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The unstable point above a pendulum’s centre of mass can be made stable by

rapidly oscillating the support. This report will use this ‘Dynamic Stability’ condi-

tion to design and build an accurate and robust demonstration of the phenomenon,

by using a jigsaw. Dynamic stability has important implications for any system that

benefits from forced stability, from particle traps to high temperature superconduc-

tivity. The theory of dynamic stability is investigated and the state of research is

summarised, with a review into previous designs used to justify our chosen design. A

numerical integrator with an adaptive step is written and shown to accurately pre-

dict the pendulum dynamics. The frictional form of the pendulum is found to vary

with the angular speed, by measuring the amplitude decay with a high speed camera.

Subsequently, the exact frictional co-e�cient of the pendulum is calculated and input

into the model. Finally, the jigsaw is shown to exhibit inverted pendulum dynamics,

and the minimum threshold frequency is measured for 5 di↵erent lengths. The data is

revealed to be in good agreement with both the theoretical values and the computer

model, and a relationship was found between the minimum frequency and the initial

displacement.

1 Introduction

For over 300 years, Galileo’s pendulum study has
been one of the axioms of classical dynamics in
mechanical systems.1 However, a peculiar phe-
nomenon occurs when the suspension point is
vertically oscillated. The unstable point above
the centre of gravity becomes dynamically sta-
bilised, and can be shown to oscillate about
this new stable position. Although extremely
counter-intuitive, dynamic stabilisation is much
more obvious in a gyroscopic-top or a man on a
unicycle, both of which find stability by assum-
ing the most vertical position.

Dynamic stability was first investigated by
Stephenson in 1908, who found that stability can
be incurred by periodic oscillations and applied
to a pendulum with a rapidly vibrating support.2

Kapitza further investigated the stability condi-
tions and solved the arising Mathieu equation,

before using successive approximations to solve
the problem outside of the small angle approx-
imation.3 In addition, Kapitza experimentally
investigated the conditions, building a ‘Kapitza
Pendulum’, which used a rotary-to-linear device
from a sewing machine to vertically drive a pen-
dulum.4 In 1985, Michaelis created an inexpen-
sive demonstration of the phenomenon using a
handheld jigsaw, and in 1992, the limits of the
stability of the system were experimentally stud-
ied by fashioning an oscillator out of speaker-
coils.5–7 There have been numerous attempts at
elaborating on the mathematics, by both consid-
ering sinusoidal oscillations, and non-parametric
saw tooth oscillations which simplify the math-
ematics.8–10 A large number of systems have
equations of motion analogous to the Mathieu
equation, and so can undergo dynamic stability.
These include: particles in a cyclotron, levitating
liquid droplets and confined charged particles in
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a Paul trap.11–13 Furthermore, there has been
recent interest in the use of dynamic stability to
create super-conducting states at room temper-
ature.14

Although previous work has concentrated on
the mathematics and stability conditions, here
we will rigorously create a robust experimen-
tal demonstration of the inverted pendulum that
gives accurate measurements, and can be used to
display dynamic stabilisation to large audiences.
Furthermore, a computer model will be created
in tandem with the physical apparatus, and will
be used to model the dynamics in the absence of
mechanical vibrations or resonances.

The report will begin by summarising the
theory of dynamic stabilisation, before numer-
ically integrating the equation of motion in a
computer model. Previous designs in the liter-
ature will be reviewed to help create our own
inverted pendulum demonstration, and each fea-
ture will be justified. The friction of the pendu-
lum will be determined, before the final model
is used to compare the minimum frequency of
oscillation with the theory.

Figure 1: Force diagram of the pendulum perpendicu-
lar to the oscillations, and at an arbitrary angle  .15

2 Background Theory

2.1 Dynamic Stabilisation

Physically, we can understand dynamic stabil-
ity by considering the torques acting. Neglect-
ing gravity, if there is zero initial velocity and
the rod is displaced perpendicular to the oscilla-

tions, in the inertial frame of the pivot the centre
of masses (COM) are placed on a circular arc,
as shown in figure 1a, with equal and opposite
torques.

If the rod is at an arbitrary angle  above
the horizontal, the forces are still the same, but
the length of the moment is longer for position
2, as seen in figure 1b. If the angle was below
the horizontal the converse would be true.

Thus, on average there is a greater restor-
ing torque towards the upward vertical. In the
presence of gravity, stability is achieved if this
vibrational torque, averaged over many cycles,
is greater than the gravitational torque.15

Consider a rigid pendulum of length l, mass
m, and COM ↵l, with moment of inertia ICOM .

The pendulum’s support is vertically dis-
placed by a sinusoidal oscillation with driving
frequency ⌦ and amplitude A: a(t) = A cos⌦t.
At an angle ✓ from the upper vertical, the COM
has x and y coordinates, x = ↵l sin ✓ and y =
↵l cos ✓ + a(t).

To derive the equation of motion we use La-
grangian mechanics.

As derived in the appendix(A.1), the La-
grangian in full is:

L =
1

2
m
⇥
(↵l✓̇)2+ ȧ2+2ȧ↵l✓̇ sin ✓

⇤
+

1

2
ICOM ✓̇

2

�mg(↵l cos ✓ + a(t)) (1)

The Euler-Lagrange equation (2) can be used
to derive the equation of motion:

d

dt

⇣�L
�✓̇

⌘
� �L

�✓
= F✓ (2)

where the Dissipative Force F✓ will be elaborated
upon in section 2.2.

Assuming F✓ = 0, solving (2) using (1) yields
the equation of motion:

✓̈ +
↵

↵2 + �(↵)

⇣⌦2A

l
cos⌦t� g

l

⌘
sin ✓ = 0 (3)

where �(↵) = ICOM
ml2

as shown in A.1. This is a
form of the Mathieu equation.

This motion is of similar form to a simple
pendulum, with the acceleration due to gravity
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modulated by a vertical driving force. As this
form is analogous to a simple harmonic oscillator
(✓̈+!2✓ = 0), the period can be easily calculated
from T = 2⇡/!.

Ignoring friction, we can derive the condition
for dynamic stabilisation by writing ✓ in terms
of slowly varying variables: ✓1, C, and S:

✓ = ✓1 + C cos⌦t+ S sin⌦t (4)

This allows us to write the equation of mo-
tion in terms of ✓1, assuming ⌦2 � g

l , which is
easily achievable with a powerful oscillator.

After some manipulation(see A.2), we find
for small ✓1:

✓̈1+
↵

↵2 + �(↵)

✓
⌦2A2↵

2l2(↵2 + �(↵))
� g

l

◆
✓1 = 0 (5)

The upright position is only stable if there
is a restoring force in the direction of the up-
per vertical, thus the term in brackets must be
positive.

The condition for stability is:

⌦2 >
2(↵2 + �(↵))gl

↵A2
(6)

This condition is important as it gives us the
critical frequency, ⌦c, in which the constructed
inverted pendulum will work; although we have
neglected friction which may be important in the
physical model. Later on, ⌦c will be investigated
further, and used as a guideline for the parame-
ters of our inverted pendulum.

2.2 Dissipative Friction

In any sort of physical system there will be fric-
tional forces acting. The dissipative force is pro-
portional to the velocity of the system, v, raised
to some power n, and opposes motion:

F = �sign(v)n+1�vn = �sign(✓̇)n+1�(↵l✓̇)n

(7)
where � is a constant, and the sign function

ensures that the friction opposes motion.
If n = 0, the friction is directly proportional

to the contact force and independent of speed
or area, and is known as dry friction. Viscous
friction, given by n = 1, increases linearly with
v. High velocity friction, n = 2, tends to dom-
inate when the speed v is very large, or in high
Reynolds number regimes.16

In an ideal pendulum system, the friction
term is proportional to ✓̇, however care will be
taken in this investigation to measure n.17 The
final dissipation function18 is derived in A.3, and
F✓ is found to be:

F✓ = �sign(✓̇)n+1�(✓̇)n (8)

In section 5, the friction will be investigated
to find n.

3 Computational Method

3.1 Adaptive Step Runge-Kutta

Method

Although (3) can be solved analytically using the
Mathieu equation, here the Runge-Kutta (RK)
method with an adaptive step will be used to in-
tegrate the di↵erential equations numerically.19

The RK method performs a number of steps
at di↵erent points along the interval and finds a
weighted average, which is dependent upon how
close the steps are to the midpoint.20

We will use the adaptive step Runge-Kutta-
Fehlberg method, which removes the step size
dependence by including a procedure to see if
the proper step-size, h, is being used.21 If we
perform a step h1 with error e1, the optimal step-
size h2 that gives an error equal to the tolerance
✏ is:

h2 = 0.9h1
⇣e(h1)

✏

⌘ 1
5

(9)

The extra 0.9 is added as a small margin of safety
for any approximations made. If h2 � h1, then
h1 is accepted, otherwise the integration is re-
peated with h2 (for full consideration see A.4).

The parameters inputted into the model are
the maximum tolerance and maximum time.
The algorithm proceeds step by step until this
tolerance is exceeded or the maximum time is
reached.
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Figure 2: Computational model of ✓ vs t for an ideal
pendulum, starting at ✓0 = 0.005c.

3.2 Testing the Model

The equation of motion for a simple pendulum
was inputted into the algorithm as two coupled
first-order di↵erential equations:

ẏ =


ẏ0
ẏ1

�
=


y1

f(↵)
�g
l �A⌦2 cos⌦t

�
sin y0 � F✓

�

(10)
with initial conditions:

y(0) =


✓0
0

�
(11)

where ✓0 is a small displacement from the
upper vertical, and f(↵) = ↵

↵2+�(↵) .

The algorithm was run for 50 seconds with
h = 0.005s, ✓0 = 0.005c, and ✏ = 10�9. ✓ against
time is plotted in figure 2, and the x and y posi-
tions of the rod are plotted in figure 3.

Figure 3: Trace of pendulum rod length l = 427mm
in xy plane. The bottom half of the motion is shown.

3.2.1 Adaptive Step

Next the adaptive step-size was checked. The
step-size should adapt and change depending on
how rapidly the underlying function varies.

To test this hypothesis, a simplified version
of equation (3) was numerically integrated:

✓̈ � ↵

2↵2 � ↵+ 1
3

g

l
sin ✓ = 0 (12)

The step-size h is plotted in figure 4.

Comparing figures 2 and 4, we can see
the step-size pattern matches the sinusoidal be-
haviour. As expected for the more linear re-
gions at ✓± ⇡, h has a larger step size of around
0.1s, but as the curvature increases nearer the
✓ = ±2⇡, a smaller step-size of 0.05s is required.

Figure 4: Plot of step-size h vs Time in seconds.
There is a clear pattern matching the sinusoidal be-
haviour.

3.2.2 Conservation of Energy

With no external forces acting, the integrator
should conserve energy. The total energy was
calculated at each step for 10000 steps, with
✏ = 10�9, and subtracted from the initial energy.

Figure 5 illustrates that increasing the step
number causes the error in the energy to accumu-
late, increasing the energy di↵erence. However,
as the total energy is of order 10�1J , and the
total accumulation is of order 10�10J , this accu-
racy is adequate for a large number of steps.
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Figure 5: The total energy di↵erence starts to deviate
from 0 as the number of steps increases.

3.2.3 Analytic Comparison

The di↵erence between the simulation and the
analytic solution of a simple pendulum was cal-
culated, to test the accuracy of the integrator.
By solving (3) using the small angle approxima-
tion sin ✓ ⇡ ✓, we find that:

✓(t) = (⇡ � ✓0) cos
r

↵g

(2↵2 � ↵+ 1
3)l

t (13)

Figure 6 shows the normalised di↵erence. As
the analytical solution is only valid for small an-
gles, there is greater error at the maximum am-
plitudes, which accumulates to 3x10�4 over 55s.

Figure 6: Plot showing normalised error between
computed dynamics compared to analytic solution for
✓ = 0.1c. At the max ✓ the error accumulates.

4 Pendulum Design and Con-

struction

4.1 Previous Designs in the Literature

The major goal of this project was to build a
robust demonstration of an inverted pendulum.
The most important characteristic of the design
is the ability to oscillate above ⌦c. There are
a number of examples of inverted pendulums
in the literature, and care was taken to inves-
tigate which design would be most suitable for
this project.

4.1.1 Flywheel Driven Pendulum

In 1954, Kapitza used a rotary-to-linear mecha-
nism from a sewing machine to create an inverted
pendulum, shown schematically in figure 7.14

As figure 7 (inset) illustrates, the amplitude
is of the same order as the radius (assuming
L
L0 ⇡ 2). Hence, this design could have a large
amplitude and so a small ⌦c. For l = 0.2m,
and A, r = 0.1m, we find that ⌦c ⇡ 14rads�1 or
2.22revs�1, roughly equivalent to a slowly mov-
ing bicycle wheel. However this method was not
chosen as the set-up is too bulky and there may
be issues if A is of similar length to l.

Figure 7: Possible flywheel pendulum design, with ge-
ometric proof of amplitude inset.14
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4.1.2 Speaker Cone Driven Pendulum

An exposed speaker cone vibrates vertically at
high frequencies. By controlling the voltage
across the speaker cone, Smith and Blackburn,
among others, were able to accurately control
the oscillation frequency and measure the stabil-
ity of the system. The set up they used is shown
in figure 8.22

However, oscillations will only work for very
small pendulums of l ⇡ 0.01m as the amplitude
is very small, thus it becomes di�cult to measure
the frequency or use for a demonstration.

Figure 8: Set up using speaker cone as driver. In-
cludes apparatus for measuring frequency.

4.1.3 Jigsaw Driven Pendulum

A jigsaw can be used to achieve dynamic sta-
bilisation by attaching a pendulum rod to its
rapidly oscillating saw piece. Although arguably
the most crude configuration, this set-up, as il-
lustrated in figure 9, has proved surprisingly use-
ful.23 Numerous groups have been able to fash-
ion a pendulum to the fragile saw-blade and wit-
ness the phenomenon, as the saw can oscillate at
high frequencies.5,6 However, there are a num-
ber of caveats to the design:

• Jigsaws tend to have small amplitudes, of
around 10mm, which requires a powerful
saw with high ⌦.

• Modern jigsaws tend to have a pendulum
function built-in which rocks the blade.

• The blade can be very fragile and therefore
unsuitable to be used as an oscillator.

• Many jigsaws only have a limited range of
speeds, and so it may prove di�cult to per-
form any meaningful analysis.

However, the robustness of the build, and the
ability to have a powerful, semi-portable oscilla-
tor, made the jigsaw the most appealing choice,
and care was taken to overcome the issues listed
above.

Figure 9: Schematic of chosen design. Jigsaw arm
connected to ball bearing joint with interchangeable
pendulum rods.23

4.2 Design of the Jigsaw Pendulum

The Wickes PSJ800X jigsaw was chosen as the
base.24 With a large number of speeds and the
ability to turn o↵ the pendulum motion, the jig-
saw fulfilled the required criteria, whilst costing
a fraction of the price of similar models.

To overcome the problem of the fragile blade,
the pendulum’s support was fashioned to an arm
that connects directly to the saw’s internal mech-
anism. Notwithstanding, this caused a slight de-
flection at the end of the arm, whilst the extra
mass put more pressure on the saw’s mechanism.
Thus, the arm was machined to be as short as
possible.

A ball-bearing joint was connected to the end
of the arm, allowing 2⇡ radians of theoretically
frictionless planar movement. Furthermore, the
joint’s screw-hole allowed di↵erent lengths of rod
to be attached. This added another controlled
variable and negated the issue of less variation
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in the oscillating speeds, compared to other de-
signs.

The Wickes jigsaw has an amplitude A
of 10mm, which required a frequency of
around 120rads�1 for the pendulum’s length of
O(100mm).24 This is a relatively high frequency,
and so a balance between the robust materials
used and the mass of the system was needed.

Both the pendulum’s arm and rods
experienced a deflection as shown in figure 10:

Figure 10: Schematic diagram showing cantilever
beam deflection.

The deflection experienced by the rod can be
modelled using the Euler-Bernoulli beam bend-
ing equation and is dependent upon the force
acting F , the Young’s modulus E and the mo-
ment of inertia of the beam I:

� =
Fl3

EI
(14)

Care was taken to minimise deflection by choos-
ing materials with large E and I, and minimising
l if possible, as too much flex would cause the
pendulum rod to become unstable and fall.25

The pendulum arm was chosen to be made
from aluminium, a light metal, with a high E
of 69GPa.26 The arm itself was a hollow 10mm
thick tube which was lighter and had a higher I
per unit mass than a rigid rod.27

There were a number of options for the shape
of the rod: I beam, solid rod or hollow rod/tube.
This list was narrowed down to the solid and
hollow rods, as the I beam was neglected due to
mechanical di�culties in creating the shape.

The moment of inertia of a uniform cylinder
about one end can be derived by similar means
as shown in A.1, and it is found that:

I =
M(r2 + r2i )

4
+

ML2

3
(15)

where ri is the inner radius of the hollow cylin-
der.27

If the cylinder is very long, L >> r, and the
hollow and solid rods have an identical radius, r,
they will have the same I. Thus, the solid rod
was chosen as it was heavier and had a higher
overall I.

The rods were made from carbon fibre which
o↵ered the best sti↵ness to mass ratio, as shown
in the Ashby Property map in figure 11, and were
not too expensive to buy or machine.28,29

5 pendulum rods of lengths 0.1m�0.5m were
machined, giving a range of ⌦ from 100rads�1�
300rads�1 which was within the capabilities of
the jigsaw.

Figure 11: Ashby Property map.28 Graph shows
Young’s modulus E vs density for di↵erent materials.

4.3 Construction of The Pendulum

The jigsaw created very fast oscillations by hav-
ing a small internal flywheel, rotating at high
speeds, directly driving the saw.

An aluminium rod was shaped into a right
angle bend and the arm was welded directly to
the inner mechanism.

The main source of friction arose in the bear-
ing’s metal shield, which increased friction but
prevented dust building up. There were more
expensive, smoother ceramic bearings but a no-
ticeably better ceramic bearing was outside of
this project’s budget.

The end of the arm was tapered and the inner
ring of the ball bearing was attached to the ta-
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pered end, with care taken to preserve the work-
ings of the bearing. A connector with a screw-
hole was connected to the outer ring of the bear-
ing, allowing for interchangeable rods. The la-
belled apparatus is pictured in figure 12.

Mass g Length mm ↵

28±0.1 127±1 0.32±0.03
39±0.1 227±1 0.33±0.02
51±0.1 327±1 0.35±0.01
61±0.1 427±1 0.36±0.01
72±0.1 527±1 0.40±0.01

The length of each rod, including the connec-
tor, is given in the above table. The errors arose
due to the limitations of the measuring equip-
ment; a ruler and weighing scales.

The COM of the rod was no longer in the
centre, so ↵ was measured by balancing each rod
on a narrow pivot and marking the position in
which the rod was balanced. There was a larger
error in the COM measurement of ±4mm.

Throughout this report, the errors were cal-
culated using a Taylor expansion formula, which
is explained in detail in A.5.

The overall error in ↵, �↵, was calculated by
expanding the function ↵ = LCOM

L :

�2↵ =

✓
@↵

@L

◆2

�2L +

✓
@↵

@LCOM

◆2

�2LCOM
(16)

Figure 12: Labelled image of final jigsaw set-up. Inset
is a magnified image of the connection.

5 Measuring Friction

Before the computational model can be used
to predict the dynamics, the form of the fric-
tion entering into the Lagrangian must be deter-
mined. In this section, the friction will be mea-
sured by recording the pendulum’s movement
and analysing the results.

Figure 13: Image of the clamped support, with the
protractor software overlaid.

5.1 Method

The pendulum’s motion was recorded using a
high definition slow motion camera recording at
240fps and the angle was measured using on-
screen protractor software.30

The jigsaw was clamped and well-lit, as
shown in figure 13.

To eliminate parallax error, the camera was
placed as close as possible to the pivot. Fur-
thermore, to assist in taking measurements, a
straight line was drawn on to the front of the
pivot.

The angle, �(t), was measured from the
downward vertical, �(t) = ⇡ � ✓(t).

The protractor software allowed very precise
measurements to be taken to � = ±0.001�. How-
ever, we were only able to achieve an accuracy
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of ±1� due to the finite resolution of the video.
The software also measured the angle from

an arbitrary vertical on-screen. Thus the read-
ings were adjusted using the ‘zero-point’ value
of �, which is the value of � on-screen when the
pendulum was actually at � = 0�.

Although the accuracy of the video is 240fps,
there was some sampling error, as it was di�-
cult to judge the point of maximum amplitude.
To help our observations, the time was also ad-
justed so t0 = 0s ,which gave an overall error in
the time of ±0.05s.

To determine the value of n, the maximum
amplitude was recorded for each half-period and
compared to a range of di↵erent frictional terms
in the model.

5.2 Results and Discussion

5.2.1 Determining n

The motion of the pendulum was recorded, and
the maximum angle from the downward vertical,

�(t) = ⇡ � ✓(t) is plotted in figure 14.

There is clearly a decay of amplitude, as the
pendulum loses energy due to friction, and the
decay time increases with pendulum rod length.

There were issues with recording the final few
oscillations, which stopped much faster than ex-
pected, making it hard to di↵erentiate between
the final amplitude and the resting position.

This was best observed for l = 127mm, which
had an equilibrium position after oscillation 1�

above the equilibrium ✓ = 0�.

As explained later, there may have been is-
sues with the bearing causing di↵erent frictional
regimes at di↵erent values of ✓.

To determine n, the oscillating frequency was
turned o↵ in our model, and the initial amplitude
was set to ✓0 = 2.8c.

Friction of the form ✓ or ✓̈ causes only a shift
in the period of oscillations, therefore only ✓̇ will
be investigated. The error in � was calculated to
be ±1.4�, which includes the zero-point error.

Figure 14: Plot of amplitude decay for 5 di↵erent lengths of rod. As the length increases the pendulum’s
lifetime increases. Error bars of � = ±1.4� are shown. Error in t = ±0.05s.
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5.2.2 n = 2

First consider a n = 2 friction term. The sign
function ensures the friction opposes the motion.

Figure 15 shows the simulated model with
low and high friction, compared to the data.

In the lower friction regime, the simulation
matches the data initially. However, the data
decays more rapidly than the simulation, which
has a longer tail of smaller oscillations due to
the ✓̇2 term. For higher friction, the initial am-
plitudes do not fit the data and the characteristic
longer tail of small oscillations for t > 10s is still
present.

The n = 0 term is also shown not to fit the
data in A.6, as it predicts a very linear decay.

5.2.3 n = 1

For an ideal pendulum (✓̈ + 2�✓̇ + !2✓ = 0), the
motion has an analytical solution:

✓(t) = ✓0e
��t cos!t (17)

assuming � ⌧ !.
At the maximum amplitude the cos term is

1, so we can rearrange (17) to find a straight line

equation with gradient m = ��:

ln
�✓max

✓0

�
= ��t (18)

The amplitude ratios for the di↵erent lengths
are shown in figure 16 overleaf. The decay of
each rod seems to show a similar pattern, with a
flatter � at larger amplitudes, and steeper � at
smaller amplitudes.

In A.5, it is shown that the error in the loga-
rithmic term is inversely proportional to the ra-
tio between the initial displacement and the dis-
placement per period. Hence, our values near the
end of the cycle have much larger errors than the
initial readings.

5.2.4 Determining �

The data does not fit the simple model (18), with
the gradient of all the lines increasing for smaller
�.

Figure 14 is in agreement with this, with all
of the decays having a much flatter middle region
than a simple exponential decay. This indicates
two decays occurring; one with a longer lifetime
than the other, giving a flatter curve.

(a) n=2 with low friction (b) n=2 with high friction

Figure 15: Lower friction n=2 matches the data initially. However, the data decays more rapidly than the
simulation which has a much longer lifetime. For higher friction there is a longer lifetime but we still see
the small oscillations for t > 10s unlike the data. Error bars are ±0.025c
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Figure 16: Plot of natural log of the amplitude ratio vs time. The error in the ln term is inversely proportional
to max angle per cycle, so increases at later cycles. As expected the longer rods have lower gradients and
thus smaller �s.

The gradient of each line was measured using
a linear regression model. Looking at the data
in figure 14, there are two clear regions of dif-
fering �, 5�  �  20� and 0�  �  5�. For
l = 527mm, the linear regression, shown in fig-
ure 17, exhibits a good fit. However, as there is
only 3 measurements used to find the gradient
for the latter region, the linear regression is not
precise, especially as there is such a large error
on the final reading.

The linear regression was performed for each
length and the results are summarised in the ta-
ble above. Each regression is shown in A.8.

Figure 17: Detailed plot of logarithmic behaviour for
L = 527mm. Linear regression was performed for
5�  �  20� and 0�  �  5�.

Length m � for � < 5� � for � > 5�

127±1mm 7.95 1.96
227±1mm 4.74 0.78±0.15
327±1mm 1.45±0.38 0.33±0.02
427±1mm 1.36±0.35 0.30±0.02
527±1mm 0.8±0.2 0.17±0.01

The errors above are only due to the error of
the fit and do not consider the error in the data.
There are no errors for l = 127mm, 227mm(� <
5�) as there are not enough values to work out
the error of the straight line.

This is a good assumption for the � > 5�

regime, as the percentage errors are < 10%, and
the linear fit is within the error bars.

However, for � < 5�, there is a massive per-
centage error > 80%, giving a much larger error
in the gradient.

There are a number of reasons for lack of fit.
The apparatus is relatively crude and there was
horizontal movement of the apparatus’ arm for
� � 10�. Although this was minimised by reset-
ting the protractor to a di↵erent origin point be-
fore each measurement. Furthermore, the ball-
bearing movement may have been less smooth
and so had a larger � at slower speed or lower
amplitudes. This would explain the tendency for
the shorter rods to come to rest at an angle to
the equilibrium position.
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Figure 18: Comparison of observed behaviour of l = 427mm with computed dynamics for di↵erent �. Error
bars are ±0.025c. A: � = 1.36. Poor match for number of decays and amplitude size. B: � = 0.6. Good
match for number of decays, but after initial decay the amplitude of the computed dynamics is much less
than the observed. C: � = 0.3. Good match of size of amplitude but underestimates lifetime with many more
decays than the observed data.

� can be found by fitting the model to the
data, either by considering the number of oscil-
lations, or the size of the amplitude per oscilla-
tion.

The di↵erent options are summarised in fig-
ure 18, which shows that the behaviour of l =
427mm depends heavily on �.

In A, � = 1.36 is clearly a poor fit to the
data, as the data decays many more times than
the computed model, and the amplitudes do not
match.

In B, � = 0.6. There is a good fit with num-
ber of decays but the amplitudes do not match.

In C, we used the � derived above in the lin-
ear regression(� = 0.3). By definition the model
matches the data’s amplitude well but the mo-
tion of the observed data abruptly stops after 6
oscillations.

This process was carried out for each length
and the �, derived from � > 5�, gave the best
match of amplitude decay, as expected.

The biggest issue we faced when measuring
the minimum amplitude was that large devia-
tions from � = 0� caused the system to become
unstable and fall, so accurately modelling the
amplitude decay was vital.

Moreover, the final sharp decrease in ampli-
tude was probably due to an issue with the ball-
bearing rubbing up against its casing or against
the arm, causing a frictional build-up at low am-

plitudes when there is little energy in the system.

For these reasons, it was decided that the
amplitude matching �, from the � > 5� region,
provides the best description of the dynamics,
within the bounds of this project.

6 Measuring Minimum Fre-

quency

6.1 Method

A slow motion camera was used to record the
motion of the pendulum, and the period was
calculated by counting the number of frames re-
quired for one full oscillation. As a safety precau-
tion, health and safety guidelines were adhered
to by only operating the jigsaw for a maximum
of 15 minutes daily.31

There was a sampling error of ±2frames
or ±0.01s per reading, which was minimised by
recording 100 oscillations.

⌦c was then calculated, using the simple rules
described in A.5, to an accuracy of ±0.3%.

For the computer model, the previously mea-
sured data was inputted, using the � > 5� �s
that fitted the amplitude decay, as mentioned
earlier.

This decision was justified, as the physical
pendulum had a tendency to drift out to higher
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amplitudes. The model had an initial displace-
ment of ✓ = 5� and the tolerance was decreased
to 10�6 due to the adaptive step accumulating
error, as shown in figure 19 and explained in A.7.

From the operating manual of the pendulum,
the size of the oscillation is half of the stroke
length or 10mm ± 0.5mm.24 This error had to
be assumed due to the lack of information from
the company. However, it was decided that a
5% error seemed reasonable for a production line
tool.

Figure 19: Plot of the behaviour of the adaptive step
just below the threshold ⌦c. The behaviour closely
matches the ✓ behaviour below the critical condition,
with a decrease in h due to an increase in ✓.

6.2 Results and Discussion

6.2.1 Computer Model

The simulation was run near the theoretical fre-
quency, and the smallest value that caused the
unstable point to become stable was recorded.
Figure 20 is a plot of the behaviour near the
minimum frequency at ⌦ = 205.06rads�1 and
⌦ = 205.07rads�1 for l = 327mm.

Below the threshold, there was initially no
✓ movement until the rod started to fall after
10 seconds. In contrast to this, just above the
threshold, the rod slowly moved toward ✓ = 0,
and there were no oscillations due to the heavy
damping and small initial displacement.

This behaviour can be explained as the forces
are balanced and so the rod does not move.
However, slightly above and below the thresh-
old there is a slightly larger force and so after
some time, the rod accelerates.

As we expect no movement at the critical
frequency, the frequency di↵erence between just
above and just below the threshold gives us the
error in ⌦c of ±0.01rads�1.

(a) ⌦ below threshold (b) ⌦ above threshold

Figure 20: Just below the threshold, the pendulum stays at its maximum for over 10 seconds before falling
toward the lower point. Above the threshold, the behaviour is similar except for a slow oscillation back to
✓ = 0 with little oscillations due to friction.
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Figure 21 shows an increase in ⌦c with initial
displacement ✓. At small angles, changing ✓ has
little e↵ect on ⌦c but there is an increase when
✓ � 15�. This also explains figure 20, as a slight
increase in angle increases ⌦c, and causes a snow
ball e↵ect. Thus the pendulum falls.

Figure 21: Plot of minimum frequency vs ✓. In-
creasing the initial angle requires a higher frequency
to achieve stability. The error in the frequency is
±0.1rads�1.

Friction had little e↵ect on the minimum fre-
quency. Changing the friction by 3 orders of
magnitude caused the frequency to change by
about 0.5rads�1 but this project did not have
time to investigate this limitation fully.

6.2.2 Theoretical Condition

Equation (6) was used to calculate the minimum
theoretical ⌦c. To find the error in the theoreti-
cal value, the Taylor formula was used as shown
in A.5.

The dominant source of error is in the ampli-
tude A. As the other errors are negligible, the
% error in ⌦ is equal to % error in A, which we
have assumed to be 5%.

6.2.3 Comparison

The previous results were then compared to the
observed data as shown in figure 22.

Figure 22: Plot of the minimum frequency ⌦c vs length l. The results are in good agreement with one another,
with the model and the measured data closely matching the theoretical prediction. There is a deviation
observed at larger l in the measured data due to the rod wobbling at higher frequencies. The error in the
theory is 5%, the error in the simulation is 0.01rads�1, and the error in the measured data is about 0.3%.
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It is clear from the data that our inverted
pendulum demonstration is accurate, as the data
agrees with the theoretical model within the er-
ror bars. However, there is a systematic devia-
tion at longer lengths due to greater vibrations at
higher frequencies. The longer rods wobbled and
regularly fell out of stability as ✓ increased, so
higher frequencies were needed to reach the sta-
bility condition. The computer model is slightly
higher than the theory, which is due to the
fact that the theory assumes a tiny deflection,
whereas in the model we displaced the rod by
✓ ⇡ 5�, and the small angular increase gives a
small increase in ⌦c as shown earlier.

The error in the theoretical results is large,
and is due to the assumed error in the stroke
length. However, this project did not have the
time to further investigate a method to measure
the stroke length accurately.

7 Conclusion

This project set out 3 main objectives: to build
a robust working demonstration of an inverted
pendulum, to write an algorithm that can be
used to test the limits of dynamic stability, and
to experimentally measure the friction and the
minimum frequency condition.

The results in section 6 have shown that
the demonstration is accurate, with the observed
data matching the model within error. The ap-
paratus proved to be robust, and will make for
an inspiring and thought-provoking demonstra-
tion for those familiar with the simple pendu-
lum. However, more work could be done in elim-
inating the friction and mechanical noise in the
apparatus, by acquiring a more expensive bear-
ing. Also, as the deflection is proportional to
l3, a small decrease in the pendulum arm should
greatly decrease the deflection. The dominant
source of error was due to the error in the stroke
length, and with time this could be easily mea-
sured to increase the accuracy. The friction was
measured and shown to fit the data. However as
features from n = 0 and n = 2 were observed
in the data, one could record the motion using a
particle tracking system and calculate the exact

value of n.
The computer model was shown to be an ac-

curate simulation with a working adaptive step.
The model was a useful tool as it allowed us to
focus on the physical system in the absence of
mechanical vibrations. The simulation also al-
lowed an investigation into the limitations of the
stability condition, and it was shown that the
size of the deflection increased ⌦c, which is not
taken into account in the theory.

The simulation could be used in more detail
to investigate the e↵ects of friction on the sys-
tem. Although it was shown that friction caused
little e↵ect to the condition over a small range of
�s, the program could be run over many orders
of magnitude of � to prove this rigorously.

Alternatively, the model could be used to es-
tablish whether resonances can be manipulated
to make the system jump from the lower to the
upper stable point, and these results can be com-
pared experimentally with the jigsaw.

As the equation of motion is analogous to
the Mathieu equation, this project’s results can
be related to a wide range of physical systems
with just a change of variables. Thus the obser-
vation that higher displacements from the verti-
cal require larger stabilising frequencies has in-
teresting implications in a number of fields, and
potentially deserves further investigation.
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A Appendix

A.1 Derivation of Lagrangian

The Lagrangian method allows us to describe the
physical system in terms of the energies, rather
than Newtonian time varying particle forces. We
define the Lagrangian as:

L = T � V (19)

where V is the gravitational potential energy and
T is the sum of kinetic energies.

To find the moment of inertia consider a uni-
form rod with COM ↵l. The moment of inertia
can be found from its definition:

ICOM =

Z
x2dm =

M

l

Z (1�↵)l

�↵l
x2dx

ICOM = �Ml2 =
Ml2

3
(1� 3↵+ 3↵2)

�(↵) =
1

3
(1� 3↵+ 3↵2) (20)

The above definition can be used as we as-
sume the radius of the rod is much shorter than
the length l.

The total kinetic energy is found by consid-
ering the translational movement of the COM at
velocity vCOM , and the energy of rotation about
the COM:

T =
1

2
mv2COM +

1

2
ICOM ✓̇

2 (21)

The linear velocity v2G is found by considering
time derivative of the co-ordinates, ẋ and ẏ:

v2COM = (↵l✓̇)2 + ȧ2 + 2ȧ↵l✓̇ sin ✓ (22)

Thus we can fully describe the pendulum using
the Lagrangian by combining (21) and (19):

L =
1

2
m
⇥
(↵l✓̇)2+ ȧ2+2ȧ↵l✓̇ sin ✓

⇤
+

1

2
ICOM ✓̇

2

�mg(↵l cos ✓ + a(t))

A.2 Full derivation of Minimum Fre-

quency

By writing ✓ as ✓ = ✓1 +C cos⌦t+ S sin⌦t and
di↵erentiating we find that:

✓̇ = ✓̇1+Ċ cos⌦t�⌦C sin⌦t+Ṡ sin⌦t+⌦S cos⌦t

✓̈ = ✓̈1 + C̈ cos⌦t� 2⌦Ċ sin⌦t� C⌦2 cos⌦t

+ S̈ sin⌦t+ 2⌦Ṡ cos⌦t� S⌦2 sin⌦t

Assuming C and S are small, we can use the an-
gle formulas to write:

sin ✓ ⇡ sin ✓1 + cos ✓1(C cos⌦t+ S sin⌦t)

To derive the equation of motion for ✓1 we will
consider only the constant terms and the terms
with frequency ⌦. The constant terms give:

✓̈1 � f(↵)(
g

l
sin ✓1 +

a⌦2

2l2
C cos ✓1) = 0

where f(↵) = ↵
↵2+�

. Next consider the coe�-
cients of cos⌦t and sin⌦t:

�Cl2⌦2 � f(↵)glC cos ✓1 = �f(↵)A⌦2l sin ✓1

� Sl2⌦2 � glS cos ✓1 = 0

which are solved by S = 0 and

C =
f(↵)A⌦2 sin ✓1

⌦2l + f(↵)g cos ✓1

As ⌦2 � g/l, C ⇡ f(↵)A sin ✓1/l, and so can
derive the equation of motion for ✓1:

✓̈1 + f(↵)(
A2⌦2f(↵)

2l2
� g

l
)sin✓1 = 0

A.3 Friction

The friction is included in the equation of mo-
tion by using the dissipation function. If a force
acts on a particle i in the x-direction, the power
function is defined such that:

Fi,x =
�P

�ẋi
(23)
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By integrating (7), we can find the power func-
tion:

P = � K

n+ 1
v(n+1)

Z
sign(v)n+1dv

= � K

n+ 1
(↵l✓̇)(n+1)

Z
sign(✓̇)n+1d✓̇ (24)

where we have used sign(v) = sign(✓̇) Thus us-
ing these definitions can solve for F✓ and add it
into the Lagrangian:

F✓ =
�P

�✓̇
= �sign(✓̇)n+1K(↵l)n+1(✓̇)n

In order to get equation into the same form
of the SHM equation we can relabel the coe�-
cient as � as for this report we only consider the
✓̇ dependence:

F✓ = �sign(✓̇)n+1�(✓̇)n

This means that when choosing � we will be
aware of varying orders of magnitude depending
on n.

A.4 Full derivation of RKF Method

The RKF method is embedded, where two ap-
proximations for the solution are made at each
step, one of order 4 and one of order 5. Depend-
ing on the agreement of the two answers, h is
accepted, increased or decreased.

This is beneficial computationally as one ex-
tra calculation allows the algorithm to adapt the
step size h to a specified accuracy, thus remov-
ing the issue of guessing the optimal value of h.
Each step requires 6 calculations:

K0 = hF(x, y)

Ki = hF(x+Aih, y+
i�1X

j=0

BijKj), i = 1, 2, ..., 5

(25)

The approximations of the next step are found
using the values for Ki. For the fourth order

formula(y4) and fifth order formula(y5):

y5(x+ h) = y(x) +
5X

i=0

CiKi (26)

y4(x+ h) = y(x) +
5X

i=0

DiKi (27)

The coe�cients (Ai, Bij , Ci, and Di) are the
Cash-Karp coe�cients and are summarised in
the Butcher tableau.21

The solution is advanced by y5 whilst y4 is
used to estimate the truncation error. This is
the error of estimating an infinite sum as a finite
sum, which goes as O(hn) for a nth order RK
method.

The magnitude of the per step error, e(h),
is taken as the root-mean-square di↵erence be-
tween the two formulas, E(h) = y5 � y4:

e(h) = Ẽ(h) =

vuut 1

n

n�1X

i=0

E2
i (h) (28)

with this solution cheap computationally as the
two formulas evaluate the function at the same
points.

The truncation error arises from the root-
mean-square di↵erence between the two formu-
las, E(h) = y5 � y4.

This estimated local error, e, is then used to
adjust the step-size so that the error is approx-
imately equal to required tolerance ✏. As the
truncation error for fourth order goes as O(h5),
if we perform a step h1 with error e1, we can
calculate the optimal step-size h2 that gives an
error equal to ✏:

h2 = 0.9h1
⇣e(h1)

✏

⌘ 1
5

(29)

The extra 0.9 is added as a small margin of safety
due to the approximation earlier. If h2 � h1,
then h1 is accepted, otherwise the integration is
repeated with h2.

Additionally as e(h) is a very conservative es-
timate for the actual error, the overall tolerance
is the same as each local tolerance. For large
numbers of steps, this becomes no longer valid
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and so ✏local will be decreased accordingly.

A.5 Error Calculation

When calculating errors in this project, we will
consistently use the Taylor expansion method. If
we have some function f(x, y, z) the error in f
to first order will be calculated using:

�2f =

✓
�f

�x

◆2

�2x +

✓
�f

�y

◆2

�2y +

✓
�f

�z

◆2

�2z (30)

We can use this general formula to derive
simpler forms for specific circumstances, namely
f = x+ y and f = x

y .
For f = x+ y, (30) becomes:

�2f = �2x + �2y (31)

and for f = x
y :

✓
�f

f

◆2

=

✓
�x
x

◆2

+

✓
�y
y

◆2

(32)

Error in � is found from:

�2� =

✓
��

�X

◆2

�2� (33)

where X = ln( ✓max
✓0

). The error �t is ne-
glected as �t << �X

The error of X is also needed. Using the prop-
erties of logs, it is easy to show that:

�x =
p
2
� ✓0
✓max

�
�✓0 (34)

with an extra factor of
p
2 arising from the fact

�✓0 = �✓max

Error in angular frequency is found from mul-
tiplying the percentage error in the period by ⌦
as the relationship is the same as f(x)=1/x.

�x =
p
2
� ✓0
✓max

�
�✓0 (35)

Error in ⌦ found by using the taylor expansion
for variables ↵, A, and l.

�2⌦ =

✓
�⌦

�↵

◆2

�2↵ +

✓
�⌦

�l

◆2

�2l +

✓
�⌦

�A

◆2

�2A (36)

The main source of error is in the amplitude
A so we can approximate the equation to just
the term proportional to A.

A.6 n=0

The n = 0 friction term was inputted into
our model and compared to the data, but the
constant friction caused a more linear decay as
shown in figure 23. This meant that there were
no oscillations at smaller angles and so n = 0
was immediately discarded as a solution.

Figure 23: Comparison of the data to n = 0 model
with ✓0 = 2.7c. There is a linear decay and no oscil-
lations at small angles. Error bars are ±0.025c

A.7 Tolerance change

In order to see behaviour for t > 20secs the tol-
erance had to be decreased to reach this max-
imum time, due to the larger truncation error
accumulation. The behaviour of the step just
below the threshold ⌦ is shown in figure 19 and
the behaviour closely matches the ✓ behaviour
from above, with a decrease in h due to an in-
crease in ✓.

Lowering the tolerance too much (i.e. to
10�5) decreases the resolution of the numeri-
cal integration, and the minimum ⌦c becomes
0.5rads�1 larger. Thus a compromise had to
be taken between accuracy and length of motion
and a tolerance of 10�6 was used for dynamics
over twenty seconds long.
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A.8 Linear regression to find �

Below are the linear regressions for l = 100 �
400mm for the two di↵erent regimes, 5�  � 
20� and 0�  �  5�.

Figure 24: Detailed plot of logarithmic behaviour for
L = 427mm. Linear regression was performed for
5�  �  20� and 0�  �  5� regimes.

Figure 25: Detailed plot of logarithmic behaviour for
L = 327mm. Linear regression was performed for
5�  �  20� and 0�  �  5� regimes.

Figure 26: Detailed plot of logarithmic behaviour for
L = 227mm. Linear regression was performed for
5�  �  20� and 0�  �  5� regimes.

Figure 27: Detailed plot of logarithmic behaviour for
L = 127mm. Linear regression was performed for
5�  �  2�0 and 0�  �  5� regimes.
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