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SOLUTIONS

Elastic ep and deep-inelastic scattering

Consider elastic scattering in the lab frame, neglecting the mass of the incoming particle:

P

The four-momenta of the beam particle before and after the scattering are p; = (£41,0,0, E)
and p3 = (F3, E3sin 6,0, E3 cos ), with p? = p2 = 0. The 4-momentum transfer is ¢ = p; — ps,
and squaring this equation gives

¢ = (p1 — ps)* = —2p1.ps = —2E1 E5(1 — cos0) . (1)

Conservation of 4-momentum, p; + ps = p3 + p4, gives ps + ¢ = py. Squaring this equation and
using p3 = p? = M? gives
M? 4+ 2py.q+¢* = M? .

Since py = (M, 0,0,0), we have ps.q = M(E; — E3) and hence

El - Eg - m . (2)

With ¢? = —2.5GeV? and 6§ = 60°, Equation (1) gives

2 2
—q 2.5GeV 9
E\E; = - = 2.5GeV
1 T 91— cosh)  2(1 — cos60°) ¢

while Equation (2) gives

2.5GeV?
B, — By — —1.33GeV .
LT T 5 0.038 GeV ¢

Eliminating F3 gives a quadratic equation for Ej:

Ey(E;—133) =25
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which can be solved to give £} = 2.38 GeV.

In deep-inelastic scattering, the Lorentz invariant variables x and y are defined as

—¢* D2.q

) Yy
2Mv P2.P1

X

where
VvV = E1 - E3 .

The underlying process is elastic scattering of the incoming lepton from a quark of mass m.
Applying Equation (2) to the quark scattering gives
_ 2
v=FE — B =1L
2m

and a comparison with the definition of x immediately gives

m
r=—.
M
Now consider the infinite momentum frame and suppose that the quark carries a fraction = of
the target proton’s momentum in this frame. Then the quark has 4-momentum (z £, zp) and
therefore
m? = (vE)* — (ap)* = 2*(E* — p*) = 2*M? .

Hence we again obtain « = m/M, validating the supposition that = can be interpreted as the
fractional momentum.

In the lepton-quark centre of mass frame in the relativistic limit, the 4-momenta are p; =
(E,0,0,F), po = (£,0,0,—F), and p3 = (E, Esin6*,0, E cos 0*). Therefore the 4-momentum
transfer is

¢g=p1 —p3=(0,—Esin6*,0, E(1 — cosb"))

and the variable y is

: E?(1 — cos 0* 1
_ P2d (1 — cos ):—(1—0089*).
D2-p1 217 2

A differential cross section do/dy oc (1 — y)? corresponds to

do dy do 1 , 1 9
= — xz(1—y)*==(1 0*)* .
dcosf*  dcosO* dy > 2( v) 8( + cos")

Similarly, a differential cross section do/dy = constant corresponds to do/d cos8* = constant,
namely to isotropic scattering in the centre of mass.

The differential cross section for neutrino scattering, v,p — u~ + X for example, is

d*0"®  Gisr

dedy 7

[d(z) + (1 —y)*u(z)] .

The first term on the right-hand side is the contribution from v,d — p~u scattering, while the
second term arises from v, 0 — p~d scattering. The leading-order Feynman diagrams are:
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The scattering involves the W* boson and is therefore V — A in structure. In the relativistic
limit, all the particles involved must be left-handed, while antiparticles must be right-handed.
In the lepton-(anti)quark centre of mass frame we therefore have:

w- n-
g <
u n «
u d

»
>

<

=

> d v
—> <=
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In the first case, the total spin is zero, and there is no preferred spatial direction. The scattering
is therefore isotropic in the neutrino-quark centre of mass frame, and hence does not depend
on .

In the second case, the total spin is one in the initial and final states, giving a cross section
proportional to (1 + cos6*)%. This gives do/dy o (1 — y)%.



3. B meson and neutrino oscillations:

The leading order Feynman diagrams for B§ — BY mixing are:

W- u, ¢, t
L e AVAVAVAVAV S b —— s d
u, ¢, t L U, C, © W~ W+
d —— OV \VNVNV—— b d = e b
W u,c,t

Examples of Feynman diagrams for semileptonic B and BY decay are:
D~ 4q

0 C
Bd

ol A

W+

(The name of the final state meson, D* in this example, is not expected to be known). The
semileptonic decay of BY always produces a positive charged lepton £+ while the semileptonic

decay of B} always produces a negative charged lepton £~

Neglecting CP violation, the mass eigenstates are

1 — 1 _
BH:E(BngBg), BL:—Q(Bg—Bg) :

These equations can be inverted to give

1 - 1
BY = E(BH + Byr), B = E(BH —By) .

For an initial BY, the wavefunction evolves with time as

Bt = 5

BHefzmHtht/Q + BLefsztht/Q}

—_

— STt [(Bg + BY)e-imut 4 (B9 — Eg)e—imLt]

— DN

_ 1T [Bg(e—z’mHt 4 emimuty 4 BY(emimut _ e—imLt)]

[\]

Hence the transition rates are
(B — BY) oc e M|emimut — g=imit|2 — 9671 (1 — cos Amt)

['(BY — BY) oc e M|emmut 4 o=imit)2 — 9671 (1 4 cos Amt)



where Am = my — my,. Using

> —at Q
cos Btdt = ———
/0 € g a? + 32

the integrated rate for the transition B§ — BY is

R - 1 2?2
(B — BY) x /0 e (1 — cos Amt)dt = T
where z = Am/T". The integrated rate for no oscillation is
= 12+ a?
I'(By — BY) o /0 e (1 + cos Amt)dt = 1o

Normalising these transition rates so that they sum to unity gives the transition probabilities

1 22 12+ 22
. P(BY - BY) = = .
21+ 22’ (Ba — Bq) 21 + 22

P(BY — BY) =

The experiment produces BB pairs (for example in a process such as pp — B3BY+ X), where
the BY and B are uncorrelated, i.e. each B meson evolves independently. Since the semileptonic

decay of the BY produces a positive lepton, £, while the semileptonic decay of the B} produces
a negative lepton, ¢, the only way to get a pair of leptons with the same charge, ¢*¢*, is for
one of the B mesons to undergo mixing while the other B meson does not:

either (BS — BY)(BY — BY) or (BY — BY)(BY — BY) .
Defining
= P(B) - BY) = P(B) - BY) = 1~
p = P(Bg — Bg) = P(Bg — d)_éma
the fraction of like-sign dileptons is
F(C56%) = P(By — BY).P(By — BY) + P(By — By).P(By — BY)
=p(l —p)+ (1 —p)p=2p(1—p)=0297 .
Solving the quadratic equation gives p = 0.1814. Hence
2

1 =z
— =0.1814
21+ a2

which gives x = 0.755. The mass difference Am is therefore

Ay ap & 0755

—25 o 13
— = T 1o X (6:582X 107 GeV.s) = 3.23 X 107 GeV .

(b) Solar neutrino experiments reveal v, — v, and/or v, — v, oscillations with a mass-squared
splitting
Am?2, =~ 7 x 107%eV? .

5



Atmospheric neutrino experiments reveal v, — v, oscillations with
2 2 -3 72
Amis =~ Amss =2 x 1077eV= .

(Precise numerical values for Am? are not expected). For the K2K experiment, the oscillation
wavelengths corresponding to these two mass-squared splittings are

1.
A47TE2 = 477 X1o 35G\e/\2/ x (0.197 GeV fm) = 4.6 x 10" km
m X Te

12
4rE 47 x 1.3GeV
Aoy A e = S0 0 (0,197 GeV fim) = 1600 km
Amss 2 x 1073eV

)\12 ~

Hence, for L = 250km, only atmospheric oscillations play a significant role. The most likely

explanation is therefore that the K2K is observing v, — v, oscillations. The oscillation proba-
bility can be estimated as

Am2,L 2 x 107%eV? x 250 km 1
p ~ sin? 20 sin? 23 — qin2
(vy — vr) & sin” 20 sin < iE S 4% 1.3GeV " 0.107 GeV fm
= sin® 0.488 = 0.22

which is consistent with the observation of (80 — 56)/80 = 0.30 £ 0.06.



