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SOLUTIONS

2. Deep-inelastic scattering at HERA

Q2 = 25030 GeV2; y = 0:56; M = 211 GeV
e+jet� �

Et/GeV
The isolated particle in the upper part of the diagram is the scattered positron, with a large
signal in the electromagnetic calorimeter followed by a negligible signal in the hadronic calorime-
ter.

Taking the x-axis to point vertically upwards and the z-axis to point horizontally to the right
in the diagram, the e+ beam must enter from the left along +z and the proton beam from
the right along −z; otherwise longitudinal momentum is not conserved. (Also, the detector
is asymmetric, being deeper on the −z side to contain the more energetic proton fragments).
The scattering angle of the e+ (of energy 240 GeV) can be estimated from the diagram to be
θ ≈ 154◦. Hence the 4-momenta p1, p2, p3 of the incoming e+, the incoming proton and the
scattered e+, in units of GeV, are:

p1 = (27.5, 0, 0, 27.5) p2 = (820, 0, 0,−820)

p3 = (240, 240 × sin 154◦, 0, 240 × cos 154◦) = (240, 105.2, 0,−215.7)

This gives a four-momentum transfer

q = p1 − p3 = (−212.5,−105.2, 0, 243.2) ,

and hence
q2 = (−212.5)2 − (−105.2)2 − (243.2)2 = −25057 GeV2 .
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The scalar product p2.q is

p2.q = 820 × (−212.5) − (−820 × 243.2) = 25174 GeV2 ,

giving a Bjorken x value of

x = −
q2

2Mν
= −

q2

2p2.q
=

25057 GeV2

2 × (25174 GeV2)
= 0.498 .

(Note that the numerical value of the proton mass, M = 0.938 GeV, is not in fact needed).

For ep scattering, given

2xF
ep
1 = F

ep
2 =

∑

i

z2
i xqi(x, q2)

we have

F
ep
2 =

4

9
xu(x) +

1

9
xd(x) +

4

9
xu(x) +

1

9
xd(x) .

For en scattering, we interchange u(x) and d(x):

F en
2 =

4

9
xd(x) +

1

9
xu(x) +

4

9
xd(x) +

1

9
xu(x) .

Hence ∫ 1

0

1

x
(F ep

2 − F en
2 ) dx =

∫ 1

0

1

3

[
u(x) − d(x) + u(x) − d(x)

]
dx

Breaking each distribution function into “valence” and “sea” components and assuming the sea
components are all identical, we can write

u = uV (x) + S(x) d = dV (x) + S(x) u = S(x) d = S(x) .

The distribution functions are normalised to the total number of that parton type in the proton:
∫ 1

0

uV (x)dx = 2

∫ 1

0

dV (x)dx = 1 .

Hence ∫ 1

0

1

x
(F ep

2 − F en
2 ) dx =

1

3
× (2 − 1) =

1

3
.

In terms of uV (x), dV (x), S(x), we have

F
ep
2 =

4

9
x(uV + S) +

1

9
x(dV + S) +

4

9
xS +

1

9
xS = x

[
4

9
uV +

1

9
dV +

10

9
S

]

F en
2 =

4

9
x(dV + S) +

1

9
x(uV + S) +

4

9
xS +

1

9
xS = x

[
4

9
dV +

1

9
uV +

10

9
S

]

The ratio R of these two structure functions is

R =
F en

2

F
ep
2

=
4dV + uV + 10S

4uV + dV + 10S

As x → 0, the sea component S(x) completely dominates and R → 1. As x → 1, S(x) becomes
negligible and the ratio depends on the relative magnitude of uV and dV . Experimentally, dV

becomes very small and R → 1
4
.
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3. Helicity and Handedness:

Without loss of generality, choose the direction of motion of the particle to be along the +z-axis.
In the limit E ≫ m, the free particle spinors become

u1 =
√

E





1
0
1
0



 , u2 =
√

E





0
1
0
−1



 ,

Operating on these with γ5 gives

γ5u1 =





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




√

E





1
0
1
0



 =
√

E





1
0
1
0



 = u1

γ5u2 =





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




√

E





0
1
0
−1



 = −
√

E





0
1
0
−1



 = −u2

Therefore, the left-handed and right-handed chiral components 1
2
(1 − γ5)u and 1

2
(1 + γ5)u are

1
2
(1 − γ5)u1 = 0, 1

2
(1 + γ5)u1 = u1

1
2
(1 − γ5)u2 = u2,

1
2
(1 + γ5)u1 = 0 .

Any free particle spinor u can be expressed as a linear combination u = α1u1 + α2u2. This has
left- and right-handed chiral components

uL ≡ 1
2
(1 − γ5)u = α1

1
2
(1 − γ5)u1 + α2

1
2
(1 − γ5)u2 = α2u2,

uR ≡ 1
2
(1 + γ5)u = α1

1
2
(1 + γ5)u1 + α2

1
2
(1 + γ5)u2 = α1u1 .

But, for motion along the +z-axis, u1 and u2 are the positive and negative helicity eigenstates,
respectively:

Ŝzu1 = +1
2
u1, Ŝzu2 = −1

2
u2

Hence:

ŜzuL = α2Ŝzu2 = −1
2
α2u2 = −1

2
uL

ŜzuR = α1Ŝzu1 = +1
2
α1u1 = +1

2
uR

demonstrating that, in the relativistic limit, 1
2
(1− γ5)u is a spin-down eigenstate (helicity −1)

and 1
2
(1 + γ5)u is a spin-up eigenstate (helicity +1).

3



Neutrino scattering:

Feynman diagram for νµe− → µ−νe:

νµ µ−

e− νe

W

Spin diagram: the νµ and νe both have negative helicity. Since the interaction is mediated by
a W± boson, only the left-handed chiral components of the e− and µ− can contribute. In the
relativistic limit, the left-handed chiral component of a particle is a negative helicity eigenstate.
Since the e− and µ− masses can be neglected (E ≫ m), the e− and µ− therefore both have
negative helicity.

The total spin in both the initial and final states is zero. In the centre of mass frame, the total
3-momentum is also zero. Hence there is no preferred spatial direction and the scattering is
isotropic.

Feynman diagram for νµe− → νµe−:

νµ νµ

e− e−

Z
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Spin diagrams: the initial and final state νµ both have negative helicity. Since the interaction
is now mediated by a Z0 boson, both the left-handed and right-handed chiral components,
i.e. both helicity eigenstates, of the e− can contribute. Because of helicity conservation, the
initial and final helicity state of the e− must be the same. Thus there are two possible spin
configurations, one with both e− spins down (negative helicity, left-handed) and one with both
e− spins up (positive helicity, right-handed).

The left-handed case has relative interaction strength ce
L and gives isotropic scattering. The

right-handed case has relative interaction strength ce
R and gives an extra factor of 1

4
(1 + cos θ)2

because the initial and final states both have total spin +1 along the particle axis.

For νµe− → µ−νe, considering just the contributions from the vertex factors, we have

Mf i ∼
gW√

2
γµ 1

2
(1 − γ5) ·

gW√
2
γµ 1

2
(1 − γ5) =

g2
W

2
γµ 1

2
(1 − γ5) · γµ 1

2
(1 − γ5) .

This is given to result in a differential cross section

dσ

dΩ
=

1

2

(
g2
W

8πm2
W

)2

s .

For νµe− → νµe−, the vertex factors contribute

Mf i ∼
gZ

2
γµ 1

2
(1 − γ5) ·

gZ

2
γµ 1

2
(ce

V − ce
Aγ5)

=
g2
Z

2

[
ce
Lγµ 1

2
(1 − γ5)γµ 1

2
(1 − γ5) + ce

Rγµ 1
2
(1 − γ5)γµ 1

2
(1 + γ5)

]
.

The first term on the right-hand side is identical to the νµe− → µ−νe case, except that gW is
replaced by gZ and there is an extra factor of ce

L. The second term has an extra factor of ce
R,

and 1 + γ5 in place of 1 − γ5. The latter gives rise to the different allowed spin configuration
discussed above, with angular distribution 1

4
(1 + cos θ)2. The νµe− → νµe− differential cross

section can therefore be written down directly from the νµe− → µ−νe cross section above as

dσ

dΩ
=

1

2

(
g2
Z

8πm2
Z

)2

s
[
(ce

L)2 + 1
4
(1 + cos θ)2(ce

R)2
]

where we have also replaced mW by mZ. Integrating over all angles using

∫
1
4
(1 + cos θ)2dΩ = 2π

∫ +1

−1

1
4
(1 + x)2dx =

1

3
× 4π
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and using gW = gZ cos θW, mW = mZ cos θW gives

σ(νµe− → νµe−)

σ(νµe− → µ−νe)
= (ce

L)2 +
1

3
(ce

R)2
.

Since the electron has I
(3)
W = −1

2
and Q = −1, we have

ce
L = −1

2
+ sin2 θW ce

R = sin2 θW .

Substituting then gives a quadratic equation for sin2 θW:

R =
(
−1

2
+ sin2 θW

)2
+ 1

3
sin4 θW = 1

4
− sin2 θW +

4

3
sin4 θW = 0.09 ,

which can be solved to give sin2 θW ≈ 0.52 or sin2 θW ≈ 0.23, the latter being the correct result
(consistent with all other data).
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