Particle Physics Major Option Exam, January 2003

 SOLUTIONS

 SOLUTIONS}

1. $\mathbf{S U}(2)$ and $\mathrm{SU}(3)$

(a) Feynman diagrams for $\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}$and $\mathrm{D}^{*+} \rightarrow \mathrm{D}^{+} \pi^{0}$ decays:

The $\overline{\mathrm{u}}$ and $\overline{\mathrm{d}}$ antiquarks form an isospin doublet with isospin quantum numbers $\left|\frac{1}{2},-\frac{1}{2}\right\rangle$ and $\left|\frac{1}{2}, \frac{1}{2}\right\rangle$ respectively. The charm quark is an isospin singlet with $\left|I, I_{3}\right\rangle=|0,0\rangle$. Therefore the D^{0} and D^{+}mesons, and the $\mathrm{D}^{* 0}$ and D^{*+} mesons, must each form isospin doublets, and the isospin quantum numbers associated with each decay are:

$$
\begin{array}{ll}
\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}: & \left|\frac{1}{2}, \frac{1}{2}\right\rangle \rightarrow\left|\frac{1}{2},-\frac{1}{2}\right\rangle|1,1\rangle \\
\mathrm{D}^{*+} \rightarrow \mathrm{D}^{+} \pi^{0}: & \left|\frac{1}{2}, \frac{1}{2}\right\rangle \rightarrow\left|\frac{1}{2}, \frac{1}{2}\right\rangle|1,0\rangle
\end{array}
$$

The result of combining the state $\left\langle\frac{1}{2}, \frac{1}{2}\right\rangle$ with the state $|1,1\rangle$ can be written down by inspection:

$$
\left|\frac{3}{2}, \frac{3}{2}\right\rangle=\left|\frac{1}{2}, \frac{1}{2}\right\rangle|1,1\rangle .
$$

Applying the ladder operator T_{-}to this equation, using

$$
\begin{gathered}
T_{-}\left|\frac{3}{2}, \frac{3}{2}\right\rangle=\sqrt{\frac{3}{2} \frac{5}{2}-\frac{3}{2} \frac{1}{2}}\left|\frac{3}{2}, \frac{1}{2}\right\rangle=\sqrt{3}\left|\frac{3}{2}, \frac{1}{2}\right\rangle \\
T_{-}\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\sqrt{\frac{1}{2} \frac{3}{2}-\frac{1}{2}\left(-\frac{1}{2}\right)}\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle \\
T_{-}|1,1\rangle=\sqrt{1 \times 2-1 \times 0}|1,0\rangle=\sqrt{2}|1,0\rangle
\end{gathered}
$$

gives

$$
\left|\frac{3}{2}, \frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle|1,1\rangle+\sqrt{\frac{2}{3}}\left|\frac{1}{2}, \frac{1}{2}\right\rangle|1,0\rangle .
$$

The state orthogonal to this is

$$
\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle|1,1\rangle-\frac{1}{\sqrt{3}}\left|\frac{1}{2}, \frac{1}{2}\right\rangle|1,0\rangle .
$$

In terms of the particles involved in the D^{*+} decays, this can be interpreted as

$$
\left|\mathrm{D}^{*+}\right\rangle=\sqrt{\frac{2}{3}}\left|\mathrm{D}^{0}\right\rangle\left|\pi^{+}\right\rangle-\frac{1}{\sqrt{3}}\left|\mathrm{D}^{+}\right\rangle\left|\pi^{0}\right\rangle
$$

Hence:

$$
\frac{B R\left(\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}\right)}{B R\left(\mathrm{D}^{*+} \rightarrow \mathrm{D}^{+} \pi^{0}\right)}=\left(\frac{\sqrt{2 / 3}}{-\sqrt{1 / 3}}\right)^{2}=2
$$

(b) The only ladder operations on the state $|r r\rangle$ which give non-zero results are:

$$
T_{-}|r r\rangle=(|g r\rangle+|r g\rangle) \quad V_{-}|r r\rangle=(|b r\rangle+|r b\rangle)
$$

Applying the ladder operators to the state $(|g r\rangle+|r g\rangle)$ then gives (amongst other things)

$$
T_{-}(|g r\rangle+|r g\rangle)=2|g g\rangle \quad V_{-}(|g r\rangle+|r g\rangle)=(|g b\rangle+|b g\rangle)
$$

and so on. After normalising the states, we obtain a sextet:

$$
|r r\rangle \quad|g g\rangle \quad|b b\rangle \quad \frac{1}{\sqrt{2}}(|g r\rangle+|r g\rangle) \quad \frac{1}{\sqrt{2}}(|b r\rangle+|r b\rangle) \quad \frac{1}{\sqrt{2}}(|g b\rangle+|b g\rangle) .
$$

which are symmetric under particle interchange.
The states orthogonal to these form a triplet:

$$
\frac{1}{\sqrt{2}}(|g r\rangle-|r g\rangle) \quad \frac{1}{\sqrt{2}}(|b r\rangle-|r b\rangle) \quad \frac{1}{\sqrt{2}}(|b g\rangle-|g b\rangle)
$$

which are antisymmetric under particle interchange.
The colour coefficients for single-gluon interactions between two quarks of the same colour

$$
C(r r \rightarrow r r)=C(g g \rightarrow g g)=C(b b \rightarrow b b)=\frac{1}{3}
$$

or of different colour

$$
\begin{gathered}
C(r g \rightarrow r g)=C(r b \rightarrow r b)=C(g r \rightarrow g r)=C(g b \rightarrow g b)=C(b r \rightarrow b r)=C(b g \rightarrow b g)=-\frac{1}{6} \\
C(r g \rightarrow g r)=C(r b \rightarrow b r)=C(g r \rightarrow r g)=C(g b \rightarrow b g)=C(b r \rightarrow r b)=C(b g \rightarrow g b)=\frac{1}{2}
\end{gathered}
$$

were derived in the lectures. For the symmetric states of mixed colour, such as $\psi=1 / \sqrt{2}(g r+$ $r g$), we have

$$
C(\psi \rightarrow \psi)=\frac{1}{2}\left[2 \times \frac{-1}{6}+2 \times \frac{1}{2}\right]=\frac{1}{3} .
$$

Therefore every state in the sextet has a colour factor $C=1 / 3$, corresponding to a repulsive potential.

Similarly, for a triplet state such as $\psi=1 / \sqrt{2}(g r-r g)$, we have

$$
C(\psi \rightarrow \psi)=\frac{1}{2}\left[2 \times \frac{-1}{6}-2 \times \frac{1}{2}\right]=-\frac{2}{3}
$$

which corresponds to an attractive potential.
These results are derived from leading-order perturbation theory (single-gluon exchange) and apply only to high q^{2}, which means short distances. The long-distance potential is dominated by non-perturbative QCD and is believed to be attractive (confining) only for colour singlet states.

3. W decay in UA1:

The matrix element for the decay $\mathrm{W}^{-} \rightarrow \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}}$ is given as

$$
M_{\mathrm{fi}}=\frac{g_{\mathrm{W}}}{\sqrt{2}} \epsilon_{\mu}\left(p_{1}\right) \bar{u}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v\left(p_{4}\right)
$$

This matrix element $(V-A)$ is non-zero only for a left-handed e^{-}and a right-handed $\bar{\nu}_{\mathrm{e}}$. We must therefore take $u\left(p_{3}\right)=u_{\downarrow}\left(p_{3}\right)$ and $v\left(p_{4}\right)=v_{\uparrow}\left(p_{4}\right)$:

$$
\begin{gathered}
u_{\downarrow}\left(p_{3}\right)=u_{\downarrow}(\theta)=\sqrt{E}\left(\begin{array}{c}
-\sin \theta / 2 \\
\cos \theta / 2 \\
\sin \theta / 2 \\
-\cos \theta / 2
\end{array}\right)=\sqrt{E}\left(\begin{array}{c}
-s \\
c \\
s \\
-c
\end{array}\right) \\
\bar{u}_{\downarrow}\left(p_{3}\right)=\sqrt{E}(-s, c,-s, c) \\
v_{\uparrow}\left(p_{4}\right)=v_{\uparrow}(\theta+\pi)=\sqrt{E}\left(\begin{array}{c}
\sin (\theta+\pi) / 2 \\
-\cos (\theta+\pi) / 2 \\
-\sin (\theta+\pi) / 2 \\
\cos (\theta+\pi) / 2
\end{array}\right)=\sqrt{E}\left(\begin{array}{c}
c \\
s \\
-c \\
-s
\end{array}\right)
\end{gathered}
$$

Since

$$
\frac{1}{2}\left(1-\gamma^{5}\right) v_{\uparrow}\left(p_{4}\right)=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right) \sqrt{E}\left(\begin{array}{c}
c \\
s \\
-c \\
-s
\end{array}\right)=\sqrt{E}\left(\begin{array}{c}
c \\
s \\
-c \\
-s
\end{array}\right)=v_{\uparrow}\left(p_{4}\right)
$$

the matrix element simplifies to

$$
M_{\mathrm{fi}}=\frac{g_{\mathrm{W}}}{\sqrt{2}} \epsilon_{\mu}\left(p_{1}\right) \bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} v_{\uparrow}\left(p_{4}\right)
$$

Operating with each gamma matrix in turn gives

$$
\gamma^{\mu} v_{\uparrow}\left(p_{4}\right)=\sqrt{e}\left[\left(\begin{array}{l}
c \\
s \\
c \\
s
\end{array}\right),\left(\begin{array}{l}
-s \\
-c \\
-s \\
-c
\end{array}\right),\left(\begin{array}{c}
i s \\
-i c \\
i s \\
-i c
\end{array}\right),\left(\begin{array}{c}
-c \\
s \\
-c \\
s
\end{array}\right)\right] .
$$

The lepton current is therefore

$$
\begin{aligned}
\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v_{\uparrow}\left(p_{4}\right) & =E\left(c^{2}+s^{2}-c^{2}-s^{2}, s^{2}-c^{2}+s^{2}-c^{2},-i\left(s^{2}+c^{2}+s^{2}+c^{2}\right), 4 s c\right) \\
& =2 E\left(0, s^{2}-c^{2},-i, 2 s c\right)
\end{aligned}
$$

Using $\sin \theta=2 \sin \theta / 2 \cos \theta / 2=2 s c$ and $\cos \theta=\cos ^{2} \theta / 2-\sin ^{2} \theta / 2=c^{2}-s^{2}$, this becomes

$$
\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v_{\uparrow}\left(p_{4}\right)=2 E(0,-\cos \theta,-i, \sin \theta)
$$

Taking the scalar product of the electron current with each of the three possible W polarisation vectors gives

$$
\begin{aligned}
\epsilon_{+}^{\mu}: & -\frac{1}{\sqrt{2}}(0,1, i, 0) \cdot 2 E(0,-\cos \theta,-i, \sin \theta)=-\sqrt{2} E(\cos \theta-1) \\
\epsilon_{-}^{\mu}: & \frac{1}{\sqrt{2}}(0,1,-i, 0) \cdot 2 E(0,-\cos \theta,-i, \sin \theta)=\sqrt{2} E(\cos \theta+1) \\
\epsilon_{L}^{\mu}: & (0,0,0,1) \quad \cdot 2 E(0,-\cos \theta,-i, \sin \theta)=2 E \cdot-\sin \theta
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\epsilon_{+}^{\mu}: & \left|M_{\mathrm{fi}}\right|^{2}=g_{\mathrm{W}}^{2} E^{2}(1-\cos \theta)^{2} \\
\epsilon_{-}^{\mu}: & \left|M_{\mathrm{fi}}\right|^{2}=g_{\mathrm{W}}^{2} E^{2}(1+\cos \theta)^{2} \\
\epsilon_{L}^{\mu}: & \left|M_{\mathrm{fi}}\right|^{2}=2 g_{\mathrm{W}}^{2} E^{2} \sin ^{2} \theta
\end{aligned}
$$

For an unpolarised sample of W bosons, averaging over the three possible spin states gives

$$
\left.\left.\langle | M_{\mathrm{fi}}\right|^{2}\right\rangle=\frac{1}{3} g_{\mathrm{W}}^{2} E^{2}\left[(1-\cos \theta)^{2}+(1+\cos \theta)^{2}+2 \sin ^{2} \theta\right]=\frac{1}{3} g_{\mathrm{W}}^{2} E^{2} \cdot 4=\frac{4}{3} g_{\mathrm{W}}^{2} E^{2} .
$$

The decay rate is

$$
\left.\frac{\mathrm{d} \Gamma}{\mathrm{~d} \Omega}=\left.\frac{p^{*}}{32 \pi^{2} m_{\mathrm{W}}^{2}}\langle | M_{\mathrm{fi}}\right|^{2}\right\rangle
$$

with $p^{*}=E=m_{\mathrm{W}} / 2$. Hence,

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2} m_{\mathrm{W}}} \frac{4}{3} g_{\mathrm{W}}^{2}\left(\frac{m_{\mathrm{W}}}{2}\right)^{2}=\frac{1}{3} \frac{g_{\mathrm{W}}^{2} m_{\mathrm{W}}}{64 \pi^{2}} .
$$

This is an isotropic decay distribution (as expected since an unpolarised sample of W bosons has no preferred spatial direction) so that integrating over all spatial directions gives a simple factor of 4π :

$$
\Gamma\left(\mathrm{W}^{-} \rightarrow \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}}\right)=\frac{g_{\mathrm{W}}^{2} m_{\mathrm{W}}}{48 \pi} .
$$

The allowed decays of the W boson are

$$
\mathrm{W}^{-} \rightarrow \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}}, \mu^{-} \bar{\nu}_{\mu}, \tau^{-} \bar{\nu}_{\tau}, \overline{\mathrm{u}} \mathrm{~d}, \overline{\mathrm{u}}, \overline{\mathrm{u}} \mathrm{~b}, \overline{\mathrm{c}} \mathrm{~d}, \overline{\mathrm{c} s}, \overline{\mathrm{c}} \mathrm{~b}
$$

(the top quark is too heavy) with relative decay rates

$$
1,1,1,3\left|V_{\mathrm{ud}}\right|^{2}, 3\left|V_{\mathrm{us}}\right|^{2}, 3\left|V_{\mathrm{ub}}\right|^{2}, 3\left|V_{\mathrm{cd}}\right|^{2}, 3\left|V_{\mathrm{cs}}\right|^{2}, 3\left|V_{\mathrm{cb}}\right|^{2}
$$

Using unitarity of the CKM matrix:

$$
\begin{array}{r}
\left|V_{\mathrm{ud}}\right|^{2}+\left|V_{\mathrm{us}}\right|^{2}+\left|V_{\mathrm{ub}}\right|^{2}=1 \\
\left|V_{\mathrm{cd}}\right|^{2}+\left|V_{\mathrm{cs}}\right|^{2}+\left|V_{\mathrm{cb}}\right|^{2}=1
\end{array}
$$

this adds up to 9 units. Hence

$$
B R\left(\mathrm{~W}^{-} \rightarrow \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}}\right)=\frac{1}{9}
$$

Considering valence quarks only (uud for the proton, $\overline{u u} \bar{d}$ for the antiproton), the quark-level processes for W production and decay in $\overline{\mathrm{p}} \mathrm{p}$ collisions are $\overline{\mathrm{u}} \mathrm{d} \rightarrow \mathrm{W}^{-} \rightarrow \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}}$ and $\overline{\mathrm{d}} \mathrm{u} \rightarrow \mathrm{W}^{+} \rightarrow$ $\mathrm{e}^{+} \nu_{\mathrm{e}}$. The corresponding Feynman diagrams are:

In high energy $\overline{\mathrm{p}}$ p collisions, the quarks, antiquarks and leptons involved can be assumed to be in the relativistic limit. In this limit, because of the $V-A$ structure of charged-current $\left(\mathrm{W}^{ \pm}\right)$interactions, only left-handed particles and right-handed antiparticles can interact with $\mathrm{W}^{ \pm}$bosons. Hence the $\mathrm{d}, \mathrm{u}, \mathrm{e}^{-}$and ν_{e} must be left-handed while the $\overline{\mathrm{u}}, \overline{\mathrm{d}}, \mathrm{e}^{+}$and $\bar{\nu}_{\mathrm{e}}$ must be right-handed:

(Note that the directions of the p and $\overline{\mathrm{p}}$ are reversed between the two diagrams). Hence, in either case, the overlap between the initial and final state spin wavefunctions is maximised for small angles θ^{*}; the angular distribution of the electron or positron is proportional to $\left(1+\cos \theta^{*}\right)^{2}$, as seen in the UA1 data:

