Particle Physics Major Option Exam, January 2001

SOLUTIONS

2. Deep-inelastic scattering at HERA

The isolated particle in the upper part of the diagram is the scattered positron, with a large signal in the electromagnetic calorimeter followed by a negligible signal in the hadronic calorimeter.

Taking the x-axis to point vertically upwards and the z-axis to point horizontally to the right in the diagram, the e^{+}beam must enter from the left along $+z$ and the proton beam from the right along $-z$; otherwise longitudinal momentum is not conserved. (Also, the detector is asymmetric, being deeper on the $-z$ side to contain the more energetic proton fragments). The scattering angle of the e^{+}(of energy 240 GeV) can be estimated from the diagram to be $\theta \approx 154^{\circ}$. Hence the 4 -momenta p_{1}, p_{2}, p_{3} of the incoming e^{+}, the incoming proton and the scattered e^{+}, in units of GeV , are:

$$
\begin{gathered}
p_{1}=(27.5,0,0,27.5) \quad p_{2}=(820,0,0,-820) \\
p_{3}=\left(240,240 \times \sin 154^{\circ}, 0,240 \times \cos 154^{\circ}\right)=(240,105.2,0,-215.7)
\end{gathered}
$$

This gives a four-momentum transfer

$$
q=p_{1}-p_{3}=(-212.5,-105.2,0,243.2)
$$

and hence

$$
q^{2}=(-212.5)^{2}-(-105.2)^{2}-(243.2)^{2}=-25057 \mathrm{GeV}^{2} .
$$

The scalar product $p_{2} . q$ is

$$
p_{2} . q=820 \times(-212.5)-(-820 \times 243.2)=25174 \mathrm{GeV}^{2}
$$

giving a Bjorken x value of

$$
x=-\frac{q^{2}}{2 M \nu}=-\frac{q^{2}}{2 p_{2} \cdot q}=\frac{25057 \mathrm{GeV}^{2}}{2 \times\left(25174 \mathrm{GeV}^{2}\right)}=0.498 .
$$

(Note that the numerical value of the proton mass, $M=0.938 \mathrm{GeV}$, is not in fact needed).
For ep scattering, given

$$
2 x F_{1}^{\mathrm{ep}}=F_{2}^{\mathrm{ep}}=\sum_{i} z_{i}^{2} x q_{i}\left(x, q^{2}\right)
$$

we have

$$
F_{2}^{\mathrm{ep}}=\frac{4}{9} x u(x)+\frac{1}{9} x d(x)+\frac{4}{9} x \bar{u}(x)+\frac{1}{9} x \bar{d}(x) .
$$

For en scattering, we interchange $u(x)$ and $d(x)$:

$$
F_{2}^{\mathrm{en}}=\frac{4}{9} x d(x)+\frac{1}{9} x u(x)+\frac{4}{9} x \bar{d}(x)+\frac{1}{9} x \bar{u}(x) .
$$

Hence

$$
\int_{0}^{1} \frac{1}{x}\left(F_{2}^{\mathrm{ep}}-F_{2}^{\mathrm{en}}\right) \mathrm{d} x=\int_{0}^{1} \frac{1}{3}[u(x)-d(x)+\bar{u}(x)-\bar{d}(x)] \mathrm{d} x
$$

Breaking each distribution function into "valence" and "sea" components and assuming the sea components are all identical, we can write

$$
u=u_{V}(x)+S(x) \quad d=d_{V}(x)+S(x) \quad \bar{u}=S(x) \quad \bar{d}=S(x)
$$

The distribution functions are normalised to the total number of that parton type in the proton:

$$
\int_{0}^{1} u_{V}(x) d x=2 \quad \int_{0}^{1} d_{V}(x) d x=1
$$

Hence

$$
\int_{0}^{1} \frac{1}{x}\left(F_{2}^{\mathrm{ep}}-F_{2}^{\mathrm{en}}\right) \mathrm{d} x=\frac{1}{3} \times(2-1)=\frac{1}{3}
$$

In terms of $u_{V}(x), d_{V}(x), S(x)$, we have

$$
\begin{aligned}
& F_{2}^{\mathrm{ep}}=\frac{4}{9} x\left(u_{V}+S\right)+\frac{1}{9} x\left(d_{V}+S\right)+\frac{4}{9} x S+\frac{1}{9} x S=x\left[\frac{4}{9} u_{V}+\frac{1}{9} d_{V}+\frac{10}{9} S\right] \\
& F_{2}^{\mathrm{en}}=\frac{4}{9} x\left(d_{V}+S\right)+\frac{1}{9} x\left(u_{V}+S\right)+\frac{4}{9} x S+\frac{1}{9} x S=x\left[\frac{4}{9} d_{V}+\frac{1}{9} u_{V}+\frac{10}{9} S\right]
\end{aligned}
$$

The ratio R of these two structure functions is

$$
R=\frac{F_{2}^{\mathrm{en}}}{F_{2}^{\mathrm{ep}}}=\frac{4 d_{V}+u_{V}+10 S}{4 u_{V}+d_{V}+10 S}
$$

As $x \rightarrow 0$, the sea component $S(x)$ completely dominates and $R \rightarrow 1$. As $x \rightarrow 1, S(x)$ becomes negligible and the ratio depends on the relative magnitude of u_{V} and d_{V}. Experimentally, d_{V} becomes very small and $R \rightarrow \frac{1}{4}$.

3. Helicity and Handedness:

Without loss of generality, choose the direction of motion of the particle to be along the $+z$-axis. In the limit $E \gg m$, the free particle spinors become

$$
u_{1}=\sqrt{E}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right), \quad u_{2}=\sqrt{E}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)
$$

Operating on these with γ^{5} gives

$$
\begin{aligned}
\gamma^{5} u_{1}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \sqrt{E}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)=\sqrt{E}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)=u_{1} \\
\gamma^{5} u_{2}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \sqrt{E}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)=-\sqrt{E}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)=-u_{2}
\end{aligned}
$$

Therefore, the left-handed and right-handed chiral components $\frac{1}{2}\left(1-\gamma^{5}\right) u$ and $\frac{1}{2}\left(1+\gamma^{5}\right) u$ are

$$
\begin{array}{llrl}
\frac{1}{2}\left(1-\gamma^{5}\right) u_{1} & =0, & \frac{1}{2}\left(1+\gamma^{5}\right) u_{1} & =u_{1} \\
\frac{1}{2}\left(1-\gamma^{5}\right) u_{2} & =u_{2}, & & \frac{1}{2}\left(1+\gamma^{5}\right) u_{1}
\end{array}=0 .
$$

Any free particle spinor u can be expressed as a linear combination $u=\alpha_{1} u_{1}+\alpha_{2} u_{2}$. This has left- and right-handed chiral components

$$
\begin{aligned}
u_{\mathrm{L}} & \equiv \frac{1}{2}\left(1-\gamma^{5}\right) u \\
u_{\mathrm{R}} & \equiv \frac{1}{2}\left(1+\gamma_{1} \frac{1}{2}\left(1-\gamma^{5}\right) u\right.
\end{aligned}=\alpha_{1} \frac{1}{2}\left(1+\gamma_{2} \frac{1}{2}\left(1-\gamma^{5}\right) u_{2}\right) u_{1}+\alpha_{2} \frac{1}{2}\left(1+\gamma_{2} u_{2}, u_{2}=\alpha_{1} u_{1} .\right.
$$

But, for motion along the $+z$-axis, u_{1} and u_{2} are the positive and negative helicity eigenstates, respectively:

$$
\widehat{S}_{z} u_{1}=+\frac{1}{2} u_{1}, \quad \widehat{S}_{z} u_{2}=-\frac{1}{2} u_{2}
$$

Hence:

$$
\begin{aligned}
& \widehat{S}_{z} u_{\mathrm{L}}=\alpha_{2} \widehat{S}_{z} u_{2}=-\frac{1}{2} \alpha_{2} u_{2}=-\frac{1}{2} u_{\mathrm{L}} \\
& \widehat{S}_{z} u_{\mathrm{R}}=\alpha_{1} \widehat{S}_{z} u_{1}=+\frac{1}{2} \alpha_{1} u_{1}=+\frac{1}{2} u_{\mathrm{R}}
\end{aligned}
$$

demonstrating that, in the relativistic limit, $\frac{1}{2}\left(1-\gamma^{5}\right) u$ is a spin-down eigenstate (helicity -1) and $\frac{1}{2}\left(1+\gamma^{5}\right) u$ is a spin-up eigenstate (helicity +1).

Neutrino scattering:

Feynman diagram for $\nu_{\mu} \mathrm{e}^{-} \rightarrow \mu^{-} \nu_{\mathrm{e}}$:

Spin diagram: the ν_{μ} and ν_{e} both have negative helicity. Since the interaction is mediated by a $\mathrm{W}^{ \pm}$boson, only the left-handed chiral components of the e^{-}and μ^{-}can contribute. In the relativistic limit, the left-handed chiral component of a particle is a negative helicity eigenstate. Since the e^{-}and μ^{-}masses can be neglected $(E \gg m)$, the e^{-}and μ^{-}therefore both have negative helicity.

The total spin in both the initial and final states is zero. In the centre of mass frame, the total 3 -momentum is also zero. Hence there is no preferred spatial direction and the scattering is isotropic.

Feynman diagram for $\nu_{\mu} \mathrm{e}^{-} \rightarrow \nu_{\mu} \mathrm{e}^{-}$:

Spin diagrams: the initial and final state ν_{μ} both have negative helicity. Since the interaction is now mediated by a Z^{0} boson, both the left-handed and right-handed chiral components, i.e. both helicity eigenstates, of the e^{-}can contribute. Because of helicity conservation, the initial and final helicity state of the e^{-}must be the same. Thus there are two possible spin configurations, one with both e^{-}spins down (negative helicity, left-handed) and one with both e^{-}spins up (positive helicity, right-handed).

The left-handed case has relative interaction strength $c_{\mathrm{L}}^{\mathrm{e}}$ and gives isotropic scattering. The right-handed case has relative interaction strength c_{R}^{e} and gives an extra factor of $\frac{1}{4}(1+\cos \theta)^{2}$ because the initial and final states both have total spin +1 along the particle axis.

For $\nu_{\mu} \mathrm{e}^{-} \rightarrow \mu^{-} \nu_{\mathrm{e}}$, considering just the contributions from the vertex factors, we have

$$
M_{\mathrm{fi}} \sim \frac{g_{\mathrm{W}}}{\sqrt{2}} \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) \cdot \frac{g_{\mathrm{W}}}{\sqrt{2}} \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right)=\frac{g_{\mathrm{W}}^{2}}{2} \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) \cdot \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right)
$$

This is given to result in a differential cross section

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{2}\left(\frac{g_{\mathrm{W}}^{2}}{8 \pi m_{\mathrm{W}}^{2}}\right)^{2} s
$$

For $\nu_{\mu} \mathrm{e}^{-} \rightarrow \nu_{\mu} \mathrm{e}^{-}$, the vertex factors contribute

$$
\begin{aligned}
M_{\mathrm{fi}} & \sim \frac{g_{\mathrm{Z}}}{2} \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) \cdot \frac{g_{\mathrm{Z}}}{2} \gamma^{\mu} \frac{1}{2}\left(c_{\mathrm{V}}^{\mathrm{e}}-c_{\mathrm{A}}^{\mathrm{e}} \gamma^{5}\right) \\
& =\frac{g_{\mathrm{Z}}^{2}}{2}\left[c_{\mathrm{L}}^{\mathrm{e}} \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right)+c_{\mathrm{R}}^{\mathrm{e}} \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) \gamma^{\mu} \frac{1}{2}\left(1+\gamma^{5}\right)\right]
\end{aligned}
$$

The first term on the right-hand side is identical to the $\nu_{\mu} \mathrm{e}^{-} \rightarrow \mu^{-} \nu_{\mathrm{e}}$ case, except that g_{W} is replaced by g_{Z} and there is an extra factor of $c_{\mathrm{L}}^{\mathrm{e}}$. The second term has an extra factor of $c_{\mathrm{R}}^{\mathrm{e}}$, and $1+\gamma^{5}$ in place of $1-\gamma^{5}$. The latter gives rise to the different allowed spin configuration discussed above, with angular distribution $\frac{1}{4}(1+\cos \theta)^{2}$. The $\nu_{\mu} \mathrm{e}^{-} \rightarrow \nu_{\mu} \mathrm{e}^{-}$differential cross section can therefore be written down directly from the $\nu_{\mu} \mathrm{e}^{-} \rightarrow \mu^{-} \nu_{\mathrm{e}}$ cross section above as

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{2}\left(\frac{g_{\mathrm{Z}}^{2}}{8 \pi m_{\mathrm{Z}}^{2}}\right)^{2} s\left[\left(c_{\mathrm{L}}^{\mathrm{e}}\right)^{2}+\frac{1}{4}(1+\cos \theta)^{2}\left(c_{\mathrm{R}}^{\mathrm{e}}\right)^{2}\right]
$$

where we have also replaced m_{W} by m_{Z}. Integrating over all angles using

$$
\int \frac{1}{4}(1+\cos \theta)^{2} d \Omega=2 \pi \int_{-1}^{+1} \frac{1}{4}(1+x)^{2} d x=\frac{1}{3} \times 4 \pi
$$

and using $g_{\mathrm{W}}=g_{\mathrm{Z}} \cos \theta_{\mathrm{W}}, m_{\mathrm{W}}=m_{\mathrm{Z}} \cos \theta_{\mathrm{W}}$ gives

$$
\frac{\sigma\left(\nu_{\mu} \mathrm{e}^{-} \rightarrow \nu_{\mu} \mathrm{e}^{-}\right)}{\sigma\left(\nu_{\mu} \mathrm{e}^{-} \rightarrow \mu^{-} \nu_{\mathrm{e}}\right)}=\left(c_{\mathrm{L}}^{\mathrm{e}}\right)^{2}+\frac{1}{3}\left(c_{\mathrm{R}}^{\mathrm{e}}\right)^{2} .
$$

Since the electron has $I_{W}^{(3)}=-\frac{1}{2}$ and $Q=-1$, we have

$$
c_{\mathrm{L}}^{\mathrm{e}}=-\frac{1}{2}+\sin ^{2} \theta_{\mathrm{W}} \quad c_{\mathrm{R}}^{\mathrm{e}}=\sin ^{2} \theta_{\mathrm{W}} .
$$

Substituting then gives a quadratic equation for $\sin ^{2} \theta_{\mathrm{W}}$:

$$
R=\left(-\frac{1}{2}+\sin ^{2} \theta_{\mathrm{W}}\right)^{2}+\frac{1}{3} \sin ^{4} \theta_{\mathrm{W}}=\frac{1}{4}-\sin ^{2} \theta_{\mathrm{W}}+\frac{4}{3} \sin ^{4} \theta_{\mathrm{W}}=0.09
$$

which can be solved to give $\sin ^{2} \theta_{\mathrm{W}} \approx 0.52$ or $\sin ^{2} \theta_{\mathrm{W}} \approx 0.23$, the latter being the correct result (consistent with all other data).

