Evolved neurocontrol
of a simulated unicycle

What's so hard about riding a unicycle?

Or, why is riding a bicycle easier? Because moving bicycles are
self-stable: even without a rider, they'll stay upright. Unicycles are
inherently unstable, which means the rider can never stop
concentrating. There’s more to it than this: in control engineering
terms, a unicycle is unstable, underactuated, highly nonlinear, and
non-holonomic.

Equations of motion

These features, non-holonomy in particular,
make derivation of equations of motion for
a unicycle remarkably difficult. For a
machine of such simplicity, an accurate
physical model is surprisingly ugly.
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Conventional approaches

Traditional control systems require equations of motion, so previous
work often relies on extreme linearisations of unicycle physics, or
“piecewise” linearisation, in which the model is treated as behaving
approximately linearly in a number of distinct configurations. The
success of these approaches is limited, and it seems that no
yaw-actuated unicycle robots have ever been successfully tested.

First principles approaches to control

If we can fully parameterise a system in terms of a set of
state variables, then a control function is a mapping
between the state variables and the available control
inputs, such that over time the state variables approach

some set of target values.

The coordinate systems and state variables of a
simple unicycle model.

2D and 3D physical models

Both an analytic 2D ("Segway”) simulation, and a 3D model, created
using the Bullet constraint-solving physics engine, were used to test
potential control approaches. The 2D case is a classic control problem,
but sadly there is no useful way to modify its solutions for the 3D
regime.

Friction modelling

In modelling the unicycle, friction is not a second-order effect. Real
unicyclists rely on the stick-slip interaction between the wheel and
ground, using it to dump excess angular momentum. The numerical
simulation includes a detailed and realistic friction model.
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Neural networks as universal

function approximators

Even the simplest feed-forward neural networks can serve as
universal function approximators. Our control approach
exploits this property, using a neural network to map
unicycle variables of state to the available actuators: the
legs and torso of our simulated rider.

Genetic algorithms

Conventional approaches to training neural networks aren't
particularly useful in control applications. How can we know
if the decision to kick down on the pedals 35.6 seconds into
the simulation was responsible for the eventual failure of the
unicycle at 38.2 seconds? This is the kind of information we
would need to use backpropagation techniques.

Instead, we use a genetic algorithm to evolve a population of
neural networks, rewarding those that keep the unicycle
upright for longest.

The mathematical machinery of control engineering exists
to help find such a function, What can we do when this
apparatus fails us?

Results

Effective unicycle controllers are found using modest
computation on commodity hardware. Evolved controllers
employ a range of tactics, some reminiscent of human
unicyclists, and seem to be notably more successful than
any described in the literature.

It is particularly impressive that the GA can evolve
controllers that are robust in the face of noisy input and
actuation, suggesting that this method (or a close relative)
has good chances in the real world!
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The ground trajectory of a simulation run with an
evolved controller (left). Response to manually applied
pitch perturbations during a simulation run (right).

Nick Stenning [
nick@whiteink.com

The inner loop of our control system. An evolved neural network
receives unicycle state variables as inputs, and generates a
control response as its output. The weights of the network can
encode a vast number of possible control functions.
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Pitch and roll angles during a simulation (left). Neural

network and evolved connection weights for this
simulation (right).

Limitations and challenges

While this small study has been far more successful than
its author expected, the results are so far from simulation
only. Transfer to a real-world system is not trivial.

The neural networks described here are “overevolved”, in
the sense that they work for only one precisely-specified
unicycle: a heavier rider or longer crank-arm would render
them unstable. Normalisation (and non-dimensionalisation)
of the control inputs could allow the construction of a
general controller for unicycles.
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Natural computation

The techniques described here were heavily inspired by work
by Torsten Reil and collaborators, who evolved a controller for
a simulated bipedal walker. The elegance of their approach,
which co-opts some of nature’s learning methods to solve a
conventionally insoluble problem, cannot be denied.

There remains an open problem: whether these techniques,
“unprovable” from the perspective of traditional control
engineers, are truly effective, or whether they retain hidden
pathologies that render them unusable in mission-critical
applications such as automotive and aerospace autopilots.

I have no solution to this problem, but one thing does seem
clear: as control systems get larger and more complex, any
conventional proved controller is only as reliable as its prover
is mathematically competent. It may be that evolved systems
can be “proved” numerically to tolerances acceptable for use
in public systems.

My strong instinct is that natural, or bio-mimetic,
computational systems will have an increasingly important
role to play in many disciplines, control engineering
included, where the full weight of mathematical formalism
runs aground in the face of increasingly complex problems.

Original unicycle photo by Ed Yourdon [hitp://j.mp/oNmH8f]
used under the terms of the CC-BY-SA licence.

Original neural network graphic and TikZ source code by Kjell Magne Fauske [http://j.mp/r4PjwZ]
used under the terms of the CC-BY licence.
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