdot t - \phi)$$

where $\Delta m \equiv m_{\rm L} - m_{\rm S}$, $\epsilon \equiv |\epsilon|e^{i\phi}$, and we have used the complex number relation $|z_1 \pm z_2|^2 = |z_1|^2 + |z_2|^2 \pm 2\text{Re}(z_1 z_2^*)$. Hence

$$\Gamma(\mathbf{K}_{t=0}^{0} \to \pi\pi) \propto \left[e^{-\Gamma_{\mathrm{S}}t} + |\epsilon|^{2} e^{-\Gamma_{\mathrm{L}}t} + 2|\epsilon|e^{-(\Gamma_{\mathrm{L}}+\Gamma_{\mathrm{S}})t/2} \cos(\Delta m.t - \phi) \right]$$
(2)

Similarly, for a beam which is initially in a pure $\overline{\mathrm{K}}{}^0$ state,

$$\Gamma(\overline{\mathbf{K}}_{t=0}^{0} \to \pi\pi) \propto \left[e^{-\Gamma_{\mathrm{S}}t} + |\epsilon|^{2} e^{-\Gamma_{\mathrm{L}}t} - 2|\epsilon|e^{-(\Gamma_{\mathrm{L}}+\Gamma_{\mathrm{S}})t/2} \cos(\Delta m.t - \phi) \right]$$
(3)

Since $\Gamma_{\rm S} = 1/\tau_{\rm S}$, the asymmetry A_{+-} is

$$A_{+-} \equiv \frac{\Gamma(\overline{\mathbf{K}}^0_{t=0} \to \pi\pi) - \Gamma(\mathbf{K}^0_{t=0} \to \pi\pi)}{\Gamma(\overline{\mathbf{K}}^0_{t=0} \to \pi\pi) + \Gamma(\mathbf{K}^0_{t=0} \to \pi\pi)} \approx \frac{-2|\epsilon|e^{t/2\tau_{\mathrm{S}}}\cos(\Delta m.t - \phi)}{1 + |\epsilon|^2 e^{t/\tau_{\mathrm{S}}}} . \tag{4}$$

From the Figure, the asymmetry A_{+-} is zero at $t/\tau_{\rm S} \approx 11.5$. The cosine term must vanish at

this point, and, because of the overall minus sign in the expression for A_{+-} , must be *increasing* with time. Therefore $\Delta m.t - \phi = 3\pi/2$ (not $\pi/2$), giving

$$\phi = \Delta m.t - \frac{3\pi}{2} \approx \frac{(3.5 \times 10^{-12} \,\mathrm{MeV}) \times 11.5 \times (0.9 \times 10^{-10} \,\mathrm{s})}{(6.58 \times 10^{-22} \,\mathrm{MeV.s})} - \frac{3\pi}{2} \approx 0.793 \quad (\approx 45.4^{\circ}) \;.$$

The asymmetry reaches a maximum value $A_{+-} \approx 0.32$ at $t/\tau_{\rm S} \approx 9.5$. Neglecting the term $|\epsilon|^2 e^{9.5}$ (≈ 0.05) in the denominator and making the approximation $\cos(\Delta m.t - \phi) \approx -1$ at the maximum gives

$$|\epsilon| \approx \frac{0.32}{2e^{(9.5)/2}} \approx 1.4 \times 10^{-3}$$

This estimate of $|\epsilon|$ can be improved (not necessary for exam purposes) by making a more accurate estimate of the value of the cosine term at the maximum using

$$\Delta m.t - \phi \approx \frac{(3.5 \times 10^{-12} \,\mathrm{MeV}) \times 9.5 \times (0.9 \times 10^{-10} \,\mathrm{s})}{(6.58 \times 10^{-22} \,\mathrm{MeV.s})} - 0.793 \approx 3.75$$

which gives $\cos(\Delta m.t - \phi) \approx -0.818$ and hence $|\epsilon| \approx 1.7 \times 10^{-3}$. If, in addition, the full denominator is used, we have (at the maximum)

$$0.32 \approx \frac{-2|\epsilon|e^{(9.5)/2} \times (-0.818)}{1+|\epsilon|^2 e^{9.5}} ,$$

and hence a quadratic equation for $|\epsilon|$, $(13360)|\epsilon|^2 - (591)|\epsilon| + 1 = 0$, which improves the estimate to $|\epsilon| \approx 1.8 \times 10^{-3}$.

3. The Z resonance:

The Z⁰ff interaction, proportional to $c_{\rm L}^{\rm f}\gamma^{\mu}(1-\gamma^5) + c_{\rm R}^{\rm f}\gamma^{\mu}(1+\gamma^5)$, is a mixture of V - A and V + A interactions. For any mixture of V and A currents, particle helicity is conserved in the massless limit (helicity conservation). Hence, for e⁺e⁻ \rightarrow ff scattering, the electron and positron must have opposite helicity, as must the fermion and antifermion. The allowed spin configurations are therefore (for the particular case that the outgoing fermion is a μ^-):

For the RL configuration, with a right-handed electron and a left-handed fermion (bottom left diagram above), the cross section must vanish for $\theta = 0$ by angular momentum conservation. The overlap of initial and final spin states gives a factor $(1 - \cos \theta)^2$ in the differential cross section. The electron vertex gives a factor $c_{\rm R}^{\rm e}$ in the matrix element and the fermion vertex a factor $c_{\rm L}^{\rm f}$. Similar considerations apply to the other diagrams, with angular momentum conservation requiring the cross section to vanish for $\theta = 0$ for the RL and LR configurations, and for $\theta = \pi$ for RR and LL. Overall, the differential cross sections are:

$$\frac{\mathrm{d}\sigma_{\mathrm{RR}}}{\mathrm{d}\Omega} \propto (c_{\mathrm{R}}^{\mathrm{e}})^{2} (c_{\mathrm{R}}^{\mathrm{f}})^{2} (1 + \cos\theta)^{2}$$
$$\frac{\mathrm{d}\sigma_{\mathrm{LL}}}{\mathrm{d}\Omega} \propto (c_{\mathrm{L}}^{\mathrm{e}})^{2} (c_{\mathrm{L}}^{\mathrm{f}})^{2} (1 + \cos\theta)^{2}$$
$$\frac{\mathrm{d}\sigma_{\mathrm{LR}}}{\mathrm{d}\Omega} \propto (c_{\mathrm{L}}^{\mathrm{e}})^{2} (c_{\mathrm{R}}^{\mathrm{f}})^{2} (1 - \cos\theta)^{2}$$
$$\frac{\mathrm{d}\sigma_{\mathrm{RL}}}{\mathrm{d}\Omega} \propto (c_{\mathrm{R}}^{\mathrm{e}})^{2} (c_{\mathrm{L}}^{\mathrm{f}})^{2} (1 - \cos\theta)^{2} .$$

The integrals of the $(1 \pm \cos \theta)^2$ angular distributions are the same for all four cases, so that the total cross sections are in the ratio

$$\sigma_{\rm RR} \propto (c_{\rm R}^{\rm e})^2 (c_{\rm R}^{\rm f})^2, \quad \sigma_{\rm RL} \propto (c_{\rm R}^{\rm e})^2 (c_{\rm L}^{\rm f})^2, \quad \sigma_{\rm LR} \propto (c_{\rm L}^{\rm e})^2 (c_{\rm R}^{\rm f})^2, \quad \sigma_{\rm LL} \propto (c_{\rm L}^{\rm e})^2 (c_{\rm L}^{\rm f})^2$$

The total cross sections $\sigma_{\rm L}$ and $\sigma_{\rm R}$ for producing a final fermion which is left-handed or righthanded, respectively, in unpolarised e⁺e⁻ collisions are

$$\begin{aligned} \sigma_{\rm L} &= \frac{1}{2} \cdot \frac{1}{2} \left(\sigma_{\rm LL} + \sigma_{\rm RL} \right) \propto \left[(c_{\rm L}^{\rm e})^2 + (c_{\rm R}^{\rm e})^2 \right] (c_{\rm L}^{\rm f})^2 \propto (c_{\rm L}^{\rm f})^2 \\ \sigma_{\rm R} &= \frac{1}{2} \cdot \frac{1}{2} \left(\sigma_{\rm LR} + \sigma_{\rm RR} \right) \propto \left[(c_{\rm L}^{\rm e})^2 + (c_{\rm R}^{\rm e})^2 \right] (c_{\rm R}^{\rm f})^2 \propto (c_{\rm R}^{\rm f})^2 . \end{aligned}$$

The ratio of cross sections is therefore $\sigma_{\rm L}$: $\sigma_{\rm R} = (c_{\rm L}^{\rm f})^2 : (c_{\rm R}^{\rm f})^2$.

The average polarisation of the final state fermion is therefore

$$P = \frac{\sigma_{\rm R} - \sigma_{\rm L}}{\sigma_{\rm R} + \sigma_{\rm L}} = \frac{(c_{\rm R}^{\rm f})^2 - (c_{\rm L}^{\rm f})^2}{(c_{\rm R}^{\rm f})^2 + (c_{\rm L}^{\rm f})^2} = -A_f \ .$$

(P = +1 if the fermion is always right-handed, P = -1 if the fermion is always left-handed, -1 < P < +1 in general).

Since the tau has $I_W^{(3)} = -\frac{1}{2}$ and Q = -1, we have

$$c_{\rm L}^{\tau} = -\frac{1}{2} + \sin^2 \theta_{\rm W}, \qquad c_{\rm R}^{\tau} = \sin^2 \theta_{\rm W} ,$$

and hence

$$\frac{(-\frac{1}{2} + \sin^2 \theta_{\rm W})^2 - (\sin^2 \theta_{\rm W})^2}{(-\frac{1}{2} + \sin^2 \theta_{\rm W})^2 + (\sin^2 \theta_{\rm W})^2} = 0.1465 .$$

This gives a quadratic equation for $x \equiv \sin^2 \theta_W$:

$$2 \times (0.1465)x^2 + (1 - 0.1465)x - \frac{1}{4}(1 - 0.1465) = 0$$

which can be solved to give $\sin^2 \theta_W \approx -3.14$ or $\sin^2 \theta_W \approx 0.232$, the latter obviously being the correct result.