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Abstract

General properties of parity-odd observables are investigated, and used to discuss whether
these observables might be employed to search for new parity-violating processes at the LHC,
and what limitations exist on this method. We find that the only local Lorentz invariant
processes that will produce an asymmetry in these observables are those which violate CP.
The fact that the LHC initial state is an eigenstate of parity ensures that asymmetries in
distributions of parity-odd observables are a signature of parity-violating processes.

Asymmetries in cos θ are discussed as a model-dependent indication of parity-violation
for spin-1 s-channel processes.

The parity-violating “screw model” is examined using a purpose-built event generator.
It produces large asymmetries in a parity-odd observable, and has enough free parameters
for invariant mass distributions to be fixed so that it can be hidden in Standard Model back-
grounds.

1 Introduction

Parity-violation has been known to be a feature of the Standard Model since Lee and Yang’s
proposal of parity-violating weak interactions [1] was experimentally confirmed by Wu et al. in
1957 [2]. Parity reverses the sign of all spatial components of a four-vector, but does not affect
any component of an axial vector. Parity on a process thus reverses the direction of all particle
momenta while leaving spins unchanged; parity is violated if the cross-section for this mirror
process is different to the cross-section for the original process. No standard model interactions
apart from weak interactions have been found to violate parity.

In this project we investigate the possibility of using parity-violation to search for new physics
at the LHC. The parity-violation in the Standard Model is well known and can be very small for
certain final states, so looking for an excess of parity-violation could be an easy and model-
independent indication that something new is going on.

We begin in section 2 with a discussion of parity-odd observables, their use and limitations.
Section 3 discusses asymmetries in cos θ and how they are used as model-dependent indications of
parity-violating interactions. The consequences of a parity-violating model are set out in section
4, and a summary of conclusions drawn is given in section 5.

2 Parity-odd observables

2.1 Possible parity-odd observables and why they work

Parity-odd observables change sign under parity. A number of candidate observables for collider
experiments have been proposed in the literature [1] [3] [4].
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Examples of these are:
p1 − p2

p1 · (p2 × p3)

(p1 × p2) · (p3 − p4)

where p1,p2, ... are three-momenta of relevant final-state particles in the event. These are all par-
ity odd since pi → −pi under parity (i = 1, 2, 3). An asymmetry in any one of these observables
OP is defined as

A =
N(OP > 0)−N(OP < 0)

N(OP > 0) +N(OP < 0)

Parity-violating processes have a squared matrix element of the form

|M |2 = A[Parity-even bit] +B[Parity-odd bit],

where A and B are real coefficients, and A>B. This means that the squared matrix element of the
parity-conjugate process is

|MP |2 = A[Parity-even bit]−B[Parity-odd bit],

and thus the cross-sections are different for the two processes. So the distribution of a parity-odd
observable O(p1,p2, ...) will be asymmetric about zero if the process we’re looking at violates
parity, because:

Probability[O(p1,p2, ...)] ∝ |M |2(p1,p2, ...)

and

Probability[O(−p1,−p2, ...)] ∝ |M |2(−p1,−p2, ...) = |MP |2(p1,p2, ...) 6= |M |2(p1,p2, ...)

So the number of events withO(p1,p2, ...) is not equal to the number of events withO(−p1,−p2, ...)
=−O(p1,p2, ...). By contrast for a parity-conserving process, |MP |2 = |M |2, so the distribution
of O will be symmetric.

Candidate observables should be invariant under other symmetries, for example rotational
symmetry, to ensure that they are only testing for parity violation and not for any other violated
symmetries.

2.2 Lorentz invariance and CP violation

At the LHC the beams are unpolarised and it is not possible to measure particle spins directly; we
measure only particle energy and momentum. The cross-section is measured after a spin-average
has been taken, so the squared matrix element can only depend on particle four-momenta. The
only possible parity-odd term in a Lorentz-invarant matrix element is one involving the four-
dimensional epsilon tensor, εµνρσ. And the term εµνρσp

µ
1p

ν
2p
ρ
3p
σ
4 is odd under time reversal be-

cause one of the momentum components will change sign.
The squared matrix element for a process which contains one of these parity-odd epsilon

terms can be written

|Mif |2 = A[Parity-even bit] +Bεµνρσp
µ
1p

ν
2p
ρ
3p
σ
4 ,

and the squared matrix element for the time-reversed process is

|Mfi|2 = A[Parity-even bit]−Bεµνρσpµ1pν2pρ3pσ4 .
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Figure 1: t-channel scattering process exchanging a W− boson.

Since these are unequal, the process violates time-reversal symmetry T. According to the CPT
theorem [6], any local Lorentz invariant quantum field theory must be invariant under the com-
bined symmetries of C, P and T. This means that T violation is equivalent to CP violation in these
theories, which include the Standard Model and all supersymmetric theories. Therefore the only
local, Lorentz invariant processes that will show an asymmetry in a parity-odd observable at the
LHC (or indeed at any collider which collides unpolarised beams and whose detectors are insen-
sitive to particle spins) will be those that violate CP. To illustrate this point, a process involving
the exchange of a single W or Z boson, though parity violating, will show no asymmetry in any
parity-odd observable. The squared matrix element for a scattering process involving a W boson,
for which the Feynman diagram is shown in figure 1, has the form

|M |2 ∝ (p1 · p4)(p2 · p3)

which is symmetric under parity, so cannot produce an asymmetry in the distribution of a parity-
odd observable.

Measurements of electric dipole moments (for example of the neutron) are putting strong
constraints on the maximum amount of CP violation that theories beyond the Standard Model
(BSM) could have [7][8]. On the other hand a larger amount of CP violation than in the Standard
Model is a desirable feature in a BSM theory because it could help explain the matter-antimatter
asymmetry in the universe, so there is motivation for searching for these models through their CP
violation. In fact, observables suggested in the literature to search for CP violation have exactly
the same triple-product form as some of the parity-odd observables suggested [4][5][9].

2.3 Initial state

The parity operator, P , has two eigenstates, with eigenvalues ±1:

P |φ〉 → + |φ〉

P |ψ〉 → − |ψ〉
Then any general state can be written as a linear superposition of these eigenstates,

|state〉 = α |φ〉+ β |ψ〉 .

Without parity-violating interactions, the state will forever remain as this mixture, and the magni-
tudes of α and β will not change because there can be no mixing between the two eigenstates. So
a state or collection of states that gives a symmetric distribution in a parity-odd observable before
it undergoes some interaction will produce a symmetric distribution after the interaction, as long
as the interaction is parity-conserving.

If the signature for parity-violating interactions is supposed to be an asymmetry in a distribu-
tion of a parity-odd observable, we had better be sure that the initial state will produce a symmetric
distribution before any interactions have occurred.

There are three ways to produce a symmetric distribution in a parity-odd observable.
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• The first is to take a parity eigenstate.

In order for parity-eigenstates to look the same under parity (as they must), for each three-
momentum p1 in the event there must also be another momentum p2 = −p1 carried by an
identical particle, so that under parity these two momenta transform into each other. I will
call p1 and p2 “mirror momenta”. This means that under parity, pµ1 → pµ2 .

Since the mirror pairs have the same magnitudes for each component of their momenta,
any parity-odd observable must either be unchanged or change sign under exchange of a
particle with its mirror partner. But swapping the mirror partners has the same effect on
the state as parity, so if the observable is unchanged under this exchange it implies that it
is both odd and even under parity, so it must be zero. If the observable changes sign, then
since the mirror momenta belong to identical particles, the observable is equally likely to
contain a momentum as its mirror momentum (or, equally likely to contain them both in
either order), so the frequency of a certain value of the observable will equal the frequency
of the negative value. In both cases, therefore, we obtain a symmetric distribution in any
parity-odd observable.

• Secondly, if a state can be transformed into its mirror image by rotation, it will also give
a symmetric distribution in a parity-odd observable. A parity-odd observable designed to
prove parity-violation should be rotationally symmetric, which means that rotating the state
should not affect the value of the observable. But under parity the observable changes sign.
So if these two operations are equivalent on some state, then the value of the observable, if
it is computed using all particle momenta in the event, must be zero.

The state might contain identical particles which can be rotated into each other to give the
mirror-image state, and the parity-odd observable might be computed using only one of
these particle momenta. But the observable is equally likely to contain the momentum of
either of two identical particles, and seeing as these particles can be transformed into each
other by parity+rotation, you must get equal numbers of a certain value for the observable
as of its negative. So here you also get a symmetric distribution.

• Finally, you can produce a symmetric distribution in a parity-odd observable by taking
equal numbers of a state and its parity-mirrored state. That is, if

P |state 1〉 → |state 2〉

then the experiment must be run on both |state 1〉 and |state 2〉 in equal numbers. Then
|state 1〉 will produce some non-zero value of the observable, while |state 2〉 will produce
the same value but with the opposite sign (or both states might produce more than one value
if there are more momenta in the event than are involved in calculating the observable, but
the states will still produce equal numbers of oppositely signed values). So a symmetric
distribution of the parity-odd observable is again produced.

Thus asymmetries in parity-odd observables can be used to search for parity-violation at the
LHC, since its initial state is its own mirror image so will produce a symmetric distribution in
these observables. And since the Tevatron can be rotated into its own mirror image, here also
these observables can be used.

2.4 Charge-conjugation and distinguishable particles

All that remains is to ensure that we choose the right particles to calculate the observables with.
There will usually be several possible choices in each event, but since the observables will be
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calculated on an event-by-event basis, the particles must be chosen carefully to ensure that asym-
metries do not cancel between events of different types.

Observables derived simply from the epsilon tensor, ie. of the form

εµνρσp
µ
1p

ν
2p
ρ
3p
σ
4

or a triple product
p1 · (p2 × p3)

are odd under the exchange of any two particles. For these observables, indistinguishable particles
and charge-conjugation can cause problems if not treated properly. This is because if there are
two indistinguishable particles in an event, and the momenta of both are used to calculate the
observable, the observable will change sign depending on how you label the particles. Also, if
there are two particles that can be transformed into each other by charge-conjugation, for example
an e+e− pair, then if charge-conjugation is a symmetry of the underlying Lagrangian, the charge-
conjugate process will produce an opposing effect in these observables.

This can be solved by using observables such as

((p1 × p2) · ẑ)((p1 − p2) · ẑ),

which are odd under parity but even under exchange of particles. If we take the ẑ vector to be
along the beam axis at the LHC, we then only need to choose two particles in an event to construct
this parity-odd observable. We can say ẑ = b − b̄, where b is the momentum direction of one
of the beams and b̄ is the momentum direction of the other to ensure that the observable is even
under b → b̄, as it should be because the LHC initial state is invariant under exchange of the
beams.

Another possible parity-odd observable that is invariant under particle exchange is ∆η∆φ,
where ∆η is the difference in pseudorapidity of the two particles and ∆φ is the difference in
their φ angle (that is, the angle perpendicular to the beam axis). This observable will be used in
section 4 to investigate the parity-violating properties of the screw model.

3 Forward-backward asymmetries and charge asymmetries

Observables which are even under parity can never be used to prove that a process has violated
parity. However, it is possible to use asymmetries in cos θ to find parity violation in spin-one
boson couplings in a quantum field theory.

A spin-one boson can have two possible types of term in its vertex factor: γµ (vector), and
γµγ5 (axial vector) [10]. Purely vector or purely axial vector couplings are parity-conserving
because they couple to particles and anti-particles of both chiralities equally. Once you have
a mixture of vector and axial vector couplings, the boson couples preferentially to left-handed
particles and right-handed antiparticles (if cV and cA have opposite signs), or to right-handed
particles and left-handed antiparticles (if cV and cA have the same sign). Under parity, momenta
change direction but spins are left unchanged – so left-handed particles change to right-handed
particles and vice versa. For a mixture of vector and axial vector couplings, therefore, the squared
matrix element is not invariant under parity, so parity is violated. For a two-to-two s-channel
process involving the exchange of a spin-1 boson, we will show that an asymmetry in cos θ (as
shown in figure 2) means that the boson must have parity-violating couplings.

An s-channel scattering event is shown in figure 3(a), with momenta labelled. For a spin-
one particle, the vertex factor must be generally of the form γµ(cV 1 + cA1γ

5) at one of the two
vertices, and γµ(cV 2 + cA2γ

5) at the other [10]. When the matrix element is calculated, there are
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Figure 2: Diagram to show how cos θ is defined in a scattering process.
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(a) s-channel scattering pro-
cess exchanging a spin one
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(b) t-channel scattering process
exchanging a spin one bo-
son.

Figure 3: Feynman diagrams for scattering processes exchanging a spin one boson (time goes left to right
horizontally).

then two traces that must be multiplied together, one from each half of the diagram (and assuming
that we are in the massless limit):

Trace1 = 4a1(pµp′ν + pνp′µ − gµνp · p′)− 4ib1ε
αµβνp′αpβ

Trace2 = 4a2(kµk′ν + kνk′µ − gµνk · k′)− 4ib1ε
αµβνk′αkβ

where a1 = c2
V 1 + c2

A1, b1 = 2cV 1cA1 and similar expressions for a2 and b2. When these traces
are dotted together, this gives:

|M |2 ∝ (p′ · k)(p · k′)[a1a2 + b1b2] + (p′ · k′)(p · k)[a1a2 − b1b2]

With θ defined as in the diagram above, this can be written

|M |2 ∝ (1 + cos θ)2[a1a2 + b1b2] + (1− cos θ)2[a1a2 − b1b2]

And dσ
dΩ ∝ |M |2. For purely vector or purely axial-vector couplings at either vertex, there are

only even powers of cos θ in |M |2 so the differential cross-section is symmetric in cos θ.
If there is some mixture of vector and axial-vector couplings, there will be odd powers of cos θ

as well as even powers in the differential cross-section, so the distribution will be asymmetric. The
asymmetry will be greatest for maximal parity violation, when cV = ±cA.

The situation is different for t-channel exchange, figure 3(b). The squared matrix element for
the t-channel exchange of a spin-1 boson can be written in the general form

|M |2 ∝ (1 + cos θ)2[a1a2 + b1b2] + 2[a1a2 − b1b2]

(where θ is the same angle as in the s-channel case, as shown in figure 2 above). So even for
purely parity-conserving couplings, the differential cross-section distribution is not symmetric in
cos θ.

Asymmetries in cos θ can thus be used to measure parity violation in the couplings of a spin-
one boson, but only if you know that the process is going through the s-channel rather than the
t-channel. On a resonance, particles are being produced mostly via the s-channel, and you can
then use this cos θ asymmetry to work out the amount of parity violation in the couplings of
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the resonant boson. For an e+e− collider such as LEP, a cos θ asymmetry translates to a simple
forward-backward asymmetry.

The actual asymmetry between the two terms in the s-channel squared matrix element, ie. the
difference in the coefficients of the (1 + cosθ) and (1− cosθ) terms divided by their sum, is

A =
b1b2
a1a2

= A1A2

where
A1 =

2cV 1cA1

c2
V 1 + c2

A1

and similarly for A2. Whereas the forward-backward asymmetry, defined as

AFB =
N(ηl > 0)−N(ηl < 0)

N(ηl > 0) +N(ηl < 0)

(where l is the produced lepton) works out as AFB = 3
4A1A2 = 3

4A [11]. So the ratio of vector
to axial-vector couplings can be deduced from the forward-backward asymmetry. This was the
method used by the LEP experiments to calculate the couplings of the Z boson [12].

At the LHC, it isn’t possible to use forward-backward asymmetry in this way because the
two beams are identical, so there is no definite “forward” direction. However there is another
observable that can be used to see these effects at the LHC - the asymmetry in ∆|y|, the difference
between the absolute rapidities of the pair of particles produced [13].

AC =
N(∆|y| > 0)−N(∆|y| < 0)

N(∆|y| > 0) +N(∆|y| < 0)

This is being used in the ATLAS experiment to investigate the tt̄ asymmetry that the Tevatron
experiments (which have distinguishable beams) use forward-backward asymmetries to measure.

For this observable, the forward direction is defined by the direction of the incoming quark
in a quark-antiquark collision. In a proton there are three “valence” quarks, as well as a “sea” of
quark-antiquark pairs. A valence quark will carry more of the momentum of the proton than a
quark or antiquark from the sea. Hence quarks tend to have a higher proportion of the proton’s
momentum than antiquarks.The result of this is that the centre-of-mass frame tends to be boosted
relative to the lab frame in the direction of the incoming quark. (This effect will be diluted by
quark fusion events or events where the incoming quark is a sea quark.) So the forward direction
can be defined, on average, as the direction of the boost of the final state particles.

So this method can be used at the LHC to find out whether a process producing a resonant
spin-one boson is parity-violating. It is unlikely to be useful for discovering new physics, how-
ever, because in order to be sure that particles were being produced mostly in the s-channel,
it would be necessary to look for resonances in invariant mass distributions. These resonances
would already be an indication of new physics in themselves.

4 The screw model

4.1 Idea

A parity-violating model has been proposed [14] based on a screw. The model is that of a process
that produces two particles - let’s call them “spoons” - in such a way that the difference in φ
between the two spoons is proportional to the difference in η between them. Thus the two spoons
lie on a screwthread as shown in figure 4, and the amount that one spoon is “wound” around the
thread compared to the other is proportional to their η difference.
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Figure 4: The screw model

At least one other particle must be produced in the event (call it a “fork”) to balance energy
and momentum. The spoons and forks can be any particles - the important thing is that it is a
parity-violating process; a right-handed screw is the mirror image of a left-handed screw, and
they cannot be transformed into each other by any rotation. The screw model is not based on any
quantum field theory, ie. there is no Lorentz-invariant Lagrangian to describe the interaction, so
the model does not need to obey the CPT theorem. This means that the arguments given above
in section 2.2, which show that a local Lorentz-invariant quantum field theory can only show an
asymmetry in parity-odd observables at the LHC if there is CP violation in the theory, are not
relevant here.

4.2 Event Generator

A Monte Carlo generator was written for the screw model, which produces two spoons and a fork
with the required properties, and then uses the Les Houches Accord [15] to put the events through
Pythia [16]. Pythia showers the particles and calculates what happens to the rest of the proton
remnants in the events. Although the screw model places no restrictions on the species of the
spoons and forks, Pythia needs to know what kind of particle it is being given so the spoons were
chosen to be an electron-positron pair, and the fork a neutrino.

A Rivet [17] analysis was written to analyse the events once they had been through Pythia.
Figure 5 shows that the screwthread can be seen clearly in the ∆η-∆φ plane, where ∆η is the
difference of the pseudo-rapidities of the two spoons, and ∆φ is the difference in their φ angles.
The generator allows the pitch of the screwthread to be chosen, so there can be more or fewer
turns of the screw in a given η range.

The parity-odd observable ∆η∆φ (see section 2.4) shows an asymmetry for the screw model,
figure 6, and it is also seen that this observable is indeed odd under parity.
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Figure 5: A 2D histogram of ∆η against ∆φ of the two spoons for 1 × 105 screw model events. The
frequencies shown in the key indicate number of events in the bin divided by the bin size.
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ated screw model events
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on by parity

Figure 6: Distribution of ∆η∆φ of the spoons in the screw model events and for the parity-mirrored screw
model events (1×105 events). N on the vertical axis means number of events in each bin divided
by bin size.

Generating the spoon momenta uniformly in η (0 < η < 1) and ∆η (0 < ∆η < 1) and
with energy in the range 0 − 800 GeV gives invariant mass distributions of the two spoons and
of the fork and a spoon as shown in figure 7. There is a bump in both these distributions -
so in this case a search for the screw model would not need to involve parity-odd observables
at all since (depending on backgrounds and number of screw events), it could be detected in
invariant mass distributions. So in the interests of creating a model which might realistically have
gone undetected until now (given that invariant mass searches are common) - the invariant mass
distributions need to be fixed in such a way that they appear background-like. As it turns out, there
is easily enough freedom in the screw model to fix two independent invariant mass distributions
(eg. that of the two spoons, and that of a spoon and the fork) to required shapes. This is because
there are 6 degrees of freedom for the two spoons, and the screw model only constrains one
of these by forcing ∆η to be proportional to ∆φ. Fixing two invariant mass distributions only
involves constraining two additional degrees of freedom. This was done by solving simultaneous
equations for the magnitudes of the momenta of the two spoons once the two invariant masses
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0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

Invariant mass of a spoon and a fork /GeV

N
/
G
eV

(b) Invariant mass distribution of the fork and a spoon

Figure 7: Invariant mass distributions in the screw model (with 1× 105events).
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(b) Invariant mass distribution of the fork and a spoon

Figure 8: Invariant mass distributions made to look background-like (1× 105 events).

have been chosen from the specified cumulative distributions using a random number generator.
Sometimes the two chosen masses produce no solutions for the momentum magnitudes for given
positions on the screwthread. This can lead to distorted distributions because invariant masses
which are more likely to give no solutions have fewer events. This problem is solved by picking
the screw parameters (η, ∆η, ∆φ) after the invariant masses have been chosen, and iterating
over different randomly-chosen screw parameters until a solution is found. (If two invariant mass
distributions are specified which contain points for which a solution can never be found, the event
generator will print an error message and the distributions must be changed).

4.3 Hiding the screw model

In figure 8 both the invariant mass distributions have been fixed simultaneously to go as N ∝
M−

1
2 + c (c = 0 for the invariant mass of the spoons, and c = 50 for the invariant mass of the

fork and a spoon).
After these constraints, there is still a large asymmetry in the observable ∆η∆φ which can be

seen in figure 9. Also, as figure 10 shows, the events all still lie on the screwthread although they
are no longer spread uniformly along it. So if the (unknown) mechanism behind the screw model
happened to produce these kind of invariant mass distributions, you might not be able to detect
the screw model in the invariant mass distributions, and you would have to look at a parity-odd
observable to get a clear indication that something new was going on.

In order to work out how large the cross-section of a version of the screw model needs to
be before it can be detected in a parity-odd observable, a χ2 test was done on events with an
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Figure 9: Distribution of ∆η∆φ of the spoons for the screw model events and for the parity-mirrored screw
model events (1 × 105 events). N on vertical axes means number of events in a bin divided by
bin size.
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Figure 10: A 2D histogram of ∆η against ∆φ for the spoons in the screw model events when the invariant
mass distributions are being constrained to look background-like (1× 105 events.
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Figure 11: Distribution of ∆η∆φ of the e+e− pairs for the screw model events and for the Standard Model
events. The frequencies shown in the key indicate number of events in the bin divided by the bin
size.

20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

Invariant mass of e+e− pair /GeV

N
/
G
eV

(a) Invariant mass of the e+e−pair from the Pythia Z/γ
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0 50 100 150 200

0

500

1000

1500

2000

2500

Invariant mass of e+e− pair /GeV

N
/
G
eV

(b) Invariant mass of the e+e− pair from the screw
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Figure 12: Invariant mass distributions from both the Standard Model events and the screw model events
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e+e− pair in the final state. Standard Model events involving photons or Z bosons as intermediate
states, with final state particles having pT > 30 GeV, were obtained from Pythia [18]. The γ/Z
processes were chosen because they are the dominant processes for producing an e+e− pair in
the Standard Model. The screw model generator was run with the spoons specified to be an e+e−

pair and each having energy within the range 0 GeV and 1000 GeV. Both generators assumed
LHC beams with 14 TeV centre-of-mass energy. Then the two sets of events were analysed with
a Rivet [17] analysis - which took the highest energy electron and positron in the event as the
spoons, and vetoed any events which did not include these two particles. However this analysis
did not require the existence of a fork in the final state (ie. a neutrino in the current set-up) - a
fork was not necessary since we only wanted to compare e+e− invariant mass distributions, and
requiring one would have reduced the number of Standard Model events found.

The Pythia Standard Model events give e+e− pairs with an invariant mass distribution as
shown in figure 12(a), which has a clear resonance peak at the Z mass. So the invariant mass of the
e+e− pairs in the screw model events was constrained to fit the same distribution (figure 12(b)),
meaning that this screw model should in theory never be able to be detected by looking at the
invariant mass distribution, as long as the test is not done on absolute numbers, but on the shape
of the distribution. That is, for example, if the χ2 variable used for a χ2 test is of the form

χ2 =
N∑
i=1

(Oi − λEi)2

σ2
i

where N is the number of degrees of freedom in the sample, Oi is the number of observed events
in a bin, Ei is the number of events expected from the Standard Model alone, σi is the error in the
Standard Model prediction, and λ is a (single) free parameter to be minimised. The λ parameter
allows an excess of events over the Standard Model contribution to be undetectable as long as
these events follow the same distribution as the Standard Model.

It can be seen in figure 11 that with these constraints on the invariant mass, the screw model
still produces a large asymmetry in the ∆η∆φ observable. The Standard Model events are ap-
proximately symmetric in this observable.

A χ2 test on the parity-odd observable ∆η∆φ showed that the screw model becomes de-
tectable in the ∆η∆φ observable at the 95% confidence level when there are 1200 screw model
events (to the nearest hundred) to 1 million γ/Z events. Of these 1 million events, 2.8813 × 104

events contained e+e− pairs and were used in the test. The test was done with the distribution of
the invariant mass of the spoons as shown in figure 12, and with χ2 as defined above.

Pythia gives the cross-section of its simulated events as 3.207 × 10−5mb for all the γ/Z
processes together, meaning that the cross-section of the screw model events when they reach
the point where they can be detected to a 95% confidence level is 3.848 × 10−8mb. So the
integrated luminosity needed to produce this number of screw model events is∫

L dt =
N

σ
= 3.12× 10−2fb−1.

Since the LHC experiments have so far taken several inverse femtobarns of data [19], it is likely
that this particular implementation of the screw model would be able to be excluded with the
current data by looking in ∆η∆φ distributions.

5 Conclusions

As the LHC continues to gather more data, it becomes more and more important to think of new
and model-independent methods of searching for new physics in the data, and especially to ensure
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that we are not missing anything by looking in the wrong observables. Parity-odd observables are
a simple way to prove parity-violation in a process and are therefore a model-independent way to
check for deviations from the Standard Model.

Parity-odd observables can be used at the LHC. The fact that the initial state of the LHC
is a parity eigenstate allows asymmetries in parity-odd observables to be used as a signature of
parity-violation. For Lorentz invariant quantum field theories, however, you will end up detecting
CP violation instead of parity violation because Lorentz invariance ensures that only CP-violating
matrix elements contain a parity-odd term.

Asymmetries in cos θ cannot be used to prove parity violation since cos θ is even under parity.
However we have shown that for the s-channel exchange of any spin-one boson, asymmetries in
cos θ imply parity violation. This is unlikely to be useful as a search for new physics, however,
since in order to know that most processes are going through the s-channel you would need to
find a resonance peak in an invariant mass distribution, which would be enough to show that a
new boson exists without the need to look for any excess parity violation.

The consequences of the parity-violating screw model have been investigated. It shows large
asymmetries in distributions of a parity-odd observable, and has enough free parameters for the
invariant mass distributions to be specified. Comparing the distibution of ∆η∆φ in the screw
model to that in a Standard Model process has shown that the screw model is likely to be easily
detectable with this observable.
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