Particle Physics Major Option Exam, January 2005

SOLUTIONS

1. CP Violation:

The processes $\overline{\mathrm{p}} \mathrm{p} \rightarrow \mathrm{K}^{+} \pi^{-} \overline{\mathrm{K}}^{0}$ and $\overline{\mathrm{p}} \mathrm{p} \rightarrow \mathrm{K}^{-} \pi^{+} \mathrm{K}^{0}$ are allowed by strangeness conservation, but $\overline{\mathrm{p}} \mathrm{p} \rightarrow \mathrm{K}^{+} \pi^{-} \mathrm{K}^{0}$ and $\overline{\mathrm{p}} \mathrm{p} \rightarrow \mathrm{K}^{-} \pi^{+} \overline{\mathrm{K}}^{0}$ are forbidden. Hence the charge of the $\mathrm{K}^{ \pm}$or $\pi^{ \pm}$can be used to tag the initial K^{0} or $\overline{\mathrm{K}}^{0}$ flavour.

The $\pi^{+} \pi^{-}$final state from a neutral kaon decay must have $L=0$, and hence the parity is

$$
P=P_{\pi} \cdot P_{\pi} \cdot(-1)^{L}=+1 .
$$

Charge conjugation C on a $\pi^{+} \pi^{-}$system has the same effect as parity P. Hence $C=P=+1$, and $C P=+1$.

The mass eigenstates

$$
\left|\mathrm{K}_{\mathrm{S}}\right\rangle \propto\left|\mathrm{K}_{1}\right\rangle+\epsilon\left|\mathrm{K}_{2}\right\rangle, \quad\left|\mathrm{K}_{\mathrm{L}}\right\rangle \propto\left|\mathrm{K}_{2}\right\rangle+\epsilon\left|\mathrm{K}_{1}\right\rangle
$$

evolve as

$$
\left|\mathrm{K}_{\mathrm{S}}(t)\right\rangle=\left|\mathrm{K}_{\mathrm{S}}\right\rangle \theta_{\mathrm{S}}(t)=\left|\mathrm{K}_{\mathrm{S}}\right\rangle e^{-i m_{\mathrm{S}} t-\Gamma_{\mathrm{S}} t / 2}, \quad\left|\mathrm{~K}_{\mathrm{L}}(t)\right\rangle=\left|\mathrm{K}_{\mathrm{L}}\right\rangle \theta_{\mathrm{L}}(t)=\left|\mathrm{K}_{\mathrm{L}}\right\rangle e^{-i m_{\mathrm{L}} t-\Gamma_{\mathrm{L}} t / 2}
$$

The strangeness eigenstates K^{0} and $\overline{\mathrm{K}}^{0}$ are

$$
\left|\mathrm{K}^{0}\right\rangle \propto\left|\mathrm{K}_{\mathrm{L}}\right\rangle+\left|\mathrm{K}_{\mathrm{S}}\right\rangle, \quad\left|\overline{\mathrm{K}}^{0}\right\rangle \propto\left|\mathrm{K}_{\mathrm{L}}\right\rangle-\left|\mathrm{K}_{\mathrm{S}}\right\rangle .
$$

A state which is initially pure K^{0} therefore evolves with time as

$$
\begin{align*}
\left|\mathrm{K}^{0}(t)\right\rangle & \propto\left|\mathrm{K}_{\mathrm{L}}\right\rangle \theta_{\mathrm{L}}(t)+\left|\mathrm{K}_{\mathrm{S}}\right\rangle \theta_{\mathrm{S}}(t) \\
& \propto\left(\left|\mathrm{K}_{2}\right\rangle+\epsilon\left|\mathrm{K}_{1}\right\rangle\right) \theta_{\mathrm{L}}+\left(\left|\mathrm{K}_{1}\right\rangle+\epsilon\left|\mathrm{K}_{2}\right\rangle\right) \theta_{\mathrm{S}} \\
& \propto\left|\mathrm{~K}_{1}\right\rangle\left(\theta_{\mathrm{S}}+\epsilon \theta_{\mathrm{L}}\right)+\left|\mathrm{K}_{2}\right\rangle\left(\theta_{\mathrm{L}}+\epsilon \theta_{\mathrm{S}}\right) . \tag{1}
\end{align*}
$$

Assuming that CP violation in the decay process itself can be neglected, the $\pi \pi$ final state, with $C P=+1$, arises entirely from the $C P=+1$ eigenstate K_{1}. Hence

$$
\begin{aligned}
\Gamma\left(\mathrm{K}_{t=0}^{0} \rightarrow \pi \pi\right) \propto\left|\left\langle\mathrm{K}_{1} \mid \mathrm{K}^{0}(t)\right\rangle\right|^{2} & \propto\left|\theta_{\mathrm{S}}+\epsilon \theta_{\mathrm{L}}\right|^{2} \\
& =\left|e^{-i m_{\mathrm{S}} t-\Gamma_{\mathrm{S}} t / 2}+\epsilon \cdot e^{-i m_{\mathrm{L}} t-\Gamma_{\mathrm{L}} t / 2}\right|^{2} \\
& =e^{-\Gamma_{\mathrm{s}} t}+|\epsilon|^{2} e^{-\Gamma_{\mathrm{L}} t}+2|\epsilon| e^{-\left(\Gamma_{\mathrm{L}}+\Gamma_{\mathrm{S}}\right) t / 2} \cos (\Delta m . t-\phi)
\end{aligned}
$$

where $\Delta m \equiv m_{\mathrm{L}}-m_{\mathrm{S}}, \epsilon \equiv|\epsilon| e^{i \phi}$, and we have used the complex number relation $\left|z_{1} \pm z_{2}\right|^{2}=$ $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \pm 2 \operatorname{Re}\left(z_{1} z_{2}^{*}\right)$. Hence

$$
\begin{equation*}
\Gamma\left(\mathrm{K}_{t=0}^{0} \rightarrow \pi \pi\right) \propto\left[e^{-\Gamma_{\mathrm{S}} t}+|\epsilon|^{2} e^{-\Gamma_{\mathrm{L}} t}+2|\epsilon| e^{-\left(\Gamma_{\mathrm{L}}+\Gamma_{\mathrm{S}}\right) t / 2} \cos (\Delta m \cdot t-\phi)\right] \tag{2}
\end{equation*}
$$

Similarly, for a beam which is initially in a pure $\overline{\mathrm{K}}^{0}$ state,

$$
\begin{equation*}
\Gamma\left(\overline{\mathrm{K}}_{t=0}^{0} \rightarrow \pi \pi\right) \propto\left[e^{-\Gamma_{\mathrm{S}} t}+|\epsilon|^{2} e^{-\Gamma_{\mathrm{L}} t}-2|\epsilon| e^{-\left(\Gamma_{\mathrm{L}}+\Gamma_{\mathrm{S}}\right) t / 2} \cos (\Delta m . t-\phi)\right] \tag{3}
\end{equation*}
$$

Since $\Gamma_{\mathrm{S}}=1 / \tau_{\mathrm{S}}$, the asymmetry A_{+-}is

$$
\begin{equation*}
A_{+-} \equiv \frac{\Gamma\left(\overline{\mathrm{K}}_{t=0}^{0} \rightarrow \pi \pi\right)-\Gamma\left(\mathrm{K}_{t=0}^{0} \rightarrow \pi \pi\right)}{\Gamma\left(\overline{\mathrm{K}}_{t=0}^{0} \rightarrow \pi \pi\right)+\Gamma\left(\mathrm{K}_{t=0}^{0} \rightarrow \pi \pi\right)} \approx \frac{-2|\epsilon| e^{t / 2 \tau_{\mathrm{s}}} \cos (\Delta m \cdot t-\phi)}{1+|\epsilon|^{2} e^{t / \tau_{\mathrm{S}}}} \tag{4}
\end{equation*}
$$

From the Figure, the asymmetry A_{+-}is zero at $t / \tau_{\mathrm{S}} \approx 11.5$. The cosine term must vanish at

this point, and, because of the overall minus sign in the expression for A_{+-}, must be increasing with time. Therefore $\Delta m . t-\phi=3 \pi / 2($ not $\pi / 2)$, giving

$$
\phi=\Delta m . t-\frac{3 \pi}{2} \approx \frac{\left(3.5 \times 10^{-12} \mathrm{MeV}\right) \times 11.5 \times\left(0.9 \times 10^{-10} \mathrm{~s}\right)}{\left(6.58 \times 10^{-22} \mathrm{MeV} . \mathrm{s}\right)}-\frac{3 \pi}{2} \approx 0.793 \quad\left(\approx 45.4^{\circ}\right)
$$

The asymmetry reaches a maximum value $A_{+-} \approx 0.32$ at $t / \tau_{\mathrm{S}} \approx 9.5$. Neglecting the term $|\epsilon|^{2} e^{9.5}(\approx 0.05)$ in the denominator and making the approximation $\cos (\Delta m . t-\phi) \approx-1$ at the maximum gives

$$
|\epsilon| \approx \frac{0.32}{2 e^{(9.5) / 2}} \approx 1.4 \times 10^{-3}
$$

This estimate of $|\epsilon|$ can be improved (not necessary for exam purposes) by making a more accurate estimate of the value of the cosine term at the maximum using

$$
\Delta m . t-\phi \approx \frac{\left(3.5 \times 10^{-12} \mathrm{MeV}\right) \times 9.5 \times\left(0.9 \times 10^{-10} \mathrm{~s}\right)}{\left(6.58 \times 10^{-22} \mathrm{MeV} . \mathrm{s}\right)}-0.793 \approx 3.75
$$

which gives $\cos (\Delta m . t-\phi) \approx-0.818$ and hence $|\epsilon| \approx 1.7 \times 10^{-3}$. If, in addition, the full denominator is used, we have (at the maximum)

$$
0.32 \approx \frac{-2|\epsilon| e^{(9.5) / 2} \times(-0.818)}{1+|\epsilon|^{2} e^{9.5}}
$$

and hence a quadratic equation for $|\epsilon|$, (13360) $|\epsilon|^{2}-(591)|\epsilon|+1=0$, which improves the estimate to $|\epsilon| \approx 1.8 \times 10^{-3}$.

3. The Z resonance:

The $\mathrm{Z}^{0} \mathrm{f} \overline{\mathrm{f}}$ interaction, proportional to $c_{\mathrm{L}}^{\mathrm{f}} \gamma^{\mu}\left(1-\gamma^{5}\right)+c_{\mathrm{R}}^{\mathrm{f}} \gamma^{\mu}\left(1+\gamma^{5}\right)$, is a mixture of $V-A$ and $V+A$ interactions. For any mixture of V and A currents, particle helicity is conserved in the massless limit (helicity conservation). Hence, for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{f} \overline{\mathrm{f}}$ scattering, the electron and positron must have opposite helicity, as must the fermion and antifermion. The allowed spin configurations are therefore (for the particular case that the outgoing fermion is a μ^{-}):

For the RL configuration, with a right-handed electron and a left-handed fermion (bottom left diagram above), the cross section must vanish for $\theta=0$ by angular momentum conservation. The overlap of initial and final spin states gives a factor $(1-\cos \theta)^{2}$ in the differential cross section. The electron vertex gives a factor $c_{\mathrm{R}}^{\mathrm{e}}$ in the matrix element and the fermion vertex a factor $c_{\mathrm{L}}^{\mathrm{f}}$. Similar considerations apply to the other diagrams, with angular momentum conservation requiring the cross section to vanish for $\theta=0$ for the RL and LR configurations, and for $\theta=\pi$ for RR and LL. Overall, the differential cross sections are:

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\mathrm{RR}}}{\mathrm{~d} \Omega} & \propto\left(c_{\mathrm{R}}^{\mathrm{e}}\right)^{2}\left(c_{\mathrm{R}}^{\mathrm{f}}\right)^{2}(1+\cos \theta)^{2} \\
\frac{\mathrm{~d} \sigma_{\mathrm{LL}}}{\mathrm{~d} \Omega} & \propto\left(c_{\mathrm{L}}^{\mathrm{e}}\right)^{2}\left(c_{\mathrm{L}}^{\mathrm{f}}\right)^{2}(1+\cos \theta)^{2} \\
\frac{\mathrm{~d} \sigma_{\mathrm{LR}}}{\mathrm{~d} \Omega} & \propto\left(c_{\mathrm{L}}^{\mathrm{e}}\right)^{2}\left(c_{\mathrm{R}}^{\mathrm{f}}\right)^{2}(1-\cos \theta)^{2} \\
\frac{\mathrm{~d} \sigma_{\mathrm{RL}}}{\mathrm{~d} \Omega} & \propto\left(c_{\mathrm{R}}^{\mathrm{e}}\right)^{2}\left(c_{\mathrm{L}}^{\mathrm{f}}\right)^{2}(1-\cos \theta)^{2}
\end{aligned}
$$

The integrals of the $(1 \pm \cos \theta)^{2}$ angular distributions are the same for all four cases, so that the total cross sections are in the ratio

$$
\sigma_{\mathrm{RR}} \propto\left(c_{\mathrm{R}}^{\mathrm{e}}\right)^{2}\left(c_{\mathrm{R}}^{\mathrm{f}}\right)^{2}, \quad \sigma_{\mathrm{RL}} \propto\left(c_{\mathrm{R}}^{\mathrm{e}}\right)^{2}\left(c_{\mathrm{L}}^{\mathrm{f}}\right)^{2}, \quad \sigma_{\mathrm{LR}} \propto\left(c_{\mathrm{L}}^{\mathrm{e}}\right)^{2}\left(c_{\mathrm{R}}^{\mathrm{f}}\right)^{2}, \quad \sigma_{\mathrm{LL}} \propto\left(c_{\mathrm{L}}^{\mathrm{e}}\right)^{2}\left(c_{\mathrm{L}}^{\mathrm{f}}\right)^{2} .
$$

The total cross sections σ_{L} and σ_{R} for producing a final fermion which is left-handed or righthanded, respectively, in unpolarised $\mathrm{e}^{+} \mathrm{e}^{-}$collisions are

$$
\begin{aligned}
\sigma_{\mathrm{L}} & =\frac{1}{2} \cdot \frac{1}{2}\left(\sigma_{\mathrm{LL}}+\sigma_{\mathrm{RL}}\right) \propto\left[\left(c_{\mathrm{L}}^{\mathrm{e}}\right)^{2}+\left(c_{\mathrm{R}}^{\mathrm{e}}\right)^{2}\right]\left(c_{\mathrm{L}}^{\mathrm{f}}\right)^{2} \propto\left(c_{\mathrm{L}}^{\mathrm{f}}\right)^{2} \\
\sigma_{\mathrm{R}} & =\frac{1}{2} \cdot \frac{1}{2}\left(\sigma_{\mathrm{LR}}+\sigma_{\mathrm{RR}}\right) \propto\left[\left(c_{\mathrm{L}}^{\mathrm{e}}\right)^{2}+\left(c_{\mathrm{R}}^{\mathrm{e}}\right)^{2}\right]\left(c_{\mathrm{R}}^{\mathrm{f}}\right)^{2} \propto\left(c_{\mathrm{R}}^{\mathrm{f}}\right)^{2} .
\end{aligned}
$$

The ratio of cross sections is therefore $\sigma_{\mathrm{L}}: \sigma_{\mathrm{R}}=\left(c_{\mathrm{L}}^{\mathrm{f}}\right)^{2}:\left(c_{\mathrm{R}}^{\mathrm{f}}\right)^{2}$.
The average polarisation of the final state fermion is therefore

$$
P=\frac{\sigma_{\mathrm{R}}-\sigma_{\mathrm{L}}}{\sigma_{\mathrm{R}}+\sigma_{\mathrm{L}}}=\frac{\left(c_{\mathrm{R}}^{\mathrm{f}}\right)^{2}-\left(c_{\mathrm{L}}^{\mathrm{f}}\right)^{2}}{\left(c_{\mathrm{R}}^{\mathrm{f}}\right)^{2}+\left(c_{\mathrm{L}}^{\mathrm{f}}\right)^{2}}=-A_{f} .
$$

($P=+1$ if the fermion is always right-handed, $P=-1$ if the fermion is always left-handed, $-1<P<+1$ in general).

Since the tau has $I_{W}^{(3)}=-\frac{1}{2}$ and $Q=-1$, we have

$$
c_{\mathrm{L}}^{\tau}=-\frac{1}{2}+\sin ^{2} \theta_{\mathrm{W}}, \quad c_{\mathrm{R}}^{\tau}=\sin ^{2} \theta_{\mathrm{W}},
$$

and hence

$$
\frac{\left(-\frac{1}{2}+\sin ^{2} \theta_{\mathrm{W}}\right)^{2}-\left(\sin ^{2} \theta_{\mathrm{W}}\right)^{2}}{\left(-\frac{1}{2}+\sin ^{2} \theta_{\mathrm{W}}\right)^{2}+\left(\sin ^{2} \theta_{\mathrm{W}}\right)^{2}}=0.1465 .
$$

This gives a quadratic equation for $x \equiv \sin ^{2} \theta_{\mathrm{W}}$:

$$
2 \times(0.1465) x^{2}+(1-0.1465) x-\frac{1}{4}(1-0.1465)=0
$$

which can be solved to give $\sin ^{2} \theta_{\mathrm{W}} \approx-3.14$ or $\sin ^{2} \theta_{\mathrm{W}} \approx 0.232$, the latter obviously being the correct result.

