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SOLUTIONS

1. π
−

→ µ
−

νµ decay:

The µ− 4-momentum is p2 = (E, 0, 0, p) with E2 = p2 +m2
µ. The possible µ− spinors are:

u1(p2) =
√
E +mµ





1
0

p/(E +mµ)
0



 , u2(p2) =
√
E +mµ





0
1
0

−p/(E +mµ)





with corresponding adjoint spinors

ū1(p2) =
√
E +mµ (1, 0,−p/(E +mµ), 0) , ū2(p2) =

√
E +mµ (0, 1, 0, p/(E +mµ)) .

The spinor u1(p2) corresponds to a positive helicity µ−, u2(p2) to a negative helicity µ−.

The νµ 4-momentum is p3 = (p, 0, 0,−p), and the νµ spinors are therefore

v1(p3) =
√
p





0
1
0
1



 , v2(p3) =
√
p





−1
0
1
0





where v1(p3) corresponds to negative helicity and v2(p3) to positive helicity. The four possible
combinations u(p2)v(p3) are

ū1(p2)v1(p3) = ū2(p2)v2(p3) = 0

ū2(p2)v1(p3) = −ū1(p2)v2(p3) =

√
p

E +mµ

(E +mµ + p) =

√
p

E +mµ

(mπ +mµ) (1)

where energy conservation, mπ = E + p, has been used in the last step.

Hence only two combinations, ū2(p2)v1(p3) and ū1(p2)v2(p3), are non-zero:

For ū2(p2)v1(p3), the µ− and νµ both have negative helicity, while for ū1(p2)v2(p3) both par-
ticles have positive helicity. The total spin in the final state in both these cases is therefore
zero, consistent with the fact that the π− has spin zero. The two other spinor combinations,
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ū1(p2)v1(p3) and ū2(p2)v2(p3) have total spin 1 in the final state, which is forbidden by angular
momentum conservation.

[Note that this is different from the standard V−A charged current weak interaction, where
only the right-hand diagram, with a right-handed antineutrino, is allowed.]

To find p (the centre of mass momentum), start from energy conservation, mπ = E + p, and
square:

m2
π = (E + p)2 = E2 + p2 + 2Ep = 2p2 +m2

µ + 2p
√
p2 +m2

µ

⇒ 4p2(p2 +m2
µ) =

(
m2

π −m2
µ − 2p2

)2

⇒ 4p2m2
µ =

(
m2

π −m2
µ

)2 − 4p2
(
m2

π −m2
µ

)

⇒ p = (m2
π −m2

µ)/2mπ

Hence
E +mµ = mπ +mµ − p = (mπ +mµ)2/2mπ

giving
√

p

E +mµ

· (mπ +mµ) =

√
m2

π −m2
µ

(mπ +mµ)2
· (mπ +mµ) =

√
m2

π −m2
µ

The two non-zero spinor combinations of equation (1) are therefore

ū2(p2)v1(p3) = −ū1(p2)v2(p3) =
√
m2

π −m2
µ

The matrix element for these is

Mf i = i
GF√

2
fπu(p2)v(p3) = i

GF√
2
fπ

√
m2

π −m2
µ

and summing over the two non-zero final state spin configurations gives

〈|Mf i|2〉 = 1

2
G2

Ff
2
π · 2(m2

π −m2
µ)

Since p∗ = p = (m2
π −m2

µ)/2mπ, the decay rate Γ is given by

Γ =
p∗

8πm2
π

〈|Mf i|2〉 =
m2

π −m2
µ

2mπ

1

8πm2
π

G2
Ff

2
π · (m2

π −m2
µ) =

1

16πm3
π

G2
Ff

2
π · (m2

π −m2
µ)2

Hence, for a scalar weak charged current, we predict

R =
Γ(π− → e−νe)

Γ(π− → µ−νµ)
=

(m2
π −m2

e)
2

(m2
π −m2

µ)2
=

(
139.62 − 0.512

139.62 − 105.72

)2

= 5.49

The correct structure of the weak charged current is V−A, and the matrix element becomes

Mf i = i
GF√

2
fπū(p2)

1

2
(1 − γ5)γµv(p3) .
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Given that this results in an extra factor in the decay rate of 2m2
µ for π− → µ−νµ and 2m2

e for
π− → e−νe, the V−A prediction for R is

R =

(
me

mµ

)2

× 5.49 =

(
0.51

105.7

)2

× 5.49 = 1.28 × 10−4

The predicted decay rates for π− → µ−νµ and K− → µ−νµ are:

Γ(π− → µ−νµ) =
m2

µ

8πm3
π

G2
Ff

2
π · (m2

π −m2
µ)2

=
(0.1057)2

8π(0.1396)3
(1.166 × 10−5)2 × (0.132)2 × (0.13962 − 0.10572)2

= 2.67 × 10−17 GeV

Γ(K− → µ−νµ) =
m2

µ

8πm3
K

G2
Ff

2
K · (m2

K −m2
µ)2

=
(0.1057)2

8π(0.4937)3
(1.166 × 10−5)2 × (0.160)2 × (0.49372 − 0.10572)2

= 6.95 × 10−16 GeV

In comparison, the measured decay rates are:

Γ(π− → µ−νµ) =
6.582 × 10−25 GeV.s

2.60 × 10−8 s
= 2.53 × 10−17 GeV

Γ(K− → µ−νµ) =
6.582 × 10−25 GeV.s × 0.635

1.24 × 10−8 s
= 3.37 × 10−17 GeV

where we make use of the fact that π− → µ−νµ has a branching ratio of almost 100% while
K− → µ−νµ has a branching ratio of 63.5%.

The π− → µ−νµ measured rate is about 5% below the V−A prediction, while K− → µ−νµ is
about a factor of 20 too low. Agreement is restored by including extra factors cos2 θC ≈ 0.95
and sin2 θC ≈ 0.05 respectively, where θC ≈ 13.1◦ is the Cabibbo angle.
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2. Colour forces

For the colour singlet state

ψ =
1√
3
(rr + gg + bb)

the overall colour factor C contains three diagonal terms of the form 1

3
C(rr → rr) and six

cross-terms of the form 1

3
C(rr → gg). In Handout 7, these colour factors were shown to have

the values C(rr → rr) = 1

3
and C(rr → gg) = 1

2
. Therefore the overall colour factor is

C = 3 · 1

3
· 1

3
+ 6 · 1

3
· 1

2
=

4

3
.

For a quark-antiquark state, the short-range potential is

V (r) = −Cαs

r

which is negative, corresponding to an attractive force between the quark and antiquark.

For the colour octet state

ψ =
1√
6
(rr + gg − 2bb)

the overall colour factor is

C =
1

6
[6 × C(rr → rr) − 6 × C(rr → gg)] =

1

6

[
6 × 1

3
− 6 × 1

2

]
= −1

6

Similarly, for the colour octet state

ψ =
1√
2
(rr − gg)

we have

C =
1

2
[2 × C(rr → rr) − 2 × C(rr → gg)] =

1

2

[
2 × 1

3
− 2 × 1

2

]
= −1

6

Finally, for the colour octet states rg, rb, gr, gb, br, bg, it was shown in Handout 7 that

C(rg → rg) = C(rb→ rb) = C(gr → gr) = C(gb→ gb) = C(br → br) = C(bg → bg) = −1

6

In summary, the colour factor for each octet state is negative, corresponding to a repulsive force
between the quark and antiquark, and has the same value (C = −1

6
), reflecting invariance of

the strong interactions under SU(3) colour transformations. Only if the quark-antiquark pair is
in a colour singlet state do we get a positive overall colour factor, and hence a binding potential
at short range.
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Neutral kaons

For mesons with the quark-antiquark pair in an orbital angular momentum state L and total
spin S, the parity is P = P1P2(−1)L = (−1)L+1, while C is equivalent to parity followed by spin
exchange giving C = (−1)L+1(−1)S+1 = (−1)L+S. Only neutral mesons are charge conjugation
eigenstates. We get meson nonets with JPC = 0−+, 1−−, 1+−, 0++, 1++, 2++ etc.

Since P |K0〉 = − |K0〉, P
∣∣K0

〉
= −

∣∣K0
〉
, C |K0〉 = +

∣∣K0
〉
, C

∣∣K0
〉

= + |K0〉, we have

ĈP̂
∣∣K0

〉
= −

∣∣K0
〉
, ĈP̂

∣∣K0
〉

= −
∣∣K0

〉

so K0 and K0 are not CP eigenstates. But for

|K1〉 =
1√
2

(∣∣K0
〉
−

∣∣K0
〉)
, |K2〉 =

1√
2

(∣∣K0
〉

+
∣∣K0

〉)

we have CP |K1〉 = + |K1〉, CP |K2〉 = − |K2〉, so these are CP eigenstates.

For K0 → ππ, we must have L = 0 in the final state. Hence P = +1. For π0π0, the two pions
are charge conjugation eigenstates so C = +1 directly. For π+π−, C and P are identical giving
C = +1 also. Hence CP = +1 for ππ.

For K0 → πππ, angular momentum conservation gives L1 = L2 for the two final state angular
momentum quantum numbers, so P = −1. − 1. − 1.(−1)L1 .(−1)L2 = −1. For K0 → π0π0π0,
we have C = +1 directly. For K0 → π+π−π0, we have L1 = 0 experimentally, giving C =
+1.C(π+π−) = +1.(−1)L1 = +1. Hence CP = −1 for πππ.

So, if CP is conserved, only the decays K1 → ππ and K2 → πππ are allowed.
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