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Particle Physics Major Option Exam, January 2005

SOLUTIONS

CP Violation:

The processes pp — Kt7n K and pp — K- 77K are allowed by strangeness conservation, but
pp — K*77K® and pp — K;7r+K0 are forbidden. Hence the charge of the K* or 7% can be
used to tag the initial K° or K° flavour.

The 7t7~ final state from a neutral kaon decay must have L = 0, and hence the parity is
P=P.P.(—1)F=+1.

Charge conjugation C on a 7" 7~ system has the same effect as parity P. Hence C' = P = +1,
and CP = +1.

The mass eigenstates
Ks) o< [Kp) +€]Ka),  [Kp) o [Ka) + €[Ky)
evolve as
[Ks(t)) = |Ks) bs(t) = [Ks) e ™12 K (1) = [Kp) 6 (t) = [Ky) et
The strangeness eigenstates K® and K° are
IK?) oc |[Kp) + [Ks),  |K?) o< [KL) — [Ks) -
A state which is initially pure K° therefore evolves with time as

[KO(t)) o< [Kp) OL(t) + |Ks) 0s(¢)
o (|Kz2) + €]Ky)) 0 + ([Ki) + €[Ka)) b5
XX |K1> (95 + EQL) + |K2> (9[, + 6(95) . (1)

Assuming that CP violation in the decay process itself can be neglected, the w7 final state,
with C'P = +1, arises entirely from the C'P = +1 eigenstate K;. Hence

I(Kj_y — mm) oc |[(Kq|KO(t >| |05 + by |
— |€7’Lmst Ist/2 + 6.67imLt7FLt/2}2
eIt 4 |ePe et 4 2fele” MLt 2 cos(Am.t — B)

where Am = my, — mg, € = |e|e’®, and we have used the complex number relation |z; + 2|? =
|21|% + |22]® & 2Re(2123). Hence

[(KY_, — 7o) oc [e7 78" + [e]?e T 4 2le|e ML) cos(Am.t — ¢)] (2)
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Similarly, for a beam which is initially in a pure K° state,

T(Ky_y — 7m) o< [e778" + [e]?e ! — 2e|e”TLATI2 cog(Am.t — )] (3)

Since I's = 1/75, the asymmetry A, _ is

4. = N(KY_y — 7mm) —D(K)_y — 7m) —2|e|et/?™s cos(Am.t — ¢) (4)
TUIEY, - ) + TEKY, > ) 1+ |e[2et/™ '

From the Figure, the asymmetry A, _ is zero at t/75 ~ 11.5. The cosine term must vanish at
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this point, and, because of the overall minus sign in the expression for A, |, must be increasing
with time. Therefore Am.t — ¢ = 37/2 (not 7/2), giving

3r (3.5 x10712MeV) x 11.5 x (0.9 x 1071%s) 37
=Amit— — = — — x~0.793 (=~ 45.4°) .
¢ =amt == (6.58 x 10-22 MeV. 5) 2 ( )

The asymmetry reaches a maximum value A, =~ 0.32 at t/7s &~ 9.5. Neglecting the term
€]2e®® (=~ 0.05) in the denominator and making the approximation cos(Am.t — ¢) ~ —1 at the
maximum gives

0.32 _3

This estimate of |¢| can be improved (not necessary for exam purposes) by making a more
accurate estimate of the value of the cosine term at the maximum using

(3.5 x 10712 MeV) x 9.5 x (0.9 x 107 0)

Am.it — ¢~
m.t = ¢ (6.58 x 1022 MeV. 5)

—0.793 = 3.75 ,
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which gives cos(Am.t — ¢) ~ —0.818 and hence |¢|] ~ 1.7 x 1073, If, in addition, the full
denominator is used, we have (at the maximum)

—2|e|e®?)/2 x (—-0.818)
1 + |e]?e%5 ’

0.32 =~

and hence a quadratic equation for €], (13360)]¢|> — (591)|¢| + 1 = 0, which improves the
estimate to || ~ 1.8 x 1073.



The Z resonance:

The Z°ff interaction, proportional to cf y#(1 —~°) + chy#(1 ++°), is a mixture of V — A and
V' + A interactions. For any mixture of V and A currents, particle helicity is conserved in
the massless limit (helicity conservation). Hence, for ete™ — ff scattering, the electron and
positron must have opposite helicity, as must the fermion and antifermion. The allowed spin
configurations are therefore (for the particular case that the outgoing fermion is a ™ ):
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For the RL configuration, with a right-handed electron and a left-handed fermion (bottom left
diagram above), the cross section must vanish for § = 0 by angular momentum conservation.
The overlap of initial and final spin states gives a factor (1 — cos#)? in the differential cross
section. The electron vertex gives a factor cj; in the matrix element and the fermion vertex
a factor c¢l. Similar considerations apply to the other diagrams, with angular momentum
conservation requiring the cross section to vanish for § = 0 for the RL and LR configurations,

and for 8 = 7 for RR and LL. Overall, the differential cross sections are:

dggR o ()2 (ch)*(1 + cos6)?
dggL oc (¢£)%(c)2(1 + cosh)?
TR ()21 — cos0)?
SR e (65?1 — cos)?

The integrals of the (1 4 cosf)? angular distributions are the same for all four cases, so that
the total cross sections are in the ratio

orr < (¢§)*(ck)?  orr o (¢R)%(c)?  owr o (¢f)?(ck)?,  owr o (¢f)?(c])? .

The total cross sections oy, and or for producing a final fermion which is left-handed or right-
handed, respectively, in unpolarised e*e™ collisions are

3 (onn + ore) o [(ef)? + (R)] (en)? o< (1)?

-5 (oL + orr) o [(c1)? 4 (cR)?] (ck)? o< (k) .

o1, =

N—= D=

OR —



The ratio of cross sections is therefore oy, : og = (ct)? : (ck)2.

The average polarisation of the final state fermion is therefore

_ F\2 (2
p=2RCt (03)2 (CfL)z = =4z
orp+or,  (g)?+ ()

(P = +1 if the fermion is always right-handed, P = —1 if the fermion is always left-handed,
—1 < P < +1 in general).

Since the tau has Ié[?}) = —% and ) = —1, we have
ol = —%+Sin29w, c}'{:sinzé’w ,
and hence
(=3 + sin® Oy)? — (sin® Ow)?

= 0.1465 .
(—3 + sin® Gy )? + (sin® )2

This gives a quadratic equation for z = sin® y:
2 x (0.1465)x* + (1 — 0.1465)z — 1(1 — 0.1465) = 0

which can be solved to give sin® Oy ~ —3.14 or sin® Oy ~ 0.232, the latter obviously being the
correct result.



