Particle Physics Major Option Exam, January 2000
 SOLUTIONS

1. $\boldsymbol{\pi}^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ decay:

The $\mu^{-} 4$-momentum is $p_{2}=(E, 0,0, p)$ with $E^{2}=p^{2}+m_{\mu}^{2}$. The possible μ^{-}spinors are:

$$
u_{1}\left(p_{2}\right)=\sqrt{E+m_{\mu}}\left(\begin{array}{c}
1 \\
0 \\
p /\left(E+m_{\mu}\right) \\
0
\end{array}\right), \quad u_{2}\left(p_{2}\right)=\sqrt{E+m_{\mu}}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-p /\left(E+m_{\mu}\right)
\end{array}\right)
$$

with corresponding adjoint spinors

$$
\bar{u}_{1}\left(p_{2}\right)=\sqrt{E+m_{\mu}}\left(1,0,-p /\left(E+m_{\mu}\right), 0\right), \quad \bar{u}_{2}\left(p_{2}\right)=\sqrt{E+m_{\mu}}\left(0,1,0, p /\left(E+m_{\mu}\right)\right) .
$$

The spinor $u_{1}\left(p_{2}\right)$ corresponds to a positive helicity $\mu^{-}, u_{2}\left(p_{2}\right)$ to a negative helicity μ^{-}.
The $\bar{\nu}_{\mu} 4$-momentum is $p_{3}=(p, 0,0,-p)$, and the $\bar{\nu}_{\mu}$ spinors are therefore

$$
v_{1}\left(p_{3}\right)=\sqrt{p}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right), \quad v_{2}\left(p_{3}\right)=\sqrt{p}\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right)
$$

where $v_{1}\left(p_{3}\right)$ corresponds to negative helicity and $v_{2}\left(p_{3}\right)$ to positive helicity. The four possible combinations $\bar{u}\left(p_{2}\right) v\left(p_{3}\right)$ are

$$
\begin{gather*}
\bar{u}_{1}\left(p_{2}\right) v_{1}\left(p_{3}\right)=\bar{u}_{2}\left(p_{2}\right) v_{2}\left(p_{3}\right)=0 \\
\bar{u}_{2}\left(p_{2}\right) v_{1}\left(p_{3}\right)=-\bar{u}_{1}\left(p_{2}\right) v_{2}\left(p_{3}\right)=\sqrt{\frac{p}{E+m_{\mu}}}\left(E+m_{\mu}+p\right)=\sqrt{\frac{p}{E+m_{\mu}}}\left(m_{\pi}+m_{\mu}\right) \tag{1}
\end{gather*}
$$

where energy conservation, $m_{\pi}=E+p$, has been used in the last step.
Hence only two combinations, $\bar{u}_{2}\left(p_{2}\right) v_{1}\left(p_{3}\right)$ and $\bar{u}_{1}\left(p_{2}\right) v_{2}\left(p_{3}\right)$, are non-zero:

For $\bar{u}_{2}\left(p_{2}\right) v_{1}\left(p_{3}\right)$, the μ^{-}and $\bar{\nu}_{\mu}$ both have negative helicity, while for $\bar{u}_{1}\left(p_{2}\right) v_{2}\left(p_{3}\right)$ both particles have positive helicity. The total spin in the final state in both these cases is therefore zero, consistent with the fact that the π^{-}has spin zero. The two other spinor combinations,
$\bar{u}_{1}\left(p_{2}\right) v_{1}\left(p_{3}\right)$ and $\bar{u}_{2}\left(p_{2}\right) v_{2}\left(p_{3}\right)$ have total spin 1 in the final state, which is forbidden by angular momentum conservation.
[Note that this is different from the standard V-A charged current weak interaction, where only the right-hand diagram, with a right-handed antineutrino, is allowed.]

To find p (the centre of mass momentum), start from energy conservation, $m_{\pi}=E+p$, and square:

$$
\begin{aligned}
m_{\pi}^{2}= & (E+p)^{2}=E^{2}+p^{2}+2 E p=2 p^{2}+m_{\mu}^{2}+2 p \sqrt{p^{2}+m_{\mu}^{2}} \\
& \Rightarrow \quad 4 p^{2}\left(p^{2}+m_{\mu}^{2}\right)=\left(m_{\pi}^{2}-m_{\mu}^{2}-2 p^{2}\right)^{2} \\
& \Rightarrow \quad 4 p^{2} m_{\mu}^{2}=\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}-4 p^{2}\left(m_{\pi}^{2}-m_{\mu}^{2}\right) \\
& \Rightarrow \quad p=\left(m_{\pi}^{2}-m_{\mu}^{2}\right) / 2 m_{\pi}
\end{aligned}
$$

Hence

$$
E+m_{\mu}=m_{\pi}+m_{\mu}-p=\left(m_{\pi}+m_{\mu}\right)^{2} / 2 m_{\pi}
$$

giving

$$
\sqrt{\frac{p}{E+m_{\mu}}} \cdot\left(m_{\pi}+m_{\mu}\right)=\sqrt{\frac{m_{\pi}^{2}-m_{\mu}^{2}}{\left(m_{\pi}+m_{\mu}\right)^{2}}} \cdot\left(m_{\pi}+m_{\mu}\right)=\sqrt{m_{\pi}^{2}-m_{\mu}^{2}}
$$

The two non-zero spinor combinations of equation (1) are therefore

$$
\bar{u}_{2}\left(p_{2}\right) v_{1}\left(p_{3}\right)=-\bar{u}_{1}\left(p_{2}\right) v_{2}\left(p_{3}\right)=\sqrt{m_{\pi}^{2}-m_{\mu}^{2}}
$$

The matrix element for these is

$$
M_{\mathrm{fi}}=i \frac{G_{\mathrm{F}}}{\sqrt{2}} f_{\pi} \bar{u}\left(p_{2}\right) v\left(p_{3}\right)=i \frac{G_{\mathrm{F}}}{\sqrt{2}} f_{\pi} \sqrt{m_{\pi}^{2}-m_{\mu}^{2}}
$$

and summing over the two non-zero final state spin configurations gives

$$
\left.\left.\langle | M_{\mathrm{fi}}\right|^{2}\right\rangle=\frac{1}{2} G_{\mathrm{F}}^{2} f_{\pi}^{2} \cdot 2\left(m_{\pi}^{2}-m_{\mu}^{2}\right)
$$

Since $p^{*}=p=\left(m_{\pi}^{2}-m_{\mu}^{2}\right) / 2 m_{\pi}$, the decay rate Γ is given by

$$
\left.\Gamma=\left.\frac{p^{*}}{8 \pi m_{\pi}^{2}}\langle | M_{\mathrm{fi}}\right|^{2}\right\rangle=\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}} \frac{1}{8 \pi m_{\pi}^{2}} G_{\mathrm{F}}^{2} f_{\pi}^{2} \cdot\left(m_{\pi}^{2}-m_{\mu}^{2}\right)=\frac{1}{16 \pi m_{\pi}^{3}} G_{\mathrm{F}}^{2} f_{\pi}^{2} \cdot\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}
$$

Hence, for a scalar weak charged current, we predict

$$
R=\frac{\Gamma\left(\pi^{-} \rightarrow \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}}\right)}{\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right)}=\frac{\left(m_{\pi}^{2}-m_{e}^{2}\right)^{2}}{\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}}=\left(\frac{139.6^{2}-0.51^{2}}{139.6^{2}-105.7^{2}}\right)^{2}=5.49
$$

The correct structure of the weak charged current is $\mathrm{V}-\mathrm{A}$, and the matrix element becomes

$$
M_{\mathrm{fi}}=i \frac{G_{\mathrm{F}}}{\sqrt{2}} f_{\pi} \bar{u}\left(p_{2}\right) \frac{1}{2}\left(1-\gamma^{5}\right) \gamma^{\mu} v\left(p_{3}\right)
$$

Given that this results in an extra factor in the decay rate of $2 m_{\mu}^{2}$ for $\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ and $2 m_{e}^{2}$ for $\pi^{-} \rightarrow \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}}$, the $\mathrm{V}-\mathrm{A}$ prediction for R is

$$
R=\left(\frac{m_{e}}{m_{\mu}}\right)^{2} \times 5.49=\left(\frac{0.51}{105.7}\right)^{2} \times 5.49=1.28 \times 10^{-4}
$$

The predicted decay rates for $\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ and $\mathrm{K}^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ are:

$$
\begin{aligned}
\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right) & =\frac{m_{\mu}^{2}}{8 \pi m_{\pi}^{3}} G_{\mathrm{F}}^{2} f_{\pi}^{2} \cdot\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2} \\
& =\frac{(0.1057)^{2}}{8 \pi(0.1396)^{3}}\left(1.166 \times 10^{-5}\right)^{2} \times(0.132)^{2} \times\left(0.1396^{2}-0.1057^{2}\right)^{2} \\
& =2.67 \times 10^{-17} \mathrm{GeV} \\
\Gamma\left(\mathrm{~K}^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right) & =\frac{m_{\mu}^{2}}{8 \pi m_{K}^{3}} G_{\mathrm{F}}^{2} f_{K}^{2} \cdot\left(m_{K}^{2}-m_{\mu}^{2}\right)^{2} \\
& =\frac{(0.1057)^{2}}{8 \pi(0.4937)^{3}}\left(1.166 \times 10^{-5}\right)^{2} \times(0.160)^{2} \times\left(0.4937^{2}-0.1057^{2}\right)^{2} \\
& =6.95 \times 10^{-16} \mathrm{GeV}
\end{aligned}
$$

In comparison, the measured decay rates are:

$$
\begin{gathered}
\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right)=\frac{6.582 \times 10^{-25} \mathrm{GeV} . \mathrm{s}}{2.60 \times 10^{-8} \mathrm{~S}}=2.53 \times 10^{-17} \mathrm{GeV} \\
\Gamma\left(\mathrm{~K}^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right)=\frac{6.582 \times 10^{-25} \mathrm{GeV} . \mathrm{s} \times 0.635}{1.24 \times 10^{-8} \mathrm{~s}}=3.37 \times 10^{-17} \mathrm{GeV}
\end{gathered}
$$

where we make use of the fact that $\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ has a branching ratio of almost 100% while $\mathrm{K}^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ has a branching ratio of 63.5%.

The $\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ measured rate is about 5% below the $\mathrm{V}-\mathrm{A}$ prediction, while $\mathrm{K}^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ is about a factor of 20 too low. Agreement is restored by including extra factors $\cos ^{2} \theta_{C} \approx 0.95$ and $\sin ^{2} \theta_{C} \approx 0.05$ respectively, where $\theta_{C} \approx 13.1^{\circ}$ is the Cabibbo angle.

2. Colour forces

For the colour singlet state

$$
\psi=\frac{1}{\sqrt{3}}(r \bar{r}+g \bar{g}+b \bar{b})
$$

the overall colour factor C contains three diagonal terms of the form $\frac{1}{3} C(r \bar{r} \rightarrow r \bar{r})$ and six cross-terms of the form $\frac{1}{3} C(r \bar{r} \rightarrow g \bar{g})$. In Handout 7, these colour factors were shown to have the values $C(r \bar{r} \rightarrow r \bar{r})=\frac{1}{3}$ and $C(r \bar{r} \rightarrow g \bar{g})=\frac{1}{2}$. Therefore the overall colour factor is

$$
C=3 \cdot \frac{1}{3} \cdot \frac{1}{3}+6 \cdot \frac{1}{3} \cdot \frac{1}{2}=\frac{4}{3} .
$$

For a quark-antiquark state, the short-range potential is

$$
V(r)=-C \frac{\alpha_{\mathrm{s}}}{r}
$$

which is negative, corresponding to an attractive force between the quark and antiquark.
For the colour octet state

$$
\psi=\frac{1}{\sqrt{6}}(r \bar{r}+g \bar{g}-2 b \bar{b})
$$

the overall colour factor is

$$
C=\frac{1}{6}[6 \times C(r \bar{r} \rightarrow r \bar{r})-6 \times C(r \bar{r} \rightarrow g \bar{g})]=\frac{1}{6}\left[6 \times \frac{1}{3}-6 \times \frac{1}{2}\right]=-\frac{1}{6}
$$

Similarly, for the colour octet state

$$
\psi=\frac{1}{\sqrt{2}}(r \bar{r}-g \bar{g})
$$

we have

$$
C=\frac{1}{2}[2 \times C(r \bar{r} \rightarrow r \bar{r})-2 \times C(r \bar{r} \rightarrow g \bar{g})]=\frac{1}{2}\left[2 \times \frac{1}{3}-2 \times \frac{1}{2}\right]=-\frac{1}{6}
$$

Finally, for the colour octet states $r \bar{g}, r \bar{b}, g \bar{r}, g \bar{b}, b \bar{r}, b \bar{g}$, it was shown in Handout 7 that

$$
C(r \bar{g} \rightarrow r \bar{g})=C(r \bar{b} \rightarrow r \bar{b})=C(g \bar{r} \rightarrow g \bar{r})=C(g \bar{b} \rightarrow g \bar{b})=C(b \bar{r} \rightarrow b \bar{r})=C(b \bar{g} \rightarrow b \bar{g})=-\frac{1}{6}
$$

In summary, the colour factor for each octet state is negative, corresponding to a repulsive force between the quark and antiquark, and has the same value ($C=-\frac{1}{6}$), reflecting invariance of the strong interactions under $\mathrm{SU}(3)$ colour transformations. Only if the quark-antiquark pair is in a colour singlet state do we get a positive overall colour factor, and hence a binding potential at short range.

Neutral kaons

For mesons with the quark-antiquark pair in an orbital angular momentum state L and total spin S, the parity is $P=P_{1} P_{2}(-1)^{L}=(-1)^{L+1}$, while C is equivalent to parity followed by spin exchange giving $C=(-1)^{L+1}(-1)^{S+1}=(-1)^{L+S}$. Only neutral mesons are charge conjugation eigenstates. We get meson nonets with $J^{P C}=0^{-+}, 1^{--}, 1^{+-}, 0^{++}, 1^{++}, 2^{++}$etc.

Since $P\left|\mathrm{~K}^{0}\right\rangle=-\left|\mathrm{K}^{0}\right\rangle, P\left|\overline{\mathrm{~K}}^{0}\right\rangle=-\left|\overline{\mathrm{K}}^{0}\right\rangle, C\left|\mathrm{~K}^{0}\right\rangle=+\left|\overline{\mathrm{K}}^{0}\right\rangle, C\left|\overline{\mathrm{~K}}^{0}\right\rangle=+\left|\mathrm{K}^{0}\right\rangle$, we have

$$
\widehat{C} \widehat{P}\left|\mathrm{~K}^{0}\right\rangle=-\left|\overline{\mathrm{K}}^{0}\right\rangle, \quad \widehat{C} \widehat{P}\left|\overline{\mathrm{~K}}^{0}\right\rangle=-\left|\mathrm{K}^{0}\right\rangle
$$

so K^{0} and $\overline{\mathrm{K}}^{0}$ are not CP eigenstates. But for

$$
\left|\mathrm{K}_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|\mathrm{~K}^{0}\right\rangle-\left|\overline{\mathrm{K}}^{0}\right\rangle\right), \quad\left|\mathrm{K}_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|\mathrm{~K}^{0}\right\rangle+\left|\overline{\mathrm{K}}^{0}\right\rangle\right)
$$

we have $C P\left|\mathrm{~K}_{1}\right\rangle=+\left|\mathrm{K}_{1}\right\rangle, C P\left|\mathrm{~K}_{2}\right\rangle=-\left|\mathrm{K}_{2}\right\rangle$, so these are CP eigenstates.
For $\mathrm{K}^{0} \rightarrow \pi \pi$, we must have $L=0$ in the final state. Hence $P=+1$. For $\pi^{0} \pi^{0}$, the two pions are charge conjugation eigenstates so $C=+1$ directly. For $\pi^{+} \pi^{-}, C$ and P are identical giving $C=+1$ also. Hence $C P=+1$ for $\pi \pi$.

For $\mathrm{K}^{0} \rightarrow \pi \pi \pi$, angular momentum conservation gives $L_{1}=L_{2}$ for the two final state angular momentum quantum numbers, so $P=-1 .-1 .-1 .(-1)^{L_{1}} .(-1)^{L_{2}}=-1$. For $\mathrm{K}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}$, we have $C=+1$ directly. For $\mathrm{K}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$, we have $L_{1}=0$ experimentally, giving $C=$ $+1 . C\left(\pi^{+} \pi^{-}\right)=+1 .(-1)^{L_{1}}=+1$. Hence $C P=-1$ for $\pi \pi \pi$.

So, if CP is conserved, only the decays $\mathrm{K}_{1} \rightarrow \pi \pi$ and $\mathrm{K}_{2} \rightarrow \pi \pi \pi$ are allowed.

