
NATURAL SCIENCES TRIPOS: Part III Physics
MASTER OF ADVANCED STUDY IN PHYSICS
NATURAL SCIENCES TRIPOS: Part III Astrophysics

Tuesday 16 January 2018: 14:00 to 16:00

MAJOR TOPICS
Paper 1/PP (Particle Physics)

Answer two questions only. The approximate number of marks allocated to
each part of a question is indicated in the right-hand margin where
appropriate. The paper contains four sides including this one and is
accompanied by a book giving values of constants and containing
mathematical formulae which you may quote without proof.

You should use a separate Answer Book for each question.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
2x20-page answer books
Rough workpad

Mathematical Formulae Handbook
Approved calculator allowed

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.

A

V7.4



2

1 Suppose that in an extension of the Standard Model there is a fourth generation of
heavy leptons comprising a charged lepon, L−, with a mass of 3.0 TeV, and a heavy
neutrino, νL, with a mass of 500 GeV. You may assume that these fourth generation
leptons have the same couplings to the W, Z and γ as the first three generations.

(a) The L− would decay via the weak interaction, i.e. L− → e−νLν̄e. Draw the
leading order Feynman diagram(s) for this decay and, by considering the other
possible decays of the W-boson, estimate the branching fraction for
L− → νL + hadrons. [6]

The requested diagram would have an L− coming in from the left, splitting into a νL

and a W−, with the W− then itself decaying to e−ν̄e. Since the W− will have all of its usual
decay modes open to it, the branching fraction of L− → νL + hadrons should be the same
as the branching fraction for W− → hadrons. BOOKWORK[ In lectures and handouts
the students saw an explanation for why BR(W → qq̄) = 6BR(W → eν). They may
either state this, or re-prove it. ] From that they can go on to show that since
BR(W → eν) = BR(W → µν) = BR(W → τν) then the branching fraction for
W− → hadrons must be 6

6+3 = 2
3 .

(b) Heavy charged leptons could be produced in proton-proton collisions via the
Drell-Yan process, i.e. the production of L+L− through the annihilation of a quark
and anti-quark into a photon. Draw the leading order Feynman diagram(s) for this
interaction and explain why the cross section is non-zero for proton-proton
collisions. [3]

This diagram should show qq̄→ γ → L+L− with it somehow clearly indicated that
the q̄ must be some kind of sea-quark within the proton. The non-absence of sea-quarks in
the proton is why this cross section is non-zero for proton-proton collisions.

(c) If the squared centre-of-mass energy of the proton-proton collision is s, show
that the squared centre-of-mass energy of the qq system is ŝ = x1x2s, where x1 and
x2 are the fractional momenta carried by the partons involved in the collision. [3]

ŝ = (x1 p1 + x2 p2)2 (1)

= 2x1x2 pµ1 p2µ + x2
1 pµ1 p1µ + x2

2 pµ2 p2µ (2)

= 2x1x2 pµ1 p2µ (since quarks have negligible mass here) (3)

= x1x2
(
2pµ1 p2µ + 0 + 0

)
(4)

= x1x2
(
2pµ1 p2µ + pµ1 p1µ + pµ2 p2µ

)
(5)

= x1x2(p1 + p2)2 (6)

= x1x2s Q.E.D.. (7)
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(d) The QED cross section for qq→ l+l−, where l is a charged lepton, is given by

σ =
4π
3
α2

s
e2

q × f (s,ml),

where eq is the quark charge (i.e. eu = +2/3 and ed = −1/3) and f (s,ml) is a
kinematic factor that depends on the lepton mass. Assuming that the ū and d̄
parton distribution functions can be described by a single function, S (x), and
neglecting the strange quark contribution, show that the parton model prediction
for the pp→ L+L−X differential cross section can be written

d2σ

dx1dx2
= f (sx1x2,mL)

2πα2

81x1x2s

[
9uV(x1)S (x2) + 9uV(x2)S (x1) + 20S (x1)S (x2)

]
,

where uV(x) is the valence up-quark parton distribution function. Clearly state any
assumptions you have made. [10]

The parton model allows us to re-purpose the QED cross section given above as a
partonic cross section, so long as we (a) replace s with the partonic centre of mass energy
ŝ = x1x2s, (b) multiply it by an appropriate parton density function (times p(x1)dx1 and
p(x2)dx2) to account for how many of each parton species is in the proton, and (c) sum the
resulting quantity over each type of parton species we wish to assume the proton contains.
The resulting answer is expressed as a differential cross section by taking the dx1dx2 to the
denominator of the LHS.

The proton has two valence up quarks and one valence down quark, each in one of
three colours. We will assume that uv(x) = 2dv(x), i.e. that at any value of x there are
always twice as many valence u quarks as d quarks. Since photons carry no colour, we
only get interactions when red meets anti-red or green meets anti-green, etc.. Colour
therefore, contributes another factor of 1

3 to the above the QED form of the cross section,
as this is the change that a quark and an anti-quark, chosen at random, have the right
colours to annihilate into a photon. Furthermore, when we take a valence quark from one
proton we will need a sea-quark to provide the anti-quark on the other side. We will also
get sea-anti-sea collisions. Since the photon is neutral and cannot change flavour, we will
need always u opposite ū and d opposite d̄.
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Putting all the above together, we therfore expect that

d2σ

dx1dx2
=

1
3
×

4π
3

α2

x1x2s
f (x1x2s,mL)

e2
q × pdf products for:


(i) valence u sea ū
(ii) valence d sea d̄
(iii) sea-anti-sea uū
(iv) sea-anti-sea dd̄



(8)

=
4π
9

α2

x1x2s
f (x1x2s,mL)


( 2

3 )2uv(x1)S (x2) + ( 2
3 )2uv(x2)S (x1)+

( 1
3 )2dv(x1)S (x2) + ( 1

3 )2dv(x2)S (x1)+
( 2

3 )2S (x1)S (x2) + ( 2
3 )2S (x2)S (x1)+

( 1
3 )2S (x1)S (x2) + ( 1

3 )2S (x2)S (x1)

 (9)

=
4π
9

α2

x1x2s
f (x1x2s,mL)


( 2

3 )2uv(x1)S (x2) + ( 2
3 )2uv(x2)S (x1)+

(( 1
3 )2uv(x1)S (x2) + ( 1

3 )2uv(x2)S (x1))/2+

( 2
3 )2S (x1)S (x2) + ( 2

3 )2S (x2)S (x1)+
( 1

3 )2S (x1)S (x2) + ( 1
3 )2S (x2)S (x1)

 (10)

=
4π
81

α2

x1x2s
f (x1x2s,mL)


4uv(x1)S (x2) + 4uv(x2)S (x1)+

(uv(x1)S (x2) + uv(x2)S (x1))/2+

4S (x1)S (x2) + 4S (x2)S (x1)+
S (x1)S (x2) + S (x2)S (x1)

 (11)

=
2π
81

α2

x1x2s
f (x1x2s,mL)


8uv(x1)S (x2) + 8uv(x2)S (x1)+
uv(x1)S (x2) + uv(x2)S (x1)+

8S (x1)S (x2) + 8S (x2)S (x1)+
2S (x1)S (x2) + 2S (x2)S (x1)

 (12)

=
2π
81

α2

x1x2s
f (x1x2s,mL) {9uv(x1)S (x2) + 9uv(x2)S (x1) + 20S (x1)S (x2)} (13)

as required.

(e) Draw a diagram showing the region of x1 versus x2 that contributes to the
cross section for pp→ L+L−X at the LHC operating at

√
s = 13 TeV. [2]

The region of x1 and x2 that contributes to pp→ L+L−X production will be that
subset of the unit square in which the partonic centre of mass energy exceeds 2mL as this
is the kinematic boundary for production of two L particles. This constraint can be written
as ŝ ≥ (2mL)2 or equivalently sx1x2 ≥ 4m2

L. The allowed region has a hyperbolic
boundary, symmetric under x1 ↔ x2 and passing through x1 = x2 = 2mL/

√
s. Despite the

existence of the last two sentences, I have been asked to include an actual picture of the
diagram just described. Look about and it will be somewhere near here, wherever LaTeX
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deigns to place it. In principle, any physical values
of x1 and x2 on the correct (upper) side of that hyperbola can contribute, however in
practice it is likely that only values of x near the kinematic boundary will be significant, as
pdfs will fall steeply as either x value increases. Those up near x1 = 1 or x2 = 1 are
unlikely to be used much.

(f) Explaining your reasoning, which of the terms 20S (x1)S (x2) or
[9uV(x1)S (x2) + 9uV(x2)S (x1)], would you expect to dominate in this region? [2]

Sea quark distributions peak at low values of x. For LLX production we need the
product of x1 and x2 must be large, so it is unlikely that 20S (x1)S (x2) will contribute
significantly. The majority of our LLX production will come from the valence-quark meets
anti-sea production term: 9uV (x1)S (x2) + 9uV (x2)S (x1).

(g) In the relevant regions of x, the parton distribution functions can be taken to
have the approximate forms, uV(x) ≈ ax−λ and S (x) ≈ bx−λ. Taking
f (sx1x2,mL) = 1, and by performing the appropriate integration over x1 and x2,
obtain an approximate expression for the Drell-Yan cross section for heavy lepton
production in terms of α, a, b, λ, mL and s. [4]

σ =

∫
sx1 x2≥4m2

L,0≤x1,x2≤1

2πα2

81x1x2s

(
9ax−λ1 bx−λ2 + 9ax−λ2 bx−λ1 + 20bx−λ1 bx−λ2

)
dx1dx2 (14)

= (18a + 20b)
2πα2b

81s

∫
sx1 x2≥4m2

L,0≤x1,x2≤1

1
x1x2

(x1x2)−λdx1dx2 (15)

=
(
18ab + 20b2

) 2πα2

81s

∫
sx1 x2≥4m2

L,0≤x1,x2≤1
(x1x2)−λ−1dx1dx2 (16)

=
(
18ab + 20b2

) 2πα2

81s

∫ 1

x1=
4m2

L
s

∫ 1

x2=
4m2

L
sx1

(x1x2)−λ−1dx1dx2 (17)

=
(
18ab + 20b2

) 2πα2

81s
1
λ2

1 −  s
4m2

L

λ 1 + λ log
4m2

L

s

 . (18)
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2 Write detailed notes on one of the following topics:
(a) parton distribution functions, or [30]

(b) SU(3) colour symmetry. [30]

There are many things a candidate could write about parton distribution functions. This
exam does not intend to be prescriptive on exactly what topics should or should not be included.
The main goal of the examiner, on reading the answers provided, will be to gauge the degree to
which each candidate appears to understand and communicate his/her understanding of the topic
mentoned. The bullet points listed below are not specimen answers. They are not a minimal set
of topics that need to be covered, nor are they a maximal set of topics outlining the scope of the
question. Instead they are a list of topics that the examiner has been required to provide, as part
of the examination review process. for reasons that are not entirely clear to the examiner.
Somewhat grudgingly, with those caveats, here are some lists of topics:

(a) Parton distribution functions,

•A parton distribution function (pdf) is often denoted p(x) for short, though full
specficiation would require saying what sort of parton is being distributed
(e.g. up-quark vs gluon) within what sort of hadron (e.g. proton or neutron).
•By definition, p(x)dx is number of partons of some type, in some kind of hadron,
with Bjorken x between x and x + dx.
•In the case of electron-proton scattering, Bjorken x is Q2/(2p2.q) with Q2 = −q2 and
qµ being the being the momentum transfer q = p3 − p1, with p1 and p3 the incoming
and outgoing electron momenta (respectively) and p2 the initial proton momentum.
•Bjorken x is also the fraction of the momentum that is carried by the struct object, if
computed in the infinite momentum frame.
•Isospin symmetry between the neutron and the proton (or between the u and d
quarks) is expressable in terms of pdfs as an approximate equivalence between the
manitude of the up pdf of a proton and the down pdf of a neutron, etc. up(x) ≈ dn(x).
•Our knowledge of pdfs comes exclusively from experiments and techniques that have
been used to measure them, and demonstrate self-consistency within the parton
model. It’s therefore relevant to talk about the aspects of deep inelastic scattering that
are relevant ... e.g.
•Hera and its measurements
•The relevant parts of the Quark Parton Model (see images below)
•Differences between neutrino scattering and electron scattering – e.g. how one
provides direct access to the quark vs antiquark content of hadrons, while the other
provides access to the up and down fractions
•Necessity of Use in LHC production.

A

V7.4



7

A

V7.4 (TURN OVER



8

(b) SU(3) colour symmetry. Dr Lester 245

Hence the principle of invariance under local phase transformations completely

specifies the interaction between a fermion and the gauge boson (i.e. photon):  

interaction vertex: (see p.111)

QED !

 The local phase transformation of QED is a unitary U(1) transformation

i.e. with 

 For physics to remain unchanged – must have GAUGE INVARIANCE of the new 

field, i.e. physical predictions unchanged for  

Now extend this idea…

Dr Lester 246

 Suppose there is another fundamental symmetry of the universe, say

“invariance under SU(3) local phase transformations”

• i.e. require invariance under 

are the eight 3x3 Gell-Mann matrices introduced in handout 7

where

are 8 functions taking different values at each point in space-time  

From QED to QCD

wave function is now a vector in COLOUR SPACE

 QCD is fully specified by require invariance under SU(3) local phase 

transformations 

QCD !

Corresponds to rotating states in colour space about an axis 

whose direction is different at every space-time point

 Predicts 8 massless gauge bosons – the gluons (one for each        ) 

 Also predicts exact form for interactions between gluons, i.e. the  3 and 4 gluon 

vertices – the details are beyond the level of this course

8 spin-1 gauge bosons

interaction vertex:

Dr Lester 247

Colour in QCD
The theory of the strong interaction, Quantum Chromodynamics (QCD),

is very similar to QED but with 3 conserved “colour” charges 

In QED:

• the electron carries one unit of charge

• the anti-electron carries one unit of anti-charge

• the force is mediated by a massless “gauge

boson” – the photon

In QCD:

• quarks carry colour charge:

• anti-quarks carry anti-charge:

• The force is mediated by massless gluons

SU(3) colour symmetry

•This is an exact symmetry, unlike the approximate uds flavour  symmetry 

discussed previously.

 In QCD, the strong interaction is invariant under rotations in colour space  

i.e. the same for all three colours  

Dr Lester 249

Colour Confinement

 It is believed (although not yet proven) that all observed free particles are 

“colourless”

•i.e. never observe a free quark (which would carry colour charge)

•consequently quarks are always found in bound states colourless hadrons

only colour singlet states can 

exist as free particles

Colour Confinement Hypothesis:

 All hadrons must be “colourless” i.e. colour singlets

g r

b

 To construct colour wave-functions for 

hadrons can apply results for SU(3) flavour

symmetry to SU(3) colour with replacement 

 just as for uds flavour symmetry can 

define colour ladder operators

Dr Lester 249
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Colour Singlets

 It is important to understand what is meant by a singlet state

 Consider spin states obtained from two spin 1/2 particles.

• Four spin combinations:

• Gives four  eigenstates of 

spin-1 

triplet

spin-0 

singlet

 The singlet state is “spinless”: it has zero angular momentum, is invariant 

under SU(2) spin transformations and spin ladder operators yield zero     

 In the same way COLOUR SINGLETS are “colourless”

combinations:

 they have zero colour quantum numbers

 invariant under SU(3) colour transformations

 ladder operators                            all yield zero

 NOT sufficient to have                               : does not mean that state is a singlet  

Dr Lester 251

Meson Colour Wave-function

 Consider colour wave-functions for  

 The combination of colour with anti-colour is mathematically identical

to construction of meson wave-functions with uds flavour symmetry 

Coloured octet and a colourless singlet 

•Colour confinement  implies that hadrons only exist in colour singlet 

states so the colour wave-function for mesons is:

 Can we have a            state ? i.e. by adding a quark to the above octet can we form

a state with                              . The answer is clear no.

bound states do not exist in nature.
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Dr Lester 252

Baryon Colour Wave-function

 Do qq bound states exist ? This is equivalent to asking whether it possible to 

form a colour singlet from two colour triplets ?  

• Following the discussion of construction of baryon wave-functions in 

SU(3) flavour symmetry obtain  

• Colour confinement        bound states of qq do not exist

BUT combination of three quarks (three colour triplets) gives a colour

singlet state (pages 235-237)

• No qq colour singlet state

Dr Lester 253

The singlet colour wave-function is:

Colourless singlet - therefore qqq bound states exist ! 

Anti-symmetric colour wave-function

Mesons and Baryons

To date all confirmed hadrons are either mesons or baryons. However, some 

recent (but not entirely convincing) “evidence” for pentaquark states

Allowed Hadrons i.e. the possible colour singlet states 

Check this is a colour singlet…

• It has                                : a necessary but not sufficient condition

• Apply ladder operators, e.g.  (recall                  )

•Similarly 

Exotic states, e.g. pentaquarks

Dr Lester 254

Gluons

 In QCD quarks interact by exchanging virtual massless gluons, e.g.

qb

qr
qb

qr qrqb

qr
qb

qr qb

qr
qb

rb br

 Gluons carry colour and anti-colour, e.g.

qb qr qr qr

br rb rr

 Gluon colour wave-functions 

(colour + anti-colour) are the same 

as those obtained for mesons

(also colour + anti-colour) 

OCTET + 

“COLOURLESS” SINGLET

Dr Lester 255

 So we might expect 9 physical gluons:

OCTET:

SINGLET:

 BUT, colour confinement hypothesis:

only colour singlet states

can exist as free particles

Colour singlet gluon would be unconfined. 

It would behave like a strongly interacting 

photon       infinite range Strong force.

 Empirically, the strong force is short range and therefore know that the physical 

gluons are confined. The colour singlet state does not exist in nature !

NOTE: this is not entirely ad hoc. In the context of gauge field theory (see minor

option) the strong interaction arises from a fundamental SU(3) symmetry.

The gluons arise from the generators of the symmetry group (the 

Gell-Mann      matrices). There are 8 such matrices        8 gluons.

Had nature “chosen” a U(3) symmetry, would have 9 gluons, the additional

gluon would be the colour singlet state and QCD would be an unconfined

long-range force. 

NOTE: the “gauge symmetry” determines the exact nature of the interaction  

FEYNMAN RULES

Dr Lester 256

Gluon-Gluon Interactions
 In QED the photon does not carry the charge of the EM interaction (photons are

electrically neutral) 

Gluon Self-Interactions

 In contrast, in QCD the gluons do carry colour charge

 Two new vertices (no QED analogues) 

triple-gluon 
vertex

quartic-gluon 
vertex

 In addition to quark-quark scattering, therefore can have gluon-gluon scattering

e.g. possible

way of arranging

the colour flow

Dr Lester 257

Gluon self-Interactions and Confinement

 Gluon self-interactions are believed to give 

rise to colour confinement

 Qualitative picture:

•Compare QED with QCD

e+

e-

q

q

•In QCD “gluon self-interactions squeeze 

lines of force into a flux tube”

q q

 What happens when try to separate two coloured objects  e.g. qq

•Form a flux tube of interacting gluons of approximately constant 

energy density 

•Require infinite energy to separate coloured objects to infinity

•Coloured quarks and gluons are always confined within colourless states

•In this way QCD provides a plausible explanation of confinement – but 

not yet proven (although there has been recent progress with Lattice QCD)   

Dr Lester 259

QCD and Colour in e+e- Collisions
e+e– colliders are an excellent place to study QCD 

 In handout 5 obtained expressions for the                                 cross-section

• In e+e– collisions produce all quark flavours 

for which 

• Usually can’t tell which jet 

came from the quark and 

came from anti-quark

• In general, i.e. unless producing a        bound state, 

produce jets of hadrons 

H
.J

.B
e
h

re
n

d
 e

t a
l., P

h
y
s
 L

e
tt 1

8
3
B

 (1
9
8
7
) 4

0
0 Angular distribution of jets 

Quarks are spin ½

e–

e+ q
g

q

 Well defined production of quarks

• QED process well-understood

• no need to know parton structure functions

• + experimentally very clean – no proton remnants

Dr Lester 259
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Dr Lester 260

 Colour is conserved and quarks are produced as 

 For a single quark flavour and single colour

• Experimentally observe jets of hadrons:

Factor 3 comes from colours

• Usual to express as ratio compared to 

Data consistent with expectation 

with factor 3 from colour

u,d,s:

u,d,s,c:

u,d,s,c,b:

Dr Lester 261

•Three jet rate         measurement of

•Angular distributions       gluons are spin-1

•Four-jet rate and distributions        QCD has an underlying SU(3) symmetry  

Experimentally:

e+e– colliders are also a good place to study gluons 

e–

e+ q
g/Z

q e–

e+ q
g/Z

q

O
P

A
L

 a
t 

L
E

P
 (

1
9

8
9

-2
0

0
0

)

e–

e+ q
g/Z

q

Jet production in e+e- Collisions
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Dr Lester 262

The Quark – Gluon Interaction
•Representing the colour part of the fermion wave-functions by: 

•The QCD qqg vertex is written:

•Hence the fundamental quark - gluon QCD interaction can be written 

•Particle wave-functions

•Only difference w.r.t. QED is the insertion of the 3x3 

SU(3) Gell-Mann matrices

qq

colour i  j

•Isolating the colour part: 

Gluon a

Dr Lester 263

Feynman Rules for QCD

Matrix Element    -iM =  product of all factors

External Lines

outgoing quark

outgoing anti-quark

incoming anti-quark

incoming quark

spin 1/2

spin 1
outgoing gluon

incoming gluon

Internal Lines (propagators)

spin 1  gluon

a, b = 1,2,…,8 are gluon colour indices

Vertex Factors

spin 1/2   quark

i, j = 1,2,3 are quark colours,       

+ 3 gluon and 4 gluon interaction vertices

a = 1,2,..8  are the Gell-Mann SU(3) matrices       

Dr Lester 264

Matrix Element for quark-quark scattering

uu

dd

 Consider QCD scattering of an up and a down quark 

•The incoming and out-going quark colours are

labelled by

• In terms of colour this scattering is

• The 8 different gluons are accounted for by

the colour indices

•NOTE: the d-function in the propagator ensures
a = b, i.e. the gluon “emitted” at a is the
same as that “absorbed” at b  

 Applying the Feynman rules:

where summation over a and b (and m and n) is implied.

 Summing over a and b using the d-function gives: 

Sum over all 8 gluons (repeated indices)

Dr Lester 265

QCD vs QED

QED

m–

e–

m–

e–

QCD
uu

dd

 QCD Matrix Element = QED Matrix Element with:

or equivalently•

+ QCD Matrix Element includes an additional “colour factor”

Dr Lester 266

Evaluation of QCD Colour Factors

rr

r r

•QCD colour factors reflect the gluon states that are involved

 Configurations involving a single colour

Similarly find 

•Only matrices with non-zero entries in 11 position are involved

Gluons:

Dr Lester 267

r r

b b

 Other configurations where quarks don’t change colour 

•Only matrices with non-zero entries in 11 and 33 position 

are involved

e.g.  

Similarly 

 Configurations where quarks swap colours e.g.  

gr

g r

•Only matrices with non-zero entries in 12 and 21 position 

are involved

 Configurations involving 3 colours e.g.  

br

b g

•Only matrices with non-zero entries in the 13 and 32 position 

•But none of the  l matrices have non-zero entries in  the

13 and 32 positions.  Hence the colour factor is zero

 colour is conserved

Gluons

Dr Lester 269

Finally we can consider the quark – anti-quark annihilation

q

q

QCD vertex:

with

Dr Lester 269

Finally we can consider the quark – anti-quark annihilation

q

q

QCD vertex:

with

Dr Lester 270

q q

qq

q q

qq

q q

q q

• Consequently the colour factors for the different diagrams are:

Colour index of adjoint spinor comes first

e.g.

Dr Lester 271

Quark-Quark Scattering

p

p
u

u

d d

•Consider the process                              which can occur in the

high energy proton-proton scattering

• There are nine possible colour configurations

of the colliding quarks which are all equally

likely.

• Need to determine the average  matrix element which

is the sum over all possible colours divided by the

number of possible initial colour states

• The colour average matrix element contains the average colour factor

•For rrrr,.. rbrb,.. rbbr,..

jet

jet

A
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Dr Lester 272

QED

•Previously derived the Lorentz Invariant cross section for e–m–  e–m–

elastic scattering in the ultra-relativistic limit (handout 6). 

•For ud  ud in QCD replace                  and multiply by  

QCD

•Here      is the centre-of-mass energy of the quark-quark collision 

•The calculation of hadron-hadron scattering is very involved, need to 

include parton structure functions and include all possible interactions  

e.g. two jet production in proton-antiproton collisions

Never see colour, but

enters through colour factors. 

Can tell QCD is SU(3)

3 The vertex factor for the interaction between a Higgs boson and a fermion is

−i
gWm f

2mW
,

where gW is the weak decay constant, and mW and m f are the masses of the W-boson and
the fermion f , respectively. Write down the matrix element for the decay H → f f̄ . [3]

Up to an overall modulus-one conventional factor,

Mi j = −i
gWm f

2mW
ūiv j (19)

= −i
gWm f

2mW
u†i γ

0v j (20)

= −i
gWm f

2mW

(
u†i γ

0v j
)

(21)

where i and j each take a label in {↑, ↓}.

Consider the decay of the Higgs boson in its rest frame where the fermion is
produced with polar angle θ and azimuthal angle φ. Assuming mH � m f , evaluate the
H → f f̄ matrix elements for all four possible combinations of particle and anti-particle
helicities and comment on your results. [8]

The supplied Dirac spinors are:

u↑ =
√

E


c

eiφs
c

eiφs

 , u↓ =
√

E


−s
eiφc

s
−eiφc

 , v↑ =
√

E


s
−eiφc
−s
eiφc

 , v↓ =
√

E


c

eiφs
c

eiφs

 ,
however we will want our u and v spinors to use different values of θ and φ compared to each
other. Specifically, if we let the ‘vanilla’ values of θ and φ refer to the direction of the particle in
the Higgs rest frame, then the anti-particle will have θ′ = π − θ and φ′ = φ + π. Accordingly

s′ = sin(θ′/2) = sin((π − θ)/2) = cos(θ/2) = c

A
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and
c′ = cos(θ′/2) = cos((π − θ)/2) = sin(θ/2) = s

while
eiφ′ = eiφ+iπ = −eiφ.

For this reason we must use the following spinors:

u↑ =
√

E


c

eiφs
c

eiφs

 , u↓ =
√

E


−s
eiφc

s
−eiφc

 , v′↑ =
√

E


c

eiφs
−c
−eiφs

 , v′↓ =
√

E


s
−eiφc

s
−eiφc

 .
Hermitian conjugating the u-spinors these gives:

u†
↑

=
√

E
(
c, e−iφs, c, e−iφs

)
, u†
↓

=
√

E
(
−s, e−iφc, s,−e−iφc

)
, v′
↑

=
√

E


c

eiφs
−c
−eiφs

 , v′↓ =
√

E


s
−eiφc

s
−eiφc


and pre-multiplying the v-spinors by γ0 gives

u†
↑

=
√

E
(
c, e−iφs, c, e−iφs

)
, u†
↓

=
√

E
(
−s, e−iφc, s,−e−iφc

)
, γ0v′

↑
=
√

E


c

eiφs
c

eiφs

 , γ0v′
↓

=
√

E


s
−eiφc
−s
eiφc


from which, if we define K = −i gW m f

2mW
, we can read off:

M↑↑ = 2KE (22)

M↑↓ = 0 (23)

M↓↑ = 0 (24)

M↓↓ = −2KE. (25)

This answer makes a lot of sense: the higgs as a scalar particle has spin-0, and so must decay to a
particle and an anti-particle each having the same helicity. Were this not the case, i.e. were
opposite helicity possible, then the final state would have one plus or minus unit of spin in the
direction parallel to the outgoing particles, contradicting the spin-0 of the Higgs. Furthermore,
we should not be surprised that the magnitude of M↑↑ and M↓↓ agree since the Higgs vertex is not
partiy-violating (dies not favour one helicity over another).

Given the expression for the decay rate:

dΓ
dΩ

=
p∗

32π2m2
H

〈
|M f i|

2
〉
,

where p∗ is the centre-of-mass momentum of either final state particle, show that the
partial decay width for the Higgs boson to τ+τ− is

Γτ =
GF
√

2

m2
τmH

4π
.

A
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[4]

First let us calculate p∗. Since we are neglecting final state particla masses, 2p∗ = mH so
p∗ = mH/2.

Second we need
〈
|M f i|

2
〉
. This should be an average over possible input states of this

Higgs and a sum over relevant final states. The Higgs has only one initial state – so we can ignore
that averaging part. Instead we just sum over final states:〈

|M f i|
2
〉

= |M↑↑|2 + |M↑↓|2 + |M↓↑|2 + |M↓↓|2 (26)

= 4|K|2E2 + 0 + 0 + 4|K|2E2 (27)

= 8|K|2E2 (28)

= 8|K|2(p∗)2, (29)

and so 〈
|M f i|

2
τ

〉
= 8

g2
Wm2

τ

4m2
W

(mH

2

)2
(30)

=
g2

Wm2
τm

2
H

2m2
W

. (31)

Putting these into the differential decay rate gives:

dΓτ
dΩ

=
mH/2

32π2m2
H

g2
Wm2

τm
2
H

2m2
W

(32)

=
g2

Wm2
τmH

128π2m2
W

(33)

therefore

Γτ =

∫
dΓτ
dΩ

dΩ (34)

= 4π
dΓτ
dΩ

(35)

= 4π
g2

Wm2
τmH

128π2m2
W

(36)

=
g2

W

8m2
W

πm2
τmH

4π2 (37)

=
GF
√

2

m2
τmH

4π
(38)

as desired.

Assuming mH = 125 GeV, and neglecting decays to νν̄, e+e−, µ+µ−, uū, dd̄ and ss̄,
obtain values for the total decay width of the Higgs boson, ΓH and the branching fraction
for H → bb̄. [5]

A
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We have just found that

Γτ =
GF
√

2

m2
τmH

4π
.

By the same argument

Γµ =
GF
√

2

m2
µmH

4π
,

Γc = 3
GF
√

2

m2
cmH

4π

and

Γb = 3
GF
√

2

m2
bmH

4π

where the 3 accounts or the number of colours. Γt is not something that needs to be considered as
Higgs decay to tt̄ is not kinematically possible. The total width (neglecting the requested modes)
is therefore given by

Γ = Γτ + Γc + Γb (39)

=
GF
√

2

mH

4π

(
m2
τ + 3m2

c + 3m2
b

)
(40)

≈
1.66 × 10−5
√

2

125
4π

(
1.82 + 3 × 1.52 + 3 × 4.52

)
GeV (41)

≈ 0.0082 GeV (42)

and furthermore

BR(H → µµ̄) =
Γµ

Γ
≈

m2
µ

m2
τ + 3m2

c + 3m2
b

≈ 1.6 × 10−4 (43)

BR(H → ττ̄) =
Γτ
Γ
≈

m2
τ

m2
τ + 3m2

c + 3m2
b

≈ 0.045 (44)

BR(H → cc̄) =
Γc

Γ
≈

3m2
c

m2
τ + 3m2

c + 3m2
b

≈ 0.10 (45)

BR(H → bb̄) =
Γb

Γ
≈

3m2
b

m2
τ + 3m2

c + 3m2
b

≈ 0.86. (46)

(The question only requests the last of these branching ratios.)

At a future muon collider operating at the Higgs boson resonance (assumed to be
√

s = 125 GeV), compare the cross section for the process µ+µ− → H → bb̄ to the cross
section for the QED process µ+µ− → γ → bb̄ which is σQED = 4πα2/(9s). Comment on
the possible advantages and disadvantages of a muon collider compared to an
electron-positron collider. [6]
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To estimate the cross section for µ+µ− → H → bb̄ we can use the supplied relativistic
Breit-Wigner formula for a resonance of mass m and spin J :

σ =
4π(2J + 1)

m2

sΓiΓ f

(s − m2)2 + m2Γ2 ,

where Γi, Γ f and Γ are the appropriate partial decay widths and the total decay width. Based on
our earlier computations, and knowledge that J = 0 for the Higgs, we have:

σ
s=m2

H

µ+µ−→H→bb̄
=

4π
m2

H

m2
HΓµΓb

(m2
H − m2

H)2 + m2
HΓ

2
H

(47)

=
4π
m2

H

ΓµΓb

Γ2
H

(48)

≈
4π
s
× (1.6 × 10−4) × (0.86) (49)

≈
4π
s
× (3.8 × 10−4). (50)

We can compare this to the supplied QED cross section of

σQED =
4π
s
α2

9
(51)

≈
4π
s

1
137 × 137 × 9

(52)

≈
4π
s
× (5.9 × 10−6). (53)

We thus note that the cross section for bb̄ production via Higgs at this machine is nearly two
orders of magnitude bigger (380/5.9 ≈ 58) than for production via QCD.

For the same amount of synchrotron radiation, a circular muon collider should
theoretically reach higher energy than a circular electron collider. Put another way, at the same
energy a muon collider would have less synchroton losses than an electron collider and so would
have less demand for powwer. There are strong disadvantages to muon colliders, however,
namely that the source particles (muons) are unstabe and much harder than electrons to
manufacture in large quantities – this means that muon beams would have much shorter lifetimes
than electron beams (though time dilation at energy would suppress this) and correspondingly one
might imagine large beam backgrounds from in-beam decays. For Higgs production specifically,

one would expect far more Higgs bosons (by a factor of order
m2
µ

m2
e

at a muon collider than an
electron collider, on account of the nature of the Higgs-fermion-fermion interaction discussed in
this question. This would potentially lead to a much larger number of Higgs events available for
analysis, if the cross section gain were not offset by the other disadvantages of a muon collider.

Assuming that a muon collider could operate with fully polarised beams where the
helicities of the µ+ and µ− can be chosen, explain how one could distinguish between (i)
a Higgs boson with a Standard Model scalar coupling to fermions, and (ii) an exotic
Higgs boson with ‘scalar minus pseudo-scalar’ (1 − γ5) couplings. Briefly discuss
whether it would be possible to distinguish a Standard Model Higgs boson from one
with a pure pseudo-scalar (γ5) coupling. [4]
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A standard model Higgs boson is spinless and so can only couple to spin zero initial states
– e.g. it could be made from µLµ̄L or µRµ̄R but not from µLµ̄R or µRµ̄L. These characteristics
could be seen by running the collider in each of those states and then measuring the Higgs boson
cross section in each case. If, instead, the higgs coupling took the form (1 − γ5) then we
recognise this as (up to a factor of 2) a Left projection operator PL ... meaning that it would wipe
out right handed spinor placed to its right. Consequently a scalar-minus-pseudoscalar Higgs
would only couple to one of the two helicity combinations allowed to the standard model Higgs
(and a scalar-plus-pseudoscalar Higgs would couple to the other). A pure pseudoscalar Higgs has
a γ5 coupling. We can write γ5 = (1 + γ5)/2 − (1 − γ5)/2 = PR − PL so both right and left spinors
to the right of γ5 are preseserved (though one gets a negative sign compared to the other). The
negative sign for one helicity will disappear on squaring the matrix element for the leading order
diagram, however, meaning that the pseudoscalar Higgs would look just like the scalar Higgs. An
answer that stops here would be sufficient to gain full marks. This said, it would not hurt to
remark that there ought, nonetheless, to exist ways of telling the difference between the two
forms of Higgs – the relative sign that is introduced between the L and R amplitudes could have
an observable effect if allowed to interfere with somehting else. In a sense, the change in
signature that we saw when moving from scalar to scalar-minus-pseudoscalar Higgs can itself be
thought of as a consequence of an interference between two diagrams that both achieve f f̄ → f f̄
but one via a scalar and the other by a pseudoscalar. Therefore one way to distinguish a pure
scalar from a pure pseudoscalar Higgs would be to look at Higgs events an environment where
the Higgs is not alone in mediating the process, i.e. in context where there is some level of
significant interference from another well understood process with the same initial and final state.
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

You may make use of the following information:
In the limit E � m the Dirac spinors for the helicity eigenstates are

u↑ =
√

E


c

eiφs
c

eiφs

 , u↓ =
√

E


−s
eiφc

s
−eiφc

 , v↑ =
√

E


s
−eiφc
−s
eiφc

 , v↓ =
√

E


c

eiφs
c

eiφs

 ,
where c = cos(θ/2) and s = sin(θ/2).
The Dirac matrices are given by

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0



γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 γ5 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
GF/
√

2 = g2
W/(8m2

W). The second and third generation fermion masses are mµ =

0.106 GeV, mτ = 1.777 GeV, ms = 0.1 GeV, mc = 1.5 GeV, mb = 4.5 GeV, and
mt = 175 GeV. The Fermi constant takes the numerical value GF = 1.166×10−5 GeV−2.
The relativistic Breit-Wigner formula for a resonance of mass m and spin J is

σ =
4π(2J + 1)

m2

sΓiΓ f

(s − m2)2 + m2Γ2 ,

where Γi, Γ f and Γ are the appropriate partial decay widths and the total decay width.
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