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Abstract

Quantum Field Theory is a triumph of theoretical physics, but is notoriously hard to

visualise. This project developed theoretically and implemented computationally a sim-

plified alternative to the conventional approach by Feynman et al. This allowed realtime

simulation of a quantum state in an interactive graphical user interface. To ensure high

performance, a number of approximations were applied under the assumption that it did

not significantly alter the physics. These included 1-dimensionality, space discretisation

and periodicity, and limiting the number of particles considered. Several optimisations

were found and implemented, greatly decreasing the number of calculations necessary.

Different numerical Schrödinger Equation integrators were investigated and found to

be appropriate for different end goals, e.g. high accuracy or long-term energy conserva-

tion. The implementation was quantitatively verified to tend to conventional QFT via

a comparison with an analytic solution of interacting φ2-theory.
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k, ĉk, ĉ
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Chapter 1

Introduction

1.1 Motivation

In our quest to understand the Universe, we have found a magnificent mathematical

frame work we call Quantum Field Theory. It successfully explains most experiments

ever conducted, but is notoriously hard to work with. This is mainly caused by our

inability to solve it analytically in the presence of interactions. This problem has been

solved perturbatively, most famously by Feynman et al. via intuitive diagrams and rules.

Feynman’s method does, however, have its shortcomings. It is mainly a tool for calculat-

ing cross sections and decay rates, which is key to experimental verification. It presents

a picture of interactions via mysterious virtual particles, masking over the complicated

nature of the quantum fields.

1.2 Computer Simulation vs. Feynman Diagrams

The most straightforward alternative to Feynman rules and -diagrams is a numerical

computer simulation. This allows us to see the time evolution of the field directly,

providing greater intuition for the actual mechanisms of QFT. We must, however, note

that calculating all these normally hidden variables is a spectacularly inefficient way

of calculating cross sections and decay rates. Computational QFT is therefore most

appropriate as a visualisation tool for doing virtual experiments.

Simulating quantum fields in this way is effectively doing Nature’s job in a computer.

Finite computing power severely limits the simulation, and in order to simulate the

system in real time we need to apply a number of approximations as well as clever

optimisations.

1



Chapter 1. Introduction 2

1.2.1 Approximations

The following are the main approximations underlying the method used, assumed not

to significantly alter the physics.

• Discretisation – QFT works in continuous spacetime, but computers require

discreteness. Increasing the number of lattice points severely limits performance,

so this number is often small (less than 100 points).

• 1 spatial dimension – QFT is (3+1)-dimensional, but most interesting phenom-

ena require only (1+1) dimensions. This makes calculation vastly more efficient,

although it has interesting consequences e.g. for the treatment of fermions, which

are manifestly (3+1)-dimensional.

• Finite periodic universe – Although QFT operates in an infinite spacetime,

we can approximately emulate this as a finite system with periodic boundary

conditions.

We have effectively reduced the Universe to a 1-dimensional ring of points.

1.3 Goal

The goal is to develop a consistent quantum field theory satisfying the above points

and implement this computationally. The implementation is aimed for an interactive

graphical user interface, as an intuitive visualisation of Quantum Field Theory.



Chapter 2

Theory

We define our system mathematically as satisfying the following:

• 1 spatial dimension, xn, and 1 time dimension, t.

• Discretised spatial dimension withN lattice points: x0, x1, . . . , xN−1 (zero-indexed).

• Periodic spatial boundary conditions: xn = xn+N and φn = φn+N .

This can be visualised as a quantum ring shown in Figure 2.1.

Figure 2.1: Quantum ring: a 1D discretised quantum system with periodic bound-
ary conditions (xn denotes position, φn denotes field value, ∆x denotes lattice spacing).

Source: author.

Sections 2.1-2.4 contain all the necessary theory, assuming a scalar field. In Section

2.5 all relevant formulae are then rederived for fermions. Constructing a consistent 1D

discretised quantum field theory constituted a significant portion of the research.

We start with free non-interacting theory, and then introduce interactions1 2.

1The theory section was inspired by work by project supervisor Dr Lester. Sections where independent
research was conducted will be clearly indicated.

2Natural units are assumed. For symbols clarification, please refer to the Symbols section.

3



Chapter 2. Theory 4

2.1 Discretisation in 1 Spatial Dimension

We aim to discretise all the relevant formulae necessary for implementation. This is

a reasonably straightforward task involving swapping integrals with sums and Dirac-

deltas with Kronecker-deltas. Note that the Dirac-delta is not directly equivalent to the

Kronecker-delta:

δ(1)(p− q) → δpq
∆p

(2.1)

from the definition of the Dirac-delta function:

∫ ∞
−∞

δ(1)(p− q)dp = 1 →
N−1∑
n=0

δpq
∆p

∆p = 1 (2.2)

2.1.1 Momentum Discretisation

Discretising position space also discretises momentum space. This is because a particle

is not allowed to end up anywhere along the ring, only certain points, implying that the

particle can only move with certain momenta. It also suggests that if two momenta (e.g.

one low and one very high) both take the particle around to the same lattice point, they

are equivalent:

pk ≡ pk+N (2.3)

From this we can find an expression for the momentum interval:

eipk∆x = ei(pk+N∆p)∆x

N∆p∆x = 2π

∆p =
2π

N∆x
=

2π

L
(2.4)

We write the discritised positions and momenta as:

xn = n∆x (2.5)

pk = k∆p (2.6)

2.1.2 Lagrangian and Hamiltonian Densities

The Lagrangian density involves a kinetic term with both time and space derivatives.

Time is not discretised, but space is and we must replace the derivative by a difference:

∇φ →
φn+ 1

2
− φn− 1

2

∆x
≡ ∆xφn (2.7)
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where ∆x is the discretised derivative operator. Although non-existent, the mid-point

field values φn+ 1
2

and φn− 1
2

are chosen to ensure symmetry and ease of calculation. The

Lagrangian density3 discretises to:

L =
1

2
π2 − 1

2
(∇φ)2 − 1

2
m2φ2 → Ln =

1

2
π2
n −

1

2
(∆xφn)2 − 1

2
m2φ2

n (2.8)

where π = φ̇ is the conjugate momentum. Similarly the Hamiltonian discretises to:

H =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2 → Hn =

1

2
π2
n +

1

2
(∆xφn)2 +

1

2
m2φ2

n (2.9)

The Lagrangian and Hamiltonian become:

L =

∫
L dx → L = ∆x

N−1∑
n=0

Ln (2.10)

H =

∫
H dx → H = ∆x

N−1∑
n=0

Hn (2.11)

2.1.3 Energy

Minimising the action gives us the Euler-Lagrange equations, which when applied to the

Lagrangian density become the Klein-Gordon equation4. This discretises to:

(∂µ∂
µ +m2)φ = 0 → φ̈n +m2φn −∆2

xφn = 0 (2.12)

where

∆2
xφn =

φn+1 − 2φn + φn−1

∆x2
(2.13)

Using a trial plane wave solution φn = Âei(pmxn−Epm t) we can make progress towards

finding the energy:

φ̈n = −ω2
kφn

φn+1 = eipk∆xφn

φn−1 = e−ipk∆xφn

3p. 16 in Peskin & Schroeder [1]
4p. 17 in Peskin & Schroeder [1]
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Substituting this into Eqn (2.12) gives us the discretised energy relation:

−ω2
kφn +m2φn −

eipk∆x + e−ipk∆x − 2

∆x2
φn = 0

φn 6= 0 ⇒ −ω2
k +m2 +

4

∆x2
sin2

(
pk∆x

2

)
= 0

ωk =

√
m2 +

4

∆x2
sin2

(
pk∆x

2

)
(2.14)

This is invariant under a coordinate transformation pk → pk+N as required by peri-

odicity5 and tends to the familiar continuous limit6 as ∆x → 0. As we will see later,

Eqn (2.14) also holds for fermions, despite swapping the Klein-Gordon with the Dirac

equation.

2.1.4 Quantisation and Commutation Relations

Our treatment so far has been entirely classical. To quantise, we start by discretising

the field operator commutation relation7:[
φ̂(x), π̂(y)

]
= iδ(1)(x− y) →

[
φ̂n, π̂m

]
= i

δnm
∆x

(2.15)

To make progress it is helpful to Fourier expand the field operator and its conjugate8:

φ̂n =
N−1∑
k=0

∆p

2π2ωk

(
âke

ipkxn + â†ke
−ipkxn

)
(2.16)

π̂n = −i
N−1∑
k=0

∆p

2π2ωk
ωk

(
âke

ipkxn − â†ke
−ipkxn

)
(2.17)

Note the choice of relativistic normalisation, whereby the sum gets a divisor of 2ωk2π.

Any normalisation could have been chosen if consistently applied. Our choice is moti-

vated by Lorentz invariance as well as it producing meaningful dimensionalities9.

We have now introduced ladder operators, representing creation and annihilation of

particles. From Eqns (2.15), (2.16) and (2.17) we obtain the very useful ladder operator

5See Appendix A.1 for verification of periodicity.
6See Appendix A.2 for verification of the continuous limit energy.
7Operators indicated with hats.
8p. 20 in Peskin & Schroeder [1]
9Discussed in Appendix A.11.
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commutation relations10: [
âk, â

†
l

]
= 2ωk2π

δkl
∆p

= 2ωkLδkl (2.18)

and all other commutators are zero.

2.1.5 Fock States and Corresponding Energies

In order to find the eigenstates of the non-interacting Hamiltonian (Fock states) we

substitute the Fourier expansions, Eqns (2.16) and (2.17), into the Hamiltonian, Eqn

(2.11)11:

Ĥ0 =
N−1∑
k=0

∆p

2π2ωk
ωkâ

†
kâk + Evac (2.19)

Evac =

N−1∑
k=0

ωk
2

(2.20)

The Hamiltonian can safely be shifted to remove the vacuum energy Evac, but it then

measures the energy difference to the free vacuum (no particles) and not the theory’s

intrinsic zero. Interactions lead to eigenstates with less energy than the free vacuum,

giving negative energy differences, which is not a problem when keeping in mind the

shift.

From Eqn (2.19) we can write down the Fock states:

|i〉 =

N−1∏
k=0

(
â†k

)lk√
(2ωkL)lk lk!

|0〉 (2.21)

=

(
â†0

)l0 (
â†1

)l1
. . .
(
â†N−1

)lN−1√
(2ω0L)l0(2ω1L)l1 . . . (2ωN−1L)lN−1

√
l0!l1! . . . lN−1!

|0〉 (2.22)

where the normalisation is chosen to satisfy 〈m|n〉 = δmn.

The Fock state energy is a sum of all the particle energies and the vacuum12:

Ei ≡ 〈i|Ĥ0|i〉 =

N−1∑
k=0

lkωk + Evac (2.23)

10Verified in Appendix A.3
11Full derivation in Appendix A.4
12Full derivation in Appendix A.5
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2.2 Schrödinger Equation Integrators

A general time dependent state |χ(t)〉 is a weighted sum of all free eigenstates |n〉:

|χ(t)〉 =
S−1∑
n=0

cn(t)|n〉 (2.24)

where S Fock states are considered. In the Schrödinger picture, the time evolution is

given by the Schrödinger equation:

i
d

dt
|χ(t)〉 = Ĥ|χ(t)〉 (2.25)

i〈n|
S∑

m=0

ċm(t)|m〉 = 〈n|Ĥ
S−1∑
m=0

cm(t)|m〉 (2.26)

iċn(t) =
S−1∑
m=0

cm(t)〈n|Ĥ|m〉 (2.27)

iċn(t) = Encn(t) +

S−1∑
m=0

cm(t)〈n|Ĥint|m〉 (2.28)

where we have split up the Hamiltonian into a free and an interacting part: Ĥ =

Ĥ0 + Ĥint. We can now define the interaction Hamiltonian matrix:

Hnm = 〈n|Ĥint|m〉 (2.29)

of S×S elements, which will be discussed in great detail in the Section 2.3. The equation

which needs to be solved numerically is then:

ċn(t) = −iEncn(t)− i
S−1∑
m=0

Hnmcm(t) (2.30)

This first order equation can be integrated over time given initial coefficients cn(0).

2.2.1 Second Order Symplectic Integrator

We can now discretise time in order to numerically integrate Eqn (2.30). We start by

Taylor expanding cn(t+ ∆t) and cn(t−∆t) about t:

cn(t+ ∆t) = cn(t) + ∆tċn(t) +
∆t2

2
c̈n(t) +O(∆t3) (2.31)

cn(t−∆t) = cn(t)−∆tċn(t) +
∆t2

2
c̈n(t) +O(∆t3) (2.32)
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Subtracting these and substituting in Eqn (2.30), we obtain a second order integrator:

cn(t+ ∆t) = cn(t−∆t) + 2∆tċn(t) +O(∆t3) (2.33)

cn(t+ ∆t) = cn(t−∆t)− 2i∆t

(
Encn(t) +

S−1∑
m=0

Hnmcm(t)

)
+O(∆t3) (2.34)

Note that this is invariant under the transformation ∆t → −∆t, and therefore has no

preferred time direction. Stepping forwards and then backwards in this case loses no

information13 implying that the integrator is symplectic.

2.2.2 Arbitrary Even-Order Integrator

We can generalise this approach to find an integrator of arbitrarily high order14. To

do this we observe that since we are working in the Schrödinger picture (Hnm is time

independent), we can differentiate Eqn (2.30) k times to get:

dk+1

dtk+1
cn(t) = −iEn

dk

dtk
cn(t)− i

S−1∑
m=0

Hnm
dk

dtk
cm(t) (2.35)

This implies we can find any time derivative, provided we do so iteratively: cn(t) →
ċn(t) → c̈n(t) → ...

c n(t) → . . . . Taylor expanding cn(t + ∆t) and cn(t −∆t) about t to

order K:

cn(t+ ∆t) =
K∑
k=0

∆tk

k!

dk

dtk
cn(t) +O(∆tK+1) (2.36)

cn(t−∆t) =
K∑
k=0

(−∆t)k

k!

dk

dtk
cn(t) +O(∆tK+1) (2.37)

then subtracting Eqns (2.37) and (2.37) gives us an arbitrary even order integrator:

cn (t+ ∆t) = cn (t−∆t) + 2

K−1∑
odd k=1

∆tk

k!

dk

dtk
cn(t) +O

(
∆tK+1

)
(2.38)

where coefficient derivatives are found iteratively by Eqn (2.35). This provides numerical

integration of order K at a performance cost of only O(K).

Note that the first step backwards to cn(−∆t) must be calculated by another integrator,

e.g. Eqn (2.37).

13Although rounding errors will be introduced.
14Arbitrary-order integrators was an area of independent research.
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2.3 Interaction Hamiltonians

For any reasonable system (values of N and Pmax)15 a näıve interaction Hamiltonian

computation will be extremely slow. Consider for instance a 3-vertex interaction φ3
n:

each Fourier expansion of φn, as well summing over lattice points, contribute a sum up

to N calculated for all S×S combinations of two Fock states: in total N4S2 calculations.

Using e.g. Pmax = 4, N = 100 gives of order 1021 calculations. This would take current

non-supercomputers millions of years, hence the need for heavy optimisation.

Many optimisations are possible, and we can save several orders of N and S. The

challenge is to recast our equations into mathematically equivalent, but computationally

friendlier forms. Developing these optimisations have been a major focus of this research.

2.3.1 Applying Momentum Conservation

Momentum conservation in QFT shows up as δ-functions, removing one degree of mo-

mentum freedom. This saves us two momentum/space sums ∝ O(N2). Consider first

the simplest interaction, an additional mass term:

Ĥ
(2)
int = ∆x

N−1∑
n=0

λ(2)φ̂2
n (2.39)

Substituting in Fourier expansions and rearranging, we get:

Ĥ
(2)
int = λ(2)∆x

N−1∑
n,k,l=0

âke
ipkxn + â†ke

−ipkxn

2ωkL

âle
iplxn + â†l e

−iplxn

2ωlL

=
λ(2)

4LN

N−1∑
n,k,l=0

1

ωkωl
(âkâle

i(pk+pl)xn + â†kâle
−i(pk−pl)xn

+âkâ
†
l e
i(pk−pl)xn + â†kâ

†
l e
−i(pk+pl)xn)

where we have used ∆p/2π = 1/L and ∆x/L = 1/N . Using the identity:

N−1∑
n=0

ei(pk−pl)xn = Nδkl (2.40)

15Pmax is the maximum number of particles considered. This is further discussed in Section 3.1.
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we can now significantly simplify the expression:

Ĥ
(2)
int =

λ(2)

4LN

N−1∑
k,l=0

N

ωkωl

(
âkâlδ−k,l + â†kâlδkl + âkâ

†
l δkl + â†kâ

†
l δ−k,l

)
(2.41)

=
λ(2)

4

N−1∑
k=0

1

ω2
k

(
âkâ−k + â†kâk + âkâ

†
k + â†kâ

†
−k

)
(2.42)

= λ(2)
N−1∑
k=0

(
1

2ωk
+
âkâ−k + â†kâ

†
−k + 2â†kâk

L(2ωk)2

)
(2.43)

where the last line is normal ordered (important for another optimisation, Eqn (2.45)).

Note that the interaction coupling λ(2) is strictly a factor and can be ignored in calcu-

lations. This allows realtime weighting of different pre-calculated interaction Hamilto-

nians.

This method generalises straightforwardly to higher φ-order interactions, removing one

position and one momentum sum. A minor optimisation is also possible for two or more

momentum sums, exploiting symmetry of momentum number interchange. The φ3-term

in symmetrised form roughly halves the number of calculations:

Ĥ
(3)
int

λ(3)
= 2

N−1∑
k=2

k−1∑
l=1

ĥkl +

N−1∑
k=1

(2ĥk0 + ĥkk) + ĥ00 (2.44)

where the ĥkl is a symmetric normal ordered operator matrix16.

2.3.2 Avoiding Calculation of Zeros: The Sandwich Factor, Fk

Optimisations so far have been limited to the Hamiltonian itself, by decreasing the num-

ber of ladder operators in it17. However, we still need to “sandwich” it between S × S
combinations of two Fock states. Most of these combinations will not contribute, re-

flecting that no amplitude is transferred between e.g. Fock states of different momentum

number (momentum conservation) or between odd/even particle number states in φ2-

interactions. To be maximally efficient, we cannot test if each combination contributes,

but skip directly to calculation of nontrivial elements.

By considering the interaction Hamiltonian Ĥint to be a weighted sum of normal ordered

ladder operator groups (e.g. â†kâlâ0) we can divide and conquer the problem one group

at a time. We observe that for a given ket |m〉 and a ladder operator group, at most

one bra 〈n| will give a nonzero contribution. In addition we exploit the ladder operator

16Definition of ĥkl in Appendix A.6
17This optimisation was found through independent research.
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commutator to decouple the momenta into factors. We write the factor Fk from each

momentum number k as:

Fk(lk, nk,mk) ≡
(
〈0| (âk)

ρk

(2ωkL)ρk
√
ρk!

)(
â†k

)nk

(âk)
mk


(
â†k

)lk
(2ωkL)lk

√
lk!
|0〉

 (2.45)

where non-triviality requires the ladder operator exponents to satisfy:

ρk = lk + nk −mk (2.46)

remembering periodicity: k ≡ k (mod N).

The total product for all the momentum factors is then:

Ftotal({lk} , {nk} , {mk}) =

N−1∏
k=0

Fk(lk, nk,mk) (2.47)

Eqn (2.45) can be calculated by programmatically applying ladder operator commuta-

tors, but it is far cheaper to reduce it to a closed form mathematical expression. Using

the commutator as well as the identity18:

〈0|(âk)n(â†k)
n|0〉 = n!(2ωkL)n (2.48)

the following expression was found by inspection:

Fk(lk, nk,mk) =

√√√√( nk∏
a=1

(2ωkL)(lk −mk + a)

)(
mk∏
b=1

(2ωkL)(lk + 1− b)

)
(2.49)

This was a key research finding as it significantly decreases the number of calculations.

It has been verified for all lk ∈ N when:

nk = 0 , mk ∈ N

mk = 0 , nk ∈ N

mk + nk ≤ 4

18Full derivation in Appendix A.7
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2.3.3 Corollary: Calculating Field and Conjugate Momenta Values

The average field value and its conjugate momentum are of a similar forms to interaction

Hamiltonians19:

φn(t) = 〈ψ(t)|φ̂n|ψ(t)〉 = 〈ψ(t)|
N−1∑
k=0

∆p

2π2ωk

(
âke

ipkxn + â†ke
−ipkxn

)
|ψ(t)〉 (2.50)

πn(t) = 〈ψ(t)|π̂n|ψ(t)〉 = 〈ψ(t)|
N−1∑
k=0

−i∆p
4π

(
âke

ipkxn − â†ke
−ipkxn

)
|ψ(t)〉 (2.51)

Expanding the state |ψ(t)〉 in terms of Fock states:

φn(t) =
S−1∑
i,j=0

N−1∑
k=0

1

2ωkL
c∗i (t)cj(t)〈i|

(
âke

ipkxn + â†ke
−ipkxn

)
|j〉 (2.52)

=
S−1∑
j=0

N−1∑
k=0

cj(t)

2ωkL

(
c∗i−(t)〈i−|âk|j〉eipkxn + c∗i+(t)〈i+|â†k|j〉e

−ipkxn
)

(2.53)

where i− and i+ are determined by j and k (term dropped if non-existant). Using Eqn

(2.45) and noting that Fk(lk, 0, 1) =
√

(2ωkL)lk and Fk(lk, 1, 0) =
√

(2ωkL)(lk + 1) we

get:

φn(t) =

S−1∑
j=0

N−1∑
k=0

cj(t)

2ωkL

(
c∗i−(t)Fk (lk(j), 0, 1) eipkxn + c∗i+(t)Fk (lk(j), 1, 0) e−ipkxn

)

=
S−1∑
j=0

N−1∑
k=0

cj(t)√
2ωkL

(
c∗i−(t)eipkxn

√
lk(j) + c∗i+(t)e−ipkxn

√
lk(j) + 1

)
(2.54)

where lk(j) is the exponent of â†k in |j〉. Similarly:

πn(t) =
S−1∑
j=0

N−1∑
k=0

i

√
ωk
2L
cj(t)

(
c∗i+(t)e−ipkxn

√
lk(j) + 1− c∗i−(t)eipkxn

√
lk(j)

)
(2.55)

2.4 Finding Interacting Theory Eigenstates

Finding eigenstates of the interacting theory is an essential tool to measuring the correct-

ness of the implementation. Eigenenergies can be measured and compared in φ2-theory,

which has an analytical solution.

19Calculating field and conjugate momentum values was part of the independent research.
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2.4.1 The Shifted Power Iteration Method

We can find the ground state through the shifted power iteration method20. This means

applying the operator (1− Ĥ/Emax) to the state21, then renormalising, iteratively. This

suppresses higher energy eigenstates, hence converging to the ground state. It requires

that the initial state has a nonzero ground state component.

|ψ〉i+1 =
(1− Ĥ/Emax)|ψ〉i
||(1− Ĥ/Emax)|ψ〉i||

(2.56)

lim
i→∞
|ψ〉i = |0̃〉 (2.57)

where˜denotes eigenstates. The other eigenstates are found by orthogonality, by sub-

tracting the overlap with lower energy states at each iteration:

|χ1〉 = (1− Ĥ/Emax)|ψ〉i (2.58)

|χ2〉 = |χ1〉 −
n−1∑
e=0

〈ẽ|χ1〉|ẽ〉 (2.59)

|ψ〉i+1 =
|χ2〉
||χ2||

(2.60)

lim
i→∞
|ψ〉i = |ñ〉 (2.61)

where eigenstates are found in order of increasing energy.

The shifted power iteration method converges linearly22 and is easily implemented23.

2.4.2 Analytical Solution in φ2-Theory

Using both a mass m and a φ2-interaction is equivalent to an effective mass shift24:

Hn ⊃
1

2
m2φ̂2

n + λ(2)φ̂2
n =

1

2
µ2φ̂2

n (2.62)

µ =
√
m2 + 2λ(2) (2.63)

This shift implies expressing eigenstates of mass µ in terms of Fock states of mass m.

The ground state of each theory corresponds to no particles of mass µ and the next

20p. 204 in Numerical Linear Algebra [2]
21Emax is the largest eigenvalue of Ĥ.
22p. 206 in Numerical Linear Algebra [2]
23Alternatives include Rayleigh-quotient iteration, which converges cubically, but requires calculation

of the inverse of an S × S matrix. This is very expensive: O(S3) per step, and would only outperform
power iteration after a large number of steps.

24The analytical comparison was developed in collaboration with Charlie Bridge.
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eigenstate corresponds to one stationary particle of mass µ. Comparing the vacuum

energy-invariant difference between the ground state and the next eigenstate in the two

cases allows us to verify the consistency of the implementation:

Ẽµ1 − Ẽ
µ
0 = µ = Ẽm+φ2

1 − Ẽm+φ2

0 (2.64)

where Ẽtheoryn denotes the nth eigenenergy on the theory.

Note that this works only for scalars and require consideration of infinitely many particles

to be accurate.

2.5 Fermions

In 3D the 4-spinor represents particles and antiparticles of two separate spins25. How-

ever, in 1D we get a 2-spinor simply representing particles and antiparticles where the

spin degree of freedom is lost. This reduces the four γµ-matrices to two 2 × 2 ma-

trices we denote ξµ for clarity, where the spacetime index µ = 0, 1 is consistent with

(1+1)-dimensionality.

2.5.1 The Dirac Equation and Dirac γµ-Matrices

The Dirac equation26 discretises to:

(i∂µγ
µ −m)ψ = 0 → iξ0ψ̇n − iξ1∆xψn −mψn = 0 (2.65)

where ξµ are 2× 2-matrices and ψn are 2-spinors. One valid choice of ξµ is picking out

the t- and x-directions of γµ. This decouples the first and fourth spinor index fields

from the second and third spinor index fields: (ψ1, ψ2, ψ3, ψ4)→ (ψ1, ψ4), (ψ2, ψ3). This

has the advantage of containing no complex numbers, we therefore expect a purely real

theory (in this representation):

ξ0 =

(
1 0

0 −1

)
= σ3 ξ1 =

(
0 1

−1 0

)
= σ1σ3 (2.66)

Interestingly, choosing the t- and z-directions produce the same results. However, choos-

ing t- and y-components decouples the first and third spinor index fields: (ψ1, ψ2, ψ3, ψ4)→
25The section on fermions was a result of independent research.
26p. 42 in Peskin & Schroeder [1]
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(ψ1, ψ3), (ψ2, ψ4) and gives a different representation where ξ1 = σ2σ3. Using the Pauli

matrix anticommutator {σi, σj} = 2Iδij we can show that27:

{ξµ, ξν} = 2Igµν (2.67)

verifying that this is indeed a fermionic theory.

Applying the same method to the Dirac equation as to the Klein-Gordon equation in

Section 2.1.3 we obtain the same momentum mode energy28:

ωk =

√
m2 +

4

∆x2
sin2

(
pk∆x

2

)
(2.14)

2.5.2 The u(pk) and v(pk) Spinors

Whereas the scalar eigenstates are single plane waves eipkxn−iωkt, 1D fermions have

two non-orthogonal plane wave spinors. To determine these, we first write the fermion

Hamiltonian29:

Ln = ψ†nξ
0(iξ0ψ̇n + iξ1∆xψn −mψn) (2.68)

πn =
∂Ln
∂ψ̇n

= iψ†n (2.69)

Hn = πnψn − Ln = −iψ†nξ0ξ1∆xψn +mψ†nξ
0ψn (2.70)

= (ψ∗1,n, ψ
∗
2,n)

(
m −i∆x

−i∆x −m

)(
ψ1,n

ψ2,n

)
(2.71)

This Hamiltonian can be diagonalised, giving us eigenspinors u(pk)e
−ipkxn+iωkt and

v(pk)e
ipkxn−iωkt with eigenenergies ωk and −ωk respectively30, where:

u(pk) =
√
ωk +m

 1

−
2 sin

(
pk∆x

2

)
∆x(ωk+m)

 (2.72)

v(pk) =
√
ωk +m

 2 sin
(

pk∆x

2

)
∆x(ωk+m)

−1

 (2.73)

27Verified in Appendix A.8
28Full derivation in Appendix A.9
29p. 52 in Peskin & Schroeder [1]
30Verified in Appendix A.10
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These are fermion- and antifermion plane waves, respectively, and are relativistically

normalised such that:

u(pk)
†u(pk) = v(pk)

†v(pk) = 2ωk (2.74)

u(pk)
†v(−pk) = v(pk)

†u(−pk) = 0 (2.75)

2.5.3 Quantising the Theory

To quantise, we invoke the field anticommutator31:{
ψ̂α,n, ψ̂

†
β,m

}
= δαβ

δnm
∆x

(2.76)

where α, β are spinor indices. With eigenspinors u(pk) and v(pk), we can quantise and

Fourier expand ψn:

ψ̂n =
N−1∑
k=0

∆p

2π2ωk

(
u(pk)b̂ke

ipkxn + v(pk)ĉ
†
ke
−ipkxn

)
(2.77)

ψ̂†n =
N−1∑
k=0

∆p

2π2ωk

(
u(pk)

†b̂†ke
−ipkxn + v(pk)

†ĉke
ipkxn

)
(2.78)

where b̂k and ĉk are fermion- and antifermion ladder operators, respectively. Combining

Eqns (2.76), (2.78) and (2.78) gives:

{
b̂k, b̂

†
l

}
=
{
ĉk, ĉ

†
l

}
= 2ωk2π

δkl
∆p

= 2ωkLδkl (2.79)

and all other anticommutators are zero. Note that the two types commute normally

with each other: [
b̂k, ĉ

†
l

]
=
[
b̂†k, ĉl

]
=
[
b̂k, ĉl

]
=
[
b̂†k, ĉ

†
l

]
= 0 (2.80)

2.5.4 Fock States

Fermionic Fock states are similar to those for scalars, but include both fermion and

antifermion ladder operators:

|i〉 =
N−1∏
k=0

(
b̂†k

)gk (
ĉ†k

)hk√
(2ωkL)(gk+hk)

|0〉 (2.81)

=

(
b̂†0

)g0
(
b̂†1

)g1

. . .
(
b̂†N−1

)gN−1
(
ĉ†0

)h0
(
ĉ†1

)h1

. . .
(
ĉ†N−1

)hN−1√
(2ω0L)(g0+h0)(2ω1L)(g1+h1) . . . (2ωN−1L)(gN−1+hN−1)

|0〉 (2.82)

31p. 56 in Peskin & Schroeder [1]
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where the exponents gk, hk = 0, 1, reflecting the Pauli exclusion principle. This is due a

minus sign from the anticommutator under interchange of two equal ladder operators,

requiring zero contribution.

2.5.5 Fermions and the Sandwich Factor, Fk

The optimisation described in Section 2.3.2 also applies to fermions. We require normal

ordering of the form:

(b̂†0b̂
†
1 . . . b̂

†
N−1b̂N−1 . . . b̂1b̂0)(ĉ†0ĉ

†
1 . . . ĉ

†
N−1ĉN−1 . . . ĉ1ĉ0) (2.83)

where b̂k’s and ĉk’s are allowed to intermix due to their zero commutator. Sandwiching

this between two Fock states allows us to reuse the factor Fk since an even swaps assure

no minus signs are introduced when splitting the ladder operators into equal-momentum

number factors. It is important to normal order b̂k/ĉk based on k (mod N). Addition-

ally, the Pauli exclusion principle dictates lk, nk,mk = 0, 1 giving Fk = 0 otherwise.

This factor is then used in the same way as for scalars to find interaction Hamiltonians

as well as average field and conjugate momentum values.

2.6 Dimensional Analysis

In deriving a 1D quantum field theory, the dimensions of some quantities have changed.

Note that discretisation is irrelevant. Dimension changes are summarised32 in Table 2.1:

Quantity Dimension in 1D Dimension in 3D

L̂n 2 4

Ĥn 2 4

φ̂n 0 1

π̂n 1 2

ψ̂n, ψ̂
†
n

1
2

3
2

âk, â
†
k 0 -1

b̂k, b̂
†
k, ĉk, ĉ

†
k 0 -1

u(pk), v(pk)
1
2

1
2

Table 2.1: Summary of quantities with changed dimensions: Mass dimensions
of quantities compared in 1D and 3D. All other relevant quantities are dimensionally

unchanged. Note that relativistic normalisation is assumed in both 1D and 3D.

32Detailed derivation of dimensions in Appendix A.11
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It is also worth noting that in simulating the theory, we work in arbitrary mass units.

If we choose energy-momentum units GeV, spacetime gets unit GeV−1, reflecting the

Heisenberg uncertainty principle. This allows us to “zoom in” to the scale where in-

teractions occurs by setting the dimensionful interaction parameters close to unity and

simply redefining the units.



Chapter 3

Implementation

This chapter describes the implementation of the theory in Chapter 2. This includes

mainly a treatment of Fock states, since their ordering has not been sufficiently defined,

as well as what integrators will be used. Also included is a brief discussion of the choice

of programming language and the code base developed.

3.1 State Number Functions and Cut-offs

Even a relatively modest system will have an excessively large number of Fock states;

infinitely many in the case of scalars. To be calculable we must apply an appropriate

cut-off. There are many ways to do this, but a natural cut-off is by particle number, i.e.

considering all Fock States up to and including, say, Pmax particles. This approximation

relies on the assumption that probabilities decrease with increasing particle numbers,

i.e. that the energy cost of creating a particle is comparatively high.

For scalars, applying indistinguishability of identical particles, the number of Fock states

SS is given by:

SS(N,Pmax) ≡
Pmax∑
P=0

σS(N,P ) (3.1)

σS(N,P ) ≡
(
N + P − 1

P

)
(3.2)

where σS is the number of states with a given particle number P . Notice that SS is un-

bounded from above with increasing Pmax for a given N , reflecting that the commutation

relation allows infinitely many particles in a finite space.

20
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Due to the Pauli exclusion principle, the number of fermion Fock states SF is:

SF (N,Pmax) ≡
Pmax∑
P=0

σF (N,P ) (3.3)

σF (N,P ) ≡
(

2N

P

)
(3.4)

where the highest possible particle number is 2N . This occurs when both fermions and

antifermions occupy every lattice point.

3.2 Scalar Fock State Labelling

Increasing the particle number significantly limits performance, so we consider mainly

Fock states with few particles. It is therefore beneficial to adopt a shorthand notation:

|i〉S = |e0, e1, . . . , eP−1〉N ∝ â†e0 â
†
e1 . . . â

†
eP−1
|0〉 (3.5)

e0 ≤ e1 ≤ . . . ≤ eP−1

where the {en} are the momentum numbers of the P particles in state iS .

3.2.1 Stepping Algorithm

In order to calculate interaction-Hamiltonians, it is key to step efficiently between the

Fock states. The algorithm is required to:

• return each state with P ≤ Pmax particles.

• return each state only once.

• terminate after exhausting all viable states.

Although any Fock state ordering would work, it is sensible to step states by increasing

particle numbers, starting with no particles. Listing 3.1 shows an algorithm meeting all

these requirements (continued overleaf):

1 define index, i = 0

2 define empty ladder operator list, e = []

3 WHILE ( i < number of states )

4 PRINT list e

5 define element index, n = last index of e

6 WHILE ( index valid, n >= 0 )
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7 increment element n, e[n]++

8 IF ( element reached max, e[n] == N )

9 reset element n, e[n] = 0

10 decrement index, n−−
11 ELSE

12 BREAK out of innermost while loop

13 IF( exhausted all elements, n < 0 )

14 reset all elements, e = {0}
15 append another 0 to list, e[last+1] = 0

16 increment index, i++

Listing 3.1: Pseudocode for the scalar Fock state stepping algorithm. This prints out

all Fock states in the shorthand notation. See table below for an illustrative example.

This is much easier to understand by example, as presented in Table 3.1:

Scalar index
Shorthand

notation

Ladder

operators

Particle

number

Momentum

number

0 |〉3 |0〉 0 0

1 |0〉3 â†0|0〉 1 0

2 |1〉3 â†1|0〉 1 1

3 |2〉3 â†2|0〉 1 2

4 |0, 0〉3 (â†0)2|0〉 2 0

5 |0, 1〉3 â†0â
†
1|0〉 2 1

6 |0, 2〉3 â†0â
†
2|0〉 2 2

7 |1, 1〉3 (â†1)2|0〉 2 2

8 |1, 2〉3 â†1â
†
2|0〉 2 0

9 |2, 2〉3 (â†2)2|0〉 2 1

10 |0, 0, 0〉3 (â†0)3|0〉 3 0

11 |0, 0, 1〉3 (â†0)2â†1|0〉 3 1

12 |0, 0, 2〉3 (â†0)2â†2|0〉 3 2

13 |0, 1, 1〉3 â†0(â†1)2|0〉 3 2

14 |0, 1, 2〉3 â†0â
†
1â
†
2|0〉 3 0

15 |0, 2, 2〉3 â†0(â†2)2|0〉 3 1

16 |1, 1, 1〉3 (â†1)3|0〉 3 0

17 |1, 1, 2〉3 (â†1)2â†2|0〉 3 1

18 |1, 2, 2〉3 â†1(â†2)2|0〉 3 2

19 |2, 2, 2〉3 (â†2)3|0〉 3 0

Table 3.1: Scalar Fock state stepping. States returned for N = 3 and Pmax = 3.
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3.2.2 Going Back Again: State Index from Ladder Operators

In efficiently calculating interaction Hamiltonians, it will be necessary to find the state

index purely from knowing its ladder operators (the ek’s). By inspection, the following

formula was found:

iS ({ek}) = SS(N,P − 1) +
P−1∑
k=0

(ep−e(k−1)−1)∑
m=0

σS(N −m− e(k−1), P − 1− k) (3.6)

where e−1 ≡ 0. This has been verified for all iS using (Pmax, N)-combinations:

Pmax N

0 0 → 109

1 0 → 10000

2 0 → 1000

3 0 → 200

4 0 → 100

5 0 → 60

6 0 → 40

7 → 9 0 → 20

Table 3.2: Scalar Index Verification. The scalar index iS has been verified for
all the listed combinations of Pmax and N . The expression is untested outside these
bounds due to calculation time, but is likely to be valid. Our investigations will not

exceed these limits.

3.3 Fermion Fock State Labelling

Stepping through fermion Fock states with increasing total particle number is similar

to, but more complicated than, scalars. This is due to the mixing of ladder operators

b̂†k and ĉ†l . Fortunately, the Pauli exclusion principle simplifies the problem by allowing

at most one of each ladder operator. We adopt the shorthand notation:

|i〉F = |f0, f1, . . . , fPb−1 ; g0, g1, . . . , gPc−1〉N ∝ b̂†f0
b̂†f1

. . . b̂†fPb−1
· ĉ†g0

ĉ†g1
. . . ĉ†gPc−1

|0〉
(3.7)

f0 < f1 < . . . < fPb−1 , g0 < g1 < . . . < gPc−1

where Pb and Pc are number of fermion and antifermions, respectively: P = Pb + Pc.



Chapter 3. Implementation 24

3.3.1 Stepping Algorithm

A stepping algorithm must meet the same requirements as for scalars (see Section 3.2.1).

We can also choose to require that for a given total particle number P , we order states

by increasing antifermion number Pc, i.e. starting with only fermions, then swapping

each fermion with an antifermion. Listing 3.2 shows an algorithm meeting all the above:

1 define index, i = 0

2 define empty fermion and antifermion ladder operator lists, f = [] and g = []

3 define total particle number, P = 0 and fermion particle number, P b = 0

4 WHILE ( i < number of states )

5 PRINT state (f ; g)

6 define fermion element index, n = last index of f

7 WHILE ( index valid, n >= 0 )

8 increment element n, f[n]++

9 IF ( n == last index element reached max, f[n] == f[n+1] where f[P b] = N )

10 reset element n, f[n] = f[n−1] + 1

11 decrement index, n−−
12 ELSE

13 BREAK out of innermost while loop

14 IF( exhausted all fermion elements, n < 0 )

15 define antifermion element index, m = last index of g

16 WHILE ( index valid, m >= 0 )

17 increment element m, g[m]++

18 IF ( m == last index element reached max, g[m] == g[m+1] where g[P−P b] = N )

19 reset element m, g[m] = g[m−1]+1

20 decrement index, m−−
21 ELSE

22 BREAK out of innermost while loop

23 IF( exhausted all antifermion elements, m < 0 )

24 decrement P b−−
25 IF ( P b invalid , P b < 0 )

26 increment P++

27 IF ( lattice spaces available, P <= 2N)

28 set fermion number P b = minimum of P and N

29 ELSE

30 terminate as all states are exhausted

31 reset f = [0,1,2..., P b−1] and g = [0,1,...,P−P b−1]

32 increment index, i++

Listing 3.2: Pseudocode for the fermion Fock state stepping algorithm. This prints out

all Fock states in the shorthand notation. See table below for an illustrative example.
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Example values are shown in Table 3.3:

Fermion

index

Shorthand

notation

Ladder

ops.
P Pb Pc

Mom.

number

0 |; 〉2 |0〉 0 0 0 0

1 |0; 〉2 b̂†0|0〉 1 1 0 0

2 |1; 〉2 b̂†1|0〉 1 1 0 1

3 |; 0〉2 ĉ†0|0〉 1 0 1 0

4 |; 1〉2 ĉ†1|0〉 1 0 1 1

5 |0, 1; 〉2 b̂†0b̂
†
1|0〉 2 2 0 1

6 |0; 0〉2 b̂†0ĉ
†
0|0〉 2 1 1 0

7 |1; 0〉2 b̂†1ĉ
†
0|0〉 2 1 1 1

8 |0; 1〉2 b̂†0ĉ
†
1|0〉 2 1 1 1

9 |1; 1〉2 b̂†1ĉ
†
1|0〉 2 1 1 0

10 |; 0, 1〉2 ĉ†0ĉ
†
1|0〉 2 0 2 1

11 |0, 1; 0〉2 b̂†0b̂
†
1ĉ
†
0|0〉 3 2 1 0

12 |0, 1; 0〉2 b̂†0b̂
†
1ĉ
†
1|0〉 3 2 1 1

13 |0; 0, 1〉2 b̂†0ĉ
†
0ĉ
†
1|0〉 3 1 2 0

14 |1; 0, 1〉2 b̂†1ĉ
†
0ĉ
†
1|0〉 3 1 2 1

15 |0, 1; 0, 1〉2 b̂†0b̂
†
1ĉ
†
0ĉ
†
1|0〉 4 2 2 0

Table 3.3: Fermion Fock state stepping. Shows states for a system with N = 2
and Pmax = 4 (all states). P , Pb and Pc denote total particle number, fermion number

and antifermion number, respectively.

3.3.2 Going Back Again: Fermion Edition

As with scalars, it is necessary to find the fermion state index based on its ladder

operators. The following expression was found after lengthy iterative inspection:

iF ({fk} , {gk}) = SF (N,P − 1) +
P∑

k=Pb+1

σFC(N, k)σFC(N,P − k)

+σFC(N,Pc)

Pb−1∑
k=0

(fk−f(k−1)−1)∑
m=0

σFC
(
N −m− f(k−1) − 2, Pb − 1− k

)
+

Pc−1∑
k=0

(gk−g(k−1)−1)∑
m=0

σFC
(
N −m− g(k−1) − 2, Pc − 1− k

)
(3.8)
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where f−1 = g−1 ≡ 0 and σFC is the number of states with P particles for a single

fermion component (either fermions or antifermions):

σFC(N,P ) =

(
N

P

)
(3.9)

as well as Pb, Pc being the numbers of particles and antiparticles (P = Pb + Pc). This

has been verified for all iF using (Pmax, N)-combinations:

Pmax N

0 0 → 108

1 0 → 4000

2 0 → 400

3 0 → 100

4 → 5 0 → 40

6 0 → 20

7 → 12 0 → 10

2N (all) 0 → 9

Table 3.4: Fermion Index Verification. The fermion index iF has been verified
for all the listed combinations of Pmax and N . Our investigations will not go beyond
these limits, but it is seen as likely to hold in general. The implementation, not the
mathematical expression, was found to fail at high Pmax due to the 4 byte integer limit.

3.4 Integrators Investigated

Two integrators were implemented and investigated:

• Second order integrator: Eqn (2.34). First order first step: Eqn (2.37) with K = 1.

• Arbitrary even-order K integrator: Eqn (2.38). Kth order first step: Eqn (2.37).

The second order integrator and the (K = 2)-integrator differ only by their first step,

allowing us to probe its importance.

3.5 Programming Language and Overall Code Structure

3.5.1 Java: An Ideal Choice

Choice of programming language was motivated by:
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• Visualisation - Access to interactive graphics frameworks

• Outreach - Code extendability and distributability

• Correctness - Access to unit testing frameworks

• Performance - Speed of heavy realtime calculations

Java provides powerful graphics frameworks and standardised unit testing, as well as

being distributable by construction. Although slower than C++1 or Fortran, Java is

much faster than most high level languages2, and since performance is not the highest

priority it is an acceptable choice.

The aim of the code base was to provide both a graphical user interface and an easy-

to-use Computational QFT-package. This was achieved by applying an object-oriented

software design approach, making it easy to abstract away details of QFT and intuitively

manipulate objects like quantum states.

Further details of the extensive code structure are deemed irrelevant, but can be found

in Appendix B.1. A graphical user interface guide is included in Appendix B.2.

1According to Java/C++ comparison by The Computer Language Benchmark Game [3]
2According to Java/Python comparison by The Computer Language Benchmark Game [4]
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Results

To test whether the implementation of the developed theory is consistent with conven-

tional QFT, it is necessary to compare them quantitatively. In addition, many interesting

qualitative observations can be made using the graphical user interface.

The quantitative comparison has two parts: free- and interacting theory. The free theory

has a simple analytical solution, allowing us to measure the accuracy of the integrators.

Building on this, we take advantage of an analytical interacting theory solution to test

the validity of the Hamiltonian calculations.

4.1 Free Theory: Integrator Error Analysis

Time evolution in free theory is simply a phase rotation of all Fock state coefficients

proportional to their energy:

ci(t)|i〉 = e−iEitci(0)|i〉 (4.1)

This needs only a single calculation and is approximated to be errorless. Calculating

the same coefficients with a numerical integrator using different time intervals ∆t allows

us to verify the order of the integrator as well as its symplecticity.

We need only consider either scalars or fermions since they share integrator implemen-

tation (see Appendix B.1.2). Scalars are chosen for their simplicity and performance1.

1All the below tests were also applied to fermions, with identical results, as a consistency check. They
will not be reproduced here.

28
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4.1.1 Second Order Integrator

The second order integrator, Eqn (2.34), was quantitatively compared to the analytical

solution. Plots of relative coefficient error against both time interval (Figure 4.1) and

total integration time (Figure 4.2) were produced to test the order of the integrator,

as well as an energy against time plot (Figure 4.3) to test for symplecticity (energy

conservation). All tests used a single particle wave packet for integration, and the

relative error was averaged over all coefficients.

Figure 4.1: Second order integrator, relative error vs. time step (log-log):
Shown for final (total integration) times of 10, 0.1 and 0.001 (arbitrary inverse mass
unit). Trendlines are fitted in the region where truncation errors dominate, with slopes

(2.006± 0.002) ≈ 2 indicating that the integrator is second order.

A linear regression of the trend lines in Figure 4.1 gives a slope and hence an integrator

order of (2.0057 ± 0.0022), as expected. The error plateaus and rises again at small

time steps due to the relative importance of rounding errors, brought about by the real

number binary representation2.

The trendlines in Figure 4.2 linearly regressed give a slope of 1.0007 ± 0.0009. This is

expected for any integration order since we effectively consider the time integral over

multiple constant final time calculations ∝ O(tfinal).

Figure 4.3 shows oscillation of energy over time. Energy is conserved on average, veri-

fying the second order integrator as symplectic.

2Number representation used: Java primitive double (4 bytes).
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Figure 4.2: Second order integrator, relative error vs. final time (log-log):
Shown for time steps of 10−3, 10−5 and 10−7 (arbitrary inverse mass unit). The fitted
trendlines have slopes of (1.0007 ± 0.0009) ≈ 1. Plateauing is an artefact of rounding

errors and binary number representations.

Figure 4.3: Second order integrator, energy vs. time: This plot shows the
relative energy error over time using 1000 data points. It shows oscillation of the
energy, but no divergence, clearly indicating conservation of energy (on average) and
therefore that the integrator is symplectic. It is interesting to note that the error is

always positive.
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4.1.2 Arbitrary Even-Order Integrator

The arbitrary even-order integrator, Eqn (2.38), was subjected to the same tests as in

Section 4.1.1. For each test, a range of integrator orders K were used. Note that the

(K = 2)-integrator and the second order integrator are equivalent apart from their first

step integration order (first and second order).

Figure 4.4: Arbitrary even-order integrator, relative error vs. time step
(log-log): Shown for integration orders K = 2, 4, 6, 12. Trendlines are fitted in the
region where truncation errors dominate, with slopes (2.00002± 0.00001) ≈ 2, (3.999±
0.002) ≈ 4 and (5.999± 0.005) ≈ 6 for K = 2, 4, 6, respectively. Note that for K = 12
no truncation error can be seen due to rounding errors. We observe that the highest

accuracy calculation was done using a single calculation (K = 12,∆t = 0.1).

Figure 4.4 verifies that the integrator is indeed of order K in the truncation error domi-

nated region. Interestingly, we observe that the highest accuracy calculation is also one

of the fastest (K = 12, one time step). This suggests a new, vastly quicker method

of integrating, using a single step while increasing the integration order3, rather than

increasing the number of time steps.

Figure 4.5 shows clearly the integrator error linearly diverges with time, independent

of the integrator order K. However, the error constant decreases as O(constK) with

increasing K, whereas the number of calculations increased by O(K), resulting in a net

performance gain with higher K.

We see from Figure 4.6 that energy is conserved on average, with an oscillating relative

error. Comparing the error amplitude to Figure 4.3 (∼ 10−10 and ∼ 10−14, respectively)

3Subject to constraint that all phasors rotate by less than ∼ 2π in that time step.
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Figure 4.5: Arbitrary even-order integrator, relative error vs. final time
(log-log): Shown for integration orders K = 2, 4, 6, 8, 10, 12, 24. Trendlines are fitted
in the region where truncation errors dominate, all with slope (0.9992 ± 0.0002) ≈ 1.
Higher order integrators are seen to Orders K=2,4 flatten at error ≈ 1 because phasors
can only at most point in opposite directions. In this specific case the integration order

is irrelevant for K > 10 where rounding errors dominate.

Figure 4.6: Arbitrary even-order order integrator, energy vs. time (free
theory): Shown for integration orders K = 2, 4, 6, 12, each with 700 data points.
Integration orders K = 4, 6, 12 have all converged onto a single line. All orders have a

conserved average, but oscillate with a linearly diverging amplitude.



Chapter 4. Results 33

indicates that using a higher order first step has a significant effect on errors (for K = 2).

Although second order integrators are symplectic, both K = 2 and K > 2 shows a

linearly diverges oscillation amplitude caused by accumulative rounding errors. Orders

K > 2 are symplectic in free theory, but not so in interacting theory, as shown below.

4.2 Interacting Theory: Quantitative Comparison

to Analytical Solutions

4.2.1 Conservation of Energy and Symplecticity

So far the integrators have only been tested for free theory. In interacting theory, due

to the lack of an analytical solution it is not possible to compare Fock state coefficients.

However, energy should still be conserved and can be calculated without knowledge of

eigenstates.

Figure 4.7: Multiple integrators in interacting theory, energy vs. time:
Shown for the second order integrator and even-order integrators K = 2, > 2, each with
1000 data points. A highly interacting theory was chosen, with λ(2) = λ(3) = λ(4) = 0.1.
The linear divergence of K > 2 shows clearly that it is not symplectic. K = 2 performs

better than the second order integrator due to a higher order first step.

Figure 4.7 shows that second order integrators conserve energy and are symplectic in a

highly interacting theory. Notice the significance of the first step integration order for

the error oscillation amplitude. The divergence of the higher order (K > 2)-integrators

clearly shows that they are not symplectic.
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Based on this comparison, the arbitrary even-order integrator with (K = 2) was chosen

for use in the graphical user interface, as it is the most accurate symplectic integrator.

4.2.2 φ2-theory and Effective Mass Comparisons

As discussed in Section 2.4.2, a quantitative test of interacting theory is possible in scalar

φ2-theory by finding the two lowest eigenenergies and identifying their difference as an

effective mass. An analytical prediction can be made and the error can be measured.

The prediction assumes access to all particle numbers. The measured effective mass

should therefore tend to the predicted mass with increasing Pmax.

Figure 4.8: Relative measured-to-predicted effective mass error vs. max
particle number (log-log): This plot shows that the error in the measured effective
mass goes down with increasing particle number considered, as expected. The relative
error is shown for 1 ≤ N ≤ 4, where N = 1 is less accurate (by a factor ∼ 500) due
to the lack of spatial derivatives in the calculation. The error flattens at large particle
numbers due to accumulation of rounding errors. The truncation error dominated

region has a slope (−1.991± 0.001) ≈ −2, based on the trend line for N = 1.

Using a very small error tolerance level in the Shifted Power Iteration Method to avoid ac-

cumulation of rounding errors, a comparison of measured and predicted effective masses

were made for increasing Pmax. This was repeated for 1 ≤ N ≤ 4, limited by calcu-

lation time, as shown in Figure 4.8. For N = 1, the error is significantly higher due

to the lack of spatial derivatives in the calculation. However, for all N the error goes

as: error ∝ (Pmax)−2, in the truncation error dominated region. The plot also suggests

that at least 3 particles should be considered.
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This effectively verifies that the theory developed converges to conventional QFT in the

limit Pmax →∞.

4.3 Qualitative Observations

Using the graphical user interface, many interesting phenomena were observed. This

section includes visual descriptions of some of them (Figures 4.9 - 4.14).

Interesting points noted:

• Throughout all particle propagation and interactions, total momentum was seen

to be conserved.

• As wave packets gain momentum, they stop and then start moving backwards

(aliasing).

• In fermion interactions (ψ̄ψ) the fermion number (Nfermions − Nantifermions) is

conserved.

• In even-power interactions, φeven or ψeven there is no exchange of probability

between odd and even particle numbers.

• The field value4 vanishes when there are no non-zero coefficients in two consecutive

particle numbers.

• When using a negative scalar φ2-term and a positive φ4-term with appropriate

couplings, a single particle appears to lose speed (not momentum), suggesting it

has acquired additional mass. However, no vacuum expectation value was seen,

because of the two previous points.

All the above points, as well as all figures, agree with or are allowed by the theory, but

some are not readily derived from the equations, e.g. 2-particle collision outcomes. It is

unclear whether the last point has any relation to the Higgs-mechanism.

4See Figure B.3 (appendix) for an example of how field values were implemented.
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Figure 4.9: Freely propagating single particle: Height represents probability
(Fock state coefficient mod squared) and colour represents complex phase. The gaussian
momentum wave packet is stationary, whereas the gaussian position wave packet is
moving right at a constant speed (periodic boundary). The vacuum remains empty.
When the wave packet momentum is past half max (on right side), the particle moves
left; an artefact of sampling in discrete periodic space (aliasing). Fermions behave

identically. [N = 64, Pmax = 1,∆x = 0.1,m = 1]

Figure 4.10: Two non-interacting particles passing (left: momentum space,
right: position space): Colour intensity represents probability. The 2D-gaussian mo-
mentum wave packet represents two particles of normally distributed momenta. Notice
also the diagonal symmetry, indicating scalar indistinguishability. In position space,
the wave packets move diagonally towards each other and pass through, from lack of

interactions. [N = 32, Pmax = 2,∆x = 0.1,m = 1]
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Figure 4.11: Interacting φ3-theory ground state (vacuum): Calculating the
ground state of the an interacting theory gives contributions to all stationary particles
available as well as some minor contributions from two oppositely moving particles
(not visible on 2-particle momentum plot), giving a zero net momentum. Observe
how definite knowledge of 1-particle momentum (= 0) implies no knowledge of its
position, by the Heisenberg uncertainty principle. Although particles are interacting,
amplitudes are fixed since the system is in an eigenstate. The energy is negative,
reflecting the amount of energy it would take to make a no-particle vacuum (2.6 GeV).
Please note that the scale is different on each plot, as indicated in their upper right

corners. [N = 32, Pmax = 2,∆x = 0.1,m = 1, λ(3) = 1.5]
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Figure 4.12: Interacting φ3-theory 2-particle collision and “virtual particle”
creation: The upper plot shows two particles at different positions and no single
particle. The middle plots shows the two particles interacting and a single “virtual”
particle created at the same position. The lower plot shows a small probability left
for a single particle having been created. Notice how energy is conserved. Please also
note that the scales change, albeit not significantly. [N = 64, Pmax = 2,∆x = 1.3,m =

1λ(3) = 0.23]
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Figure 4.13: Interacting φ4-theory 2-particle collision and momentum redis-
tribution: The three plots show a 4-vertex interaction (φ4) collision of two particles
(time increasing from left to right). The collision leads to a redistribution of particle
momenta. No significant probability was observed for other particle numbers. Note

that the scale changes. [N = 32, Pmax = 2,∆x = 1.3,m = 1, λ(4) = 1.5]

Figure 4.14: Fermion near-vacuum ψ̄ψ-interaction: The above plot shows that
starting from a 0-particle vacuum only fermion-antifermion pairs can be made, due
to fermion-number conservation. Only states of zero net momentum have non-zero
probability. Since the evaluation stops at 3 particles, no multiple fermion-antifermion

pairs are considered. [N = 32, Pmax = 3,∆x = 0.81,m = 1, λ(2) = 0.72]
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Discussion

The simplified version of QFT developed is not, and is not aimed to be, an accurate

description of the Universe. However, it was assumed to retain many of the important

features of conventional QFT, while also being calculable in realtime by current com-

puters. The following sections discuss the successes and failings of the theory developed

with regards to this.

5.1 Theory: Validity of Approximation Assumptions

The quantum field theory developed was found to be mathematically consistent, at least

at the level of our investigations. Its relevance to the Universe did, however, rest upon

a number of assumptions, which we are now in a position to check the validity of.

• 1-dimensional: 1D does indeed contain most 3D physics, allowing us to see par-

ticle propagation (Figure 4.9) and two-particle collisions in their zero-momentum

frame (Figures 4.10 and 4.12). Most equations retain their general form. However,

it does not allow particle scattering and it constricts fermions to only particles

and antiparticles with no spin-degree of freedom. In addition, some quantities

change dimensions, including interaction couplings. This has consequences for the

renormalisability of interaction terms, leaving all 1D self-interactions renormalis-

able as opposed to in 3D. This does not, however, stop us from only considering

interactions relevant to 3D.

• Discreteness and periodicity: Although some quantities and equations changed,

e.g. Eqn (2.14), they all tend to the continuous theory in the limit N → ∞. Dis-

cretisation is only apparent at very small N , as seen in Figure 4.8, and is not a

40
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significant source of errors if kept at values ∼ 10 → 100. However, discreteness

and periodicity introduces aliasing; a major difference to conventional QFT and

only avoided at very low momenta1: pk << N∆p.

• Particle number cut-off : According to Figure 4.8, accuracy improves with

number of particles considered, but less so after a certain number (Pmax ∼ 3).

Some interactions require a minimum of particles considered to contribute, but

this is usually low. Larger interaction couplings require higher particle numbers

to be considered, implying that for this assumption to hold interactions must be

comparatively weak.

The theory developed accomplishes what it was designed for, but only provided it oper-

ates within the boundaries specified above.

5.2 Implementation Accuracy and Performance

5.2.1 Integrators

From the comparison of integrators, we find that choice of integrator depends on the

goal of the calculation. For high accuracy, few steps with a high order non-symplectic

integrator is by far the fastest, as seen in Figure 4.4. This applies to numerical virtual

experiments where accuracy is important. Conversely, for long integration times where

accuracy is not prioritised, as for the graphical user interface, a second order integrator

performs better due to its symplecticity.

5.2.2 Performance

Several crucial optimisations were made, including avoidance of interaction Hamiltonian

zero-elements and application of momentum conservation. This reduced the number of

calculations sufficiently to allow interesting multi-particle phenomena to be observed,

as in Figure 4.12. Unfortunately, the performance decays exponentially with particle

number, a severely limiting factor of this simulation method. However, some progress

can be made by parallelising the calculation of interaction Hamiltonians and supplying

more computing power, as well as pre-rendering simulations rather than displaying them

realtime.

1Or equivalently at high N .
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5.2.3 Qualities as a Visualisation and Teaching Tool

The end goal of the research was to develop a tool for visualising QFT. This was achieved

to a satisfactory degree2 through the successful creation of the interactive graphical user

interface. It is the author’s sincere hope that the tools developed will be used by many

for the purposes of understanding QFT.

5.3 Possible Further Investigations

Interesting extensions building on this research includes:

• Mixed fields: Including complex fields (two-component scalar) and scalar-fermion

interaction (Higgs/Yukawa-type) in an attempt to visualise the Higgs field and -

mechanism. This could follow a generalisation of the approach used to implement

two-component fermions.

• Gauge fields: By applying a similar approach as to scalars and fermions, gauge

fields could be simulated. Optimisations might include an appropriate choice of

gauge. If successful, this can be coupled to fermions to demonstrate QED.

2Based on feedback from a selection of students.
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Conclusion

In conclusion, a 1D discretised quantum field theory was successfully developed and

implemented computationally as an interactive graphical user interface. This was ac-

complished by rederiving key QFT equations for both scalars and fermions, as well as

Schrödinger equation integrators for numerical integration. To ensure high performance,

several optimisations were found and implemented, including avoiding calculations of

zero-elements in interaction Hamiltonians and applying momentum conservation. This

was implemented in Java code and tested extensively both by qualitative means through

virtual experiments in the graphical user interface, as well as quantitatively through inte-

grator error analyses and a numerical-analytical comparison in interacting theory. This

comparison, of measured and predicted effective masses in interactive φ2-theory using

an iterative eigenvalue method, effectively verified the implementation.

Although severely limited by computational power, the graphical user interface provides

a simple and intuitive visualisation tool for QFT, presenting an alternative view to the

conventional Feynman diagrams. There are several possible extensions to this research,

perhaps most intriguingly visualising the Higgs mechanism as it actually appears.
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Further Proofs and Derivations

Appendices are considered supplemental to the report and are not offered for exam-

ination as part of the Part III project. They are aimed at future students extending

this work and other readers interested in a greater level of detail.

This appendix contains proofs and derivations which are not considered crucial, but

which have worked through during research and might prove helpful to the reader.

A.1 Discretised Energy Periodicity Invariance

Momentum periodicity implies:

pk → pk+N = pk +N∆p

Subsituting this into the momentum mode energy:

ωk →

√
m2 +

4

∆x2
sin2

(
(pk +N∆p)∆x

2

)

→

√
m2 +

4

∆x2
sin2

(
pk∆x

2
+ π

)

→

√
m2 +

4

∆x2
sin2

(
pk∆x

2

)
= ωk

It is indeed invariant

44



Appendix A. Further Proofs and Derivations 45

A.2 Discretised Energy Continuous Limit

In the limit that the lattice spacing tends to zero, the momentum mode energy becomes:

lim
∆x→0

ωk →

√√√√m2 +
4

∆x2

(
pk∆x

2
− 1

3!

(
pk∆x

2

)3

+ ...

)2

→

√
m2 +

4

∆x2

(
pk∆x

2

)2

→
√
m2 + p2

k

which is the correct continuous limit.

A.3 Ladder Operator Commutation Relations

Assuming the ladder operator commutation relation, Eqn (2.18):

[φ̂n, π̂m] =
∑
k,l=0

−iωl∆p2

2π2ωk2π2ωl

(
[âk, âl]e

... + [â†k, âl]e
ipkxn−iplxm − [âk, â

†
l ]e
−ipkxn+iplxm − [â†k, â

†
l ]e

...
)

=
∑
k,l=0

−iωl
L22ωk2ωl

(
−2Lωkδkle

ipkxn−iplxm − 2Lωkδkle
−ipkxn+iplxm

)
= i

∑
k,l=0

ωl
2L

(
eipk(xn−xm) + e−ipk(xn−xm)

)
= i

2Nδnm
2L

= i
δnm
∆x

which is consistent.

A.4 Free Hamiltonian in terms of Ladder Operators

Expand Hamiltonian:

Ĥ0 = ∆x

N−1∑
n=0

Ĥn

= ∆x

N−1∑
n=0

1

2

π̂2
n +

 φ̂n+ 1
2
− φ̂n− 1

2

∆x

2

+m2φ̂2
n


=

∆x

2

N−1∑
n=0

π̂2
n +

1

2∆x

N−1∑
n=0

(
φ̂n+ 1

2
− φ̂n− 1

2

)2
+

∆xm2

2

N−1∑
n=0

φ̂2
n
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Make all terms into a momentum sum:

N−1∑
n=0

π̂2
n =

1

L2

N−1∑
n,k,l=0

(
−i
2

)2 (
âke

ipkxn − â†ke
−ipkxn

)(
âle

iplxn − â†l e
−iplxn

)

= − 1

4L2

N−1∑
k,l=0

(
âkâlNδ−k,l − â†kâlNδkl − âkâ

†
lNδkl + â†kâ

†
lNδ−k,l

)

= − 1

4L∆x

N−1∑
k=0

(
âkâ−k − â†kâk − âkâ

†
k + â†kâ

†
−k

)

N−1∑
n=0

φ̂2
n =

1

L2

N−1∑
n,k,l=0

1

4ωkωl

(
âke

ipkxn + â†ke
−ipkxn

)(
âle

iplxn + â†l e
−iplxn

)

=
1

L2

N−1∑
k,l=0

1

4ωkωl

(
âkâlNδ−k,l + â†kâlNδkl + âkâ

†
lNδkl + â†kâ

†
lNδ−k,l

)

=
1

L∆x

N−1∑
k=0

1

4ω2
k

(
âkâ−k + â†kâk + âkâ

†
k + â†kâ

†
−k

)

N−1∑
n=0

(
φ̂n+ 1

2
− φ̂n− 1

2

)2
=

1

L2

N−1∑
n,k,l=0

1

4ωkωl
(âke

ipkxn(e
ipk∆x

2 − e
−ipk∆x

2 )

+â†ke
−ipkxn(e

−ipk∆x

2 − e
ipk∆x

2 ))(âle
iplxn(e

ipl∆x

2 − e
−ipl∆x

2 )

+â†l e
−iplxn(e

−ipl∆x

2 − e
ipl∆x

2 ))

=
1

L2

N−1∑
n,k,l=0

1

4ωkωl

(
2i sin

(
pk∆x

2

)
âke

ipkxn − 2i sin

(
pk∆x

2

)
â†ke
−ipkxn

)

·
(

2i sin

(
pl∆x

2

)
âle

iplxn − 2i sin

(
pl∆x

2

)
â†l e
−iplxn

)

=
1

L∆x

N−1∑
k=0

sin2
(
pk∆x

2

)
ω2
k

(
âkâ−k + â†kâk + âkâ

†
k + â†kâ

†
−k

)
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Substitute all terms into Hamiltonian again to find it in terms of ladder operators:

Ĥ0 = −∆x

2

1

4L∆x

N−1∑
k=0

(
âkâ−k − â†kâk − âkâ

†
k + â†kâ

†
−k

)

+
1

2∆x

1

L∆x

N−1∑
k=0

sin2
(
pk∆x

2

)
ωkωl

(
âkâ−k + â†kâk + âkâ

†
k + â†kâ

†
−k

)
+

∆xm2

2

1

L∆x

N−1∑
k=0

1

4ωkωl

(
âkâ−k + â†kâk + âkâ

†
k + â†kâ

†
−k

)
=

1

2L

N−1∑
k=0

1

4ω2
k

(

(
ω2
k +

4

∆x2
sin2

(
pk∆x

2

)
+m2

)(
â†kâk + âkâ

†
k

)
+

(
−ω2

k +
4

∆x2
sin2

(
pk∆x

2

)
+m2

)(
âkâ−k + â†kâ

†
−k

)
)

=
1

2L

N−1∑
k=0

1

4ω2
k

2ω2
k

(
â†kâk + âkâ

†
k

)
=

1

4L

N−1∑
k=0

(
2â†kâk + 2ωkL

)
=

N−1∑
k=0

∆p

2π2ωk
ωkâ

†
kâk + Evac , Evac =

N−1∑
k=0

ωk
2

A.5 Fock State Energies

The commutator or the ladder operator the Hamiltonian is:

[Ĥ0, â
†
k] = ωkâ

†
k → Ĥ0â

†
k = â†k(ωk + Ĥ0)

The energy becomes:

Ei = 〈i|Ĥ0|i〉 = 〈i|Ĥ0

N−1∏
k=0

(
â†k

)lk√
(2ωkL)lk lk!

|0〉

= 〈i|

(
N−1∏
k=0

1√
(2ωkL)lk lk!

)
â†0(ω0 + Ĥ0)(â†0)l0−1(â†1)l1 . . . |0〉

. . . [repeat for all â†0] . . .

= 〈i|

(
N−1∏
k=0

1√
(2ωkL)lk lk!

)
(â†0)l0(l0ω0 + Ĥ0)(â†1)l1 . . . |0〉

. . . [repeat for all â†k] . . .

= 〈i|

(
N−1∏
k=0

1√
(2ωkL)lk lk!

)
(â†0)l0

N−1∏
k=0

(â†k)
lk(

N−1∑
k

lkωk + Evac)|0〉

= 〈i|i〉(
N−1∑
k

lkωk + Evac) =
N−1∑
k

lkωk + Evac
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A.6 φ3 Interaction Term in Symmetrised Form

The entries in hkl, as seen in Eqn (2.44) are split into 4 parts, defined by k 6= l 6= 0 to

give:

ĥ00 =
1

8L2m3

(
(â0)3 +

(
â†0

)3
+ 3â†0 (â0)2 + 3

(
â†0

)2
â0

)
+

1

4Lm2

(
3â0 + 3â†0

)

ĥk0 =
1

8L2mω2
k

(
â0âkâ−k + â†0âkâ−k + 2â†kâ0âk + 2â†kâ

†
0âk + â†kâ

†
−kâ0 + â†0â

†
kâ
†
−k

)
+

1

4Lω2
k

(
â0 + â†0

)

ĥkk =
1

8L2ω2kω
2
k

(
(âk)

2 â−2k + â†2k (âk)
2 +

(
â†k

)2
â2k +

(
â†k

)2
â†−2k

)
+

1

8L2mω2
k

(
2â†kâ0âk + 2â†kâ

†
0âk

)
+

1

4Lω2
k

(
â0 + â†0

)

ĥkl =
1

8L2ωkωlω(k+l)

(
âkâlâ(−k−l) + â†(k+l)âlâk + â†kâ

†
l â(k+l) + â†kâ

†
l â
†
(−k−l)

)
+

1

8L2ωkωlω(k−l)

(
â†kâlâ

†
(−k+l) + â†kâlâ(k−l) + â†l â

†
(k−l)âk + â†kâ

†
(−k+l)âl

)

A.7 Ladder Operator Sandwich Identity

Assume:

〈0|ân(â†)n|0〉 = (2EL)nn!

Induction step using the commutator, Eqn (2.18):

〈0|ân+1(â†)n+1|0〉 = 〈0|ân(â†â+ 2EL)(â†)n|0〉

= 〈0|ânâ†â(â†)n|0〉+ 2EL(2EL)nn!

= 〈0|ânâ†(â†â+ 2EL)(â†)n−1|0〉+ 2EL(2EL)nn!

= 〈0|ân(â†)2â(â†)n−1|0〉+ 2× (2EL)n+1n!

. . . [(n+ 1) times] . . .

= 〈0|ân(â†)n+1â|0〉+ (n+ 1)× (2EL)n+1n!

= (2EL)n+1(n+ 1)!

Since by definition 〈0|0〉 = 1 = 0!, this is proved by induction to hold for any n ≥ 0.
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A.8 ξµ Anticommutator Relation

The anticommutators of the ξµ-matrices are:

{ξ0, ξ0} = 2

(
1 0

0 −1

)(
1 0

0 −1

)
= 2I = 2g00I

{ξ0, ξ1} =

(
1 0

0 −1

)(
0 1

−1 0

)
+

(
0 1

−1 0

)(
1 0

0 −1

)

=

(
0 1

1 0

)
+

(
0 −1

−1 0

)
= 0 = 2g01I

{ξ1, ξ0} = {ξ0, ξ1} = 0 = 2g10I

{ξ1, ξ1} = 2

(
0 −1

1 0

)(
0 −1

1 0

)
= −2I = 2g11I

Hence:

{ξµ, ξν} = 2gµνI

A.9 Fermion Momentum Mode Energies

Starting with the Dirac equation:

iξ0ψ̇n + iξ1∆xψn −mψn = 0

iξ0(±iωk)ψn + i
e

ipk∆x

2 − e−
ipk∆x

2

∆x
ξ1ψn −mψn = 0(

∓ωkξ0 − 2

∆x
sin

(
ipk∆x

2

)
ξ1 −m

)
ψn = 0 ∓ωk −m − 2

∆x sin
(
ipk∆x

2

)
2

∆x sin
(
ipk∆x

2

)
±ωk −m

ψn = 0

but since ψn 6= 0: ∣∣∣∣∣∣ ∓ωk −m − 2
∆x sin

(
ipk∆x

2

)
2

∆x sin
(
ipk∆x

2

)
±ωk −m

∣∣∣∣∣∣ = 0

(∓ωk −m)(±ωk −m) +
4

∆x2
sin2

(
ipk∆x

2

)
= 0

ω2
k = m2 +

4

∆x2
sin2

(
ipk∆x

2

)
ωk =

√
m2 +

4

∆x2
sin2

(
ipk∆x

2

)
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A.10 u(pk) and v(pk) as Eigenspinors of the Hamiltonian

By writing:

ρk =
2

∆x
sin

(
ipk∆x

2

)
we apply the Hamiltonian matrix to u(pk) and v(pk) (N =

√
ωk +m):

Hu(pk)e
−ipkxn =

(
m −i∆x

−i∆x −m

)
N

(
1
−ρk
ωk+m

)
e−ipkxn =

(
m −ρk
−ρk −m

)
N

(
1
−ρk
ωk+m

)
e−ipkxn

= N

(
m− ρ2

k
ωk+m

−ρk − mρk
ωk+m

)
e−ipkxn = Nωk

(
1
−ρk
ωk+m

)
e−ipkxn = ωku(pk)e

−ipkxn

Hv(pk)e
ipkxn =

(
m −i∆x

−i∆x −m

)
N

(
ρk

ωk+m

−1

)
eipkxn =

(
m ρk

ρk −m

)
N

(
ρk

ωk+m

−1

)
eipkxn

= N

(
mρk
ωk+m − ρk
m+

ρ2
k

ωk+m

)
eipkxn = −Nωk

(
ρk

ωk+m

−1

)
eipkxn = −ωkv(pk)e

ipkxn

We have shown that the Hamiltonian matrix has to eigenspinors u(pk) and v(pk) with

eigenvalues ωk and −ωk, respectively.

A.11 Dimensional Analysis

Starting with the dimensionless action, [Ŝ] = 0, from its definition1 we get:

[L̂n] = [Ĥn] = 2 (A.1)

having used [∆x] = [dt] = −1.

From the Lagrangian mass term ∝ m2φ̂2
n and [m] = 1 we obtain:

[φ̂n] = 0 (A.2)

which implies that interaction couplings λ(n) satisfy [λ(n)] = 2 for any n. This has the

interesting consequence that any field self-interaction will be renormalisable.

1Definition of 1D discretised action: Ŝ =
∫ ∑

n L̂(xn, t)dt∆x
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Considering the Fourier expansions of φ̂n and π̂n, Eqns (2.16) and (2.17), and remem-

bering [∆p] = [ωk] = 1, gives us:

[âk] = [â†k] = 0 (A.3)

[π̂n] = 1 (A.4)

where ladder operators are dimensionless due to our choice of relativistic normalisation

(would be 1
2 using non-relativistic normalisation).

The fermionic field also loses one mass dimension. This follows from the Dirac mass

term ∝ mψ̂†nξ0ψ̂n in the Lagrangian, since ξµ are dimensionless:

[ψ̂n] =
1

2
(A.5)

From the anticommutator, Eqn (2.76), and the Fourier expansion, Eqn (2.76), we obtain:

[ĉk] = [ĉ†k] = [b̂k] = [b̂†k] = 0 (A.6)

[u(pk)] = [v(pk)] =
1

2
(A.7)

where Eqn (A.7) is consistent with the definition, Eqns (2.72) and (2.73).
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Code

Appendices are considered supplemental to the report and are not offered for exam-

ination as part of the Part III project. They are aimed at future students extending

this work and other readers interested in a greater level of detail.

The code base is too extensive to include in an appendix (∼ 7000 lines of code across

∼ 125 classes). All code, including version history, is available online at:

https://github.com/carlandreaslindstrom/QFT-Simulations/tree/master/QFT%

20Simulations/src/uk/ac/cam/cal56

B.1 Overall Code Structure

Disclaimer: The code base was a joint code project with Charlie Bridge, who was working

on a similar Part III project. The graphics and maths packages were shared, whereas

the author was mainly responsible for the code development.

Encapsulation, loose coupling and code reusability was important in developing the

overall structure. This implies a large package tree with many small loosely coupled

classes. The conceptual similarities of the scalar and fermion theories necessitated a

heavy reliance on inheritance and interfacing.

The code base1 was divided into three main packages:

• Mathematics - mathematical utilities

1All code available online: https://github.com/carlandreaslindstrom/QFT-Simulations/tree/

master/QFT%20Simulations/src/uk/ac/cam/cal56
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• QFT - all quantum field theory content

• Graphics - graphical user interface

where each package depends on those above it. The overall structure is shown as a class

diagram in Figure B.1.

Figure B.1: Class diagram of code base: The most important classes made are
included in this diagram. The three packages are indicated by colours green (mathe-
matics), red (Quantum Field Theory) and yellow (graphics). Every class has one or

more unit test classes.

B.1.1 The Mathematics Package

Java has no complex number standard. Although many implementations exist, a com-

plex number class was developed, optimised specifically for QFT. A Fast Fourier Trans-

form (FFT) was implemented using these complex numbers. Additionally, a combina-

torics class was implemented, specifically optimised for Eqns (3.1)-(3.4).
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B.1.2 The Quantum Field Theory Package

The quantum state is the key class in the QFT-package. All other classes exist to

facilitate its time evolution. The state has a big inheritance tree structure, with the

common features described in the interface State. The graphics package refers to this

interface only, making it possible to use different QFT-packages so long as they all

implement this interface. State is then implemented by an abstract BaseState, which has

all common functions of scalars and fermions, apart from the integrator functionality.

This is encapsulated in the two integrator-states, one integrating by a second order

method, the other via the arbitrary even-order method, both extending BaseState. The

fermion and scalar states then extend these again. These have all the functions specific

to fermions and scalars, and this way we can easy add, say, a gauge field state.

Each State is simulated in a theory. This information is encapsulated in the Interac-

tionHamiltonian class, of which the state has many. These represent interaction terms

in the Hamiltonian, without the interaction coupling, which is contained in the State

to allow realtime weighting of theories. This InteractionHamiltonians are different for

scalars and bosons, but share an interface for easy handling. Each InteractionHamilto-

nian represents an interaction, and this is represented in a enumeration type Interaction.

The States must start with some initial set of coefficients. This set of coefficients is

defined through the WavePacket, which when given information about the shape and

phases of a Gaussian wave packet returns a set of coefficients. This is what allows the

user to define an initial state from clicking on plots in the graphical user interface.

Calculation of InteractionHamiltonians as well as stepping of the State itself relies on be-

ing able to cycle through all the Fock states. This is done via the FockState class, which

is an Iterable class (i.e. you can use it in a for-loop: for(index : fockstate) ...; ). It imple-

ments the stepping algorithms for scalars and fermions in two separate implementations

of an interface.

For further details, please refer to the code itself.

B.1.3 The Graphics Package

The graphics package uses the Java Swing framework, including custom-made interactive

complex number plots for representing quantum states. Further details are not relevant.



Appendix B. Code 55

B.2 A Guide to the Graphical User Interface

The graphical user interface2 presents the user with interactive control over a quantum

state, time evolved by QFT. It is split into a display and a control panel, as shown in

Figure B.2.

Figure B.2: Graphical user interface window (coefficient view): This is the
default layout and options, presented to the user at startup. The display (black back-
ground) has plots representing the quantum state and allows, in addition to the control

panel (grey background), the user to control it.

B.2.1 The Control Panel

The control panel has two basic sections: a compile- and a realtime part. The compile

part allows the user to choose scalars/fermions as well as parameters needed in the

calculation of the Hamiltonian (N,Pmax,∆x,m, λ
(2), λ(3), ...). The “Calculate” button

will calculate the Hamiltonian (a one off calculation) and start simulating the state in a

default wave packet.

The realtime part allows manipulation without recalculation of the Hamiltonian, and

has instant effect on the state as it evolves. This includes the time step ∆t used, the

2The GUI is (at time of writing) an active code project subject to frequent changes, please expect
this guide to be slightly out of date.
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number of steps between printouts (effectively speed) and all the interaction couplings

λ(n). The interaction couplings have an option (checkbox) of being negative.

B.2.2 The Display

The display has two tab views: coefficient view and field view. The most instructive

view is the coefficient view, which shows the probabilities of all Fock states (i.e. particles)

as well as their complex phase. In function plots, height indicates probability, whereas

in the 2D-density plots, probability is indicated by intensity. The upper half shows the

momentum coefficients (what is actually calculated) and the lower half shows the position

coefficients (found by a Fourier transform). Each space has several plots representing

each particle number. The vacuum is represented by a single probability bar plot. The

one-particle states of different momenta p are represented by a function plot. Two-

particle states are shown in a density plot with axes representing the two momenta p1

and p2. Due to the complications of plotting 3D-density plots, all higher particle number

states are added into a single probability plot.

Fermions have more plots, representing not only particles, but also antiparticles. It

should be clear from context which are which.

The plots are interactive, allowing the user to place particle wave packets by clicking on

the plots. Dragging while clicked allows placing the wave packet in the other space as

well. This makes it easy to play and create intuition for what happens to “particles” in

QFT.

The field view shows the average value of the field and its conjugate momentum, as

shown in Figure B.3. These can be real numbers, negative or positive as indicated by

the colour of the plot (see legend for sign convention).

Note on plots: Plots are designed to auto-range based on values, but can be overridden

manually by Alt-clicking and dragging up/down3.

All views have additional information about total energy, total probability (useful to tell

when integrator fails) and time.

3Beware: this might be subject to changes.
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Figure B.3: Graphical user interface window (field view): Shows the quantum
state in field view, i.e. the value of the field and its conjugate momentum, fluctuating

over time.
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