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SOLUTIONS

1. Elastic ep and deep-inelastic scattering

Consider elastic scattering in the lab frame, neglecting the mass of the incoming particle:

The four-momenta of the beam particle before and after the scattering are p1 = (E1, 0, 0, E1)
and p3 = (E3, E3 sin θ, 0, E3 cos θ), with p2

1 = p2
3 = 0. The 4-momentum transfer is q = p1 − p3,

and squaring this equation gives

q2 = (p1 − p3)
2 = −2p1.p3 = −2E1E3(1 − cos θ) . (1)

Conservation of 4-momentum, p1 + p2 = p3 + p4, gives p2 + q = p4. Squaring this equation and
using p2

2 = p2
4 = M2 gives

M2 + 2p2.q + q2 = M2 .

Since p2 = (M, 0, 0, 0), we have p2.q = M(E1 − E3) and hence

E1 − E3 =
−q2

2M
. (2)

With q2 = −2.5 GeV2 and θ = 60◦, Equation (1) gives

E1E3 =
−q2

2(1 − cos θ)
=

2.5 GeV2

2(1 − cos 60◦)
= 2.5 GeV2

while Equation (2) gives

E1 − E3 =
2.5 GeV2

2 × 0.938 GeV
= 1.33 GeV .

Eliminating E3 gives a quadratic equation for E1:

E1(E1 − 1.33) = 2.5
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which can be solved to give E1 = 2.38 GeV.

In deep-inelastic scattering, the Lorentz invariant variables x and y are defined as

x ≡ −q2

2Mν
, y ≡ p2.q

p2.p1

where
ν = E1 − E3 .

The underlying process is elastic scattering of the incoming lepton from a quark of mass m.
Applying Equation (2) to the quark scattering gives

ν = E1 − E3 =
−q2

2m

and a comparison with the definition of x immediately gives

x =
m

M
.

Now consider the infinite momentum frame and suppose that the quark carries a fraction x of
the target proton’s momentum in this frame. Then the quark has 4-momentum (xE, xp) and
therefore

m2 = (xE)2 − (xp)2 = x2(E2 − p2) = x2M2 .

Hence we again obtain x = m/M , validating the supposition that x can be interpreted as the
fractional momentum.

In the lepton-quark centre of mass frame in the relativistic limit, the 4-momenta are p1 =
(E, 0, 0, E), p2 = (E, 0, 0,−E), and p3 = (E,E sin θ∗, 0, E cos θ∗). Therefore the 4-momentum
transfer is

q = p1 − p3 = (0,−E sin θ∗, 0, E(1 − cos θ∗))

and the variable y is

y =
p2.q

p2.p1

=
E2(1 − cos θ∗)

2E2
=

1

2
(1 − cos θ∗) .

A differential cross section dσ/dy ∝ (1 − y)2 corresponds to

dσ

d cos θ∗
=

dy

d cos θ∗
dσ

dy
∝ 1

2
(1 − y)2 =

1

8
(1 + cos θ∗)2 .

Similarly, a differential cross section dσ/dy = constant corresponds to dσ/d cos θ∗ = constant,
namely to isotropic scattering in the centre of mass.

The differential cross section for neutrino scattering, νµp → µ− + X for example, is

d2σνp

dxdy
=

G2
Fsx

π

[

d(x) + (1 − y)2u(x)
]

.

The first term on the right-hand side is the contribution from νµd → µ−u scattering, while the
second term arises from νµu → µ−d scattering. The leading-order Feynman diagrams are:
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The scattering involves the W± boson and is therefore V −A in structure. In the relativistic
limit, all the particles involved must be left-handed, while antiparticles must be right-handed.
In the lepton-(anti)quark centre of mass frame we therefore have:

In the first case, the total spin is zero, and there is no preferred spatial direction. The scattering
is therefore isotropic in the neutrino-quark centre of mass frame, and hence does not depend
on y.

In the second case, the total spin is one in the initial and final states, giving a cross section
proportional to (1 + cos θ∗)2. This gives dσ/dy ∝ (1 − y)2.
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3. B meson and neutrino oscillations:

The leading order Feynman diagrams for B0
d − Bd

0 mixing are:

b

d b

d
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Examples of Feynman diagrams for semileptonic B0
d and Bd

0 decay are:
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(The name of the final state meson, D± in this example, is not expected to be known). The
semileptonic decay of B0

d always produces a positive charged lepton ℓ+ while the semileptonic

decay of Bd
0 always produces a negative charged lepton ℓ−.

Neglecting CP violation, the mass eigenstates are

BH =
1√
2
(B0

d + Bd
0), BL =

1√
2
(B0

d − Bd
0) .

These equations can be inverted to give

B0
d =

1√
2
(BH + BL), Bd

0 =
1√
2
(BH − BL) .

For an initial B0
d, the wavefunction evolves with time as

B0
d(t) =

1√
2

[

BHe−imHt−Γt/2 + BLe−imLt−Γt/2
]

=
1

2
e−Γt/2

[

(B0
d + Bd

0)e−imHt + (B0
d − Bd

0)e−imLt
]

=
1

2
e−Γt/2

[

B0
d(e

−imHt + e−imLt) + Bd
0(e−imHt − e−imLt)

]

Hence the transition rates are

Γ(B0
d → Bd

0) ∝ e−Γt|e−imHt − e−imLt|2 = 2e−Γt(1 − cos ∆mt)

Γ(B0
d → B0

d) ∝ e−Γt|e−imHt + e−imLt|2 = 2e−Γt(1 + cos ∆mt)
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where ∆m ≡ mH − mL. Using
∫

∞

0

e−αt cos βtdt =
α

α2 + β2

the integrated rate for the transition B0
d → Bd

0 is

Γ(B0
d → Bd

0) ∝
∫

∞

0

e−Γt(1 − cos ∆mt)dt =
1

Γ

x2

1 + x2

where x ≡ ∆m/Γ. The integrated rate for no oscillation is

Γ(B0
d → B0

d) ∝
∫

∞

0

e−Γt(1 + cos ∆mt)dt =
1

Γ

2 + x2

1 + x2
.

Normalising these transition rates so that they sum to unity gives the transition probabilities

P (B0
d → Bd

0) =
1

2

x2

1 + x2
, P (B0

d → B0
d) =

1

2

2 + x2

1 + x2
.

The experiment produces B0
dBd

0 pairs (for example in a process such as pp → B0
dBd

0 +X), where

the B0
d and Bd

0 are uncorrelated, i.e. each B meson evolves independently. Since the semileptonic

decay of the B0
d produces a positive lepton, ℓ+, while the semileptonic decay of the Bd

0 produces
a negative lepton, ℓ−, the only way to get a pair of leptons with the same charge, ℓ±ℓ±, is for
one of the B mesons to undergo mixing while the other B meson does not:

either (B0
d → Bd

0)(Bd
0 → Bd

0) or (B0
d → B0

d)(Bd
0 → B0

d) .

Defining

p ≡ P (B0
d → Bd

0) = P (Bd
0 → B0

d) =
1

2

x2

1 + x2
,

the fraction of like-sign dileptons is

f(ℓ±ℓ±) = P (B0
d → Bd

0).P (Bd
0 → Bd

0) + P (B0
d → B0

d).P (Bd
0 → B0

d)

= p(1 − p) + (1 − p)p = 2p(1 − p) = 0.297 .

Solving the quadratic equation gives p = 0.1814. Hence

1

2

x2

1 + x2
= 0.1814

which gives x = 0.755. The mass difference ∆m is therefore

∆m = xΓ =
x

τ
=

0.755

1.54 × 10−12 s
× (6.582 × 10−25 GeV. s) = 3.23 × 10−13 GeV .

(b) Solar neutrino experiments reveal νe → νµ and/or νe → ντ oscillations with a mass-squared
splitting

∆m2
12 ≈ 7 × 10−5 eV2 .
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Atmospheric neutrino experiments reveal νµ → ντ oscillations with

∆m2
13 ≈ ∆m2

23 ≈ 2 × 10−3 eV2 .

(Precise numerical values for ∆m2 are not expected). For the K2K experiment, the oscillation
wavelengths corresponding to these two mass-squared splittings are

λ12 ≈
4πE

∆m2
12

=
4π × 1.3 GeV

7 × 10−5 eV2
× (0.197 GeV fm) = 4.6 × 104 km

λ23 ≈
4πE

∆m2
23

=
4π × 1.3 GeV

2 × 10−3 eV2
× (0.197 GeV fm) = 1600 km

Hence, for L = 250 km, only atmospheric oscillations play a significant role. The most likely
explanation is therefore that the K2K is observing νµ → ντ oscillations. The oscillation proba-
bility can be estimated as

P (νµ → ντ ) ≈ sin2 2θ sin2

(

∆m2
23L

4E

)

= sin2

(

2 × 10−3 eV2 × 250 km

4 × 1.3 GeV
× 1

0.197 GeV fm

)

= sin2 0.488 = 0.22

which is consistent with the observation of (80 − 56)/80 = 0.30 ± 0.06.

6


