
Two-axis unicycle simulation and control

Nick Stenning
nick@whiteink.com

16th May 2011

Abstract

e unicycle presents a challenging problem in nonlinear control. is report presents
a technique in which genetic algorithms are used to search for a suitable controller from
a large space of possible control functions, which are encoded as neural networks. e
equations of motion of a simplified unicycle are derived and found to be unrewarding in
direct analysis. A physical model of the unicycle is developed and verified in simulation,
and we show that our approach finds controllers which can successfully stabilise the uni-
cycle, even in the face of significant disturbances. e evolved controllers are effective
over a range of different control regimes, and can successfully transition from a standstill
to a moving unicycle state. Finally, we address the limitations of our approach and suggest
how neurocontrollers of this type can best be integrated into a useful control strategy.

Contents

1 Introduction 2

2 eory & control approa 3
2.1 Unicycle dynamics . 3
2.2 Neural networks . 5
2.3 Genetic algorithms . 6
2.4 Control system . 7

3 Implementation & results 8
3.1 Physical model . 8
3.2 Control strategy in 2D . 9
3.3 Controller behaviour in 3D . 10
3.4 Startup success . 12
3.5 Disturbance rejection . 13

4 Discussion 13
4.1 Validity of physical model . 13
4.2 2D control . 14

1

mailto:nick@whiteink.com

4.3 3D control . 14
4.4 GA and NN observations . 15

5 Conclusion 17

Appendices 19

A Derivation of equations of motion 19

B Equations of motion 21

C Physical parameters 22

D GA details 22
D.1 Fitness function . 23
D.2 Mutation operator . 23
D.3 Crossover operator . 23

1 Introduction

Unicycles are harder to ride than bicycles: a fact to which anyone who has ridden both will
aest. In the language of control engineering, the unicycle is hard to ride because it is unstable
— the position in which one rides is energetically unfavourable — and it is also underactuated
— the rider has two control inputs to control a six degree-of-freedom system.

is report outlines an unusual approach to the design of an automatic controller for a uni-
cycle. A purely analytic solution to the problem is certainly out of the reach of this author:
as will be shown in Section 2.1, the equations of motion of even a simplified unicycle model
are highly nonlinear and do not easily yield general solutions. No such solutions will be of-
fered. Instead, inspired by the work of Reil and Husbands [9] on control of bipedal walkers, and
combining ideas from several fields, I show how we can use genetic algorithms to search for a
suitable controller from a “population” of feed-forward neural networks. e neural networks
act as generalised controllers, mapping system state to control response, which can be compu-
tationally evolved to find one that serves our purpose. e motivation behind this approach
will be discussed in Sections 2.2 – 2.4.

Several previous aempts have been made to stabilise a unicycle, most of which take some
linearised approximation of the unicycle equations of motion as their starting point. Vos and
von Flotow [10], and Zhao et al. [12], describe gain-scheduled linear controllers which aempt
to take advantage of the assumed piecewise linearity of the system. Naveh et al. [7] aempt to
improve on the limitations of linear control by fiing a parameterised control law which can be
up to quadratic in the state variables. All three groups treat the longitudinal (wheel-plane) and
lateral control systems as uncoupled or weakly coupled. In this report, we show that a physical
simulation of a unicycle whichmakes no such assumptions, andwith a realistic frictionmodel at
the ground-wheel interface, can be stabilised using a neural network. e resulting controllers
are stable under perturbation and describe a physically realisable unicycle model.

2

2 Theory & control approach

2.1 Unicycle dynamics

e equations of motion of a simple unicycle are not difficult to derive once an appropriate
set of generalised coordinates has been identified. In what follows, I will describe the unicycle
state in terms of four angles (three identifying the orientation of the wheel, one the position
of the seatpost) and two position coordinates (identifying the position of the wheel center as
projected onto the ground plane along the vertical axis).

Figure 1 illustrates the chosen coordinates: θ, or roll, is the angle between the world vertical
axis (Ẑ) and the line connecting the wheel-ground contact point and wheel center. ϕ, yaw, is
the angle between X̂ and the diameter of the wheel parallel to the plane of the ground. ψ is the
rotation angle of the wheel about its own axle, x̂. χ, pit, is the angle of the seatpost about the
wheel axle, measured relative to the wheel-local ẑ axis. e xyz coordinate system tracks the
wheel in roll and yaw, but does not co-rotate. Lastly, coordinatesX and Y denote the position
of the unicycle on the ground plane as indicated in the figure. We assume the following features
of the unicycle:

1. e wheel is modelled as a uniform thin rigid disc, radius r and massm.

2. A light seatpost of length l connects the wheel axle to a pointlike rider, massM .

3. No linear slip occurs at the wheel-ground interface.

4. Twist friction is neglected for the time being, but will be discussed in Section 3.1.

We can expect that the general equations of motion will be far from linear. e longitudinal
system (in the plane of the wheel) is isomorphic to the classic inverted pendulum problemwhen
θ = 0, but for nonzero roll angles gyroscopic effects will couple the lateral and longitudinal
systems (particularly at high wheel and pitch angular rates). For large values of pitch and roll
the forces transmied by the seatpost will also affect both wheel rotation and yaw. is is the
key difficulty of unicycle control: since the rider has no direct actuation of the roll angle, in
order to correct errors in roll, corrections in both yaw and pitch must be applied, typically quite
rapidly. is means that we cannot easily neglect the coupling between the longitudinal and
lateral systems if we wish to model a real-world unicyclist.

In Appendix A, the equations of motion for this rigid body system are derived using the
Lagrangianmethod. e degrees of freedom are tightly coupled and equations of motion highly
nonlinear, and while small-angle linearisations of roll and pitch are perhaps appropriate, no
such approximation can be considered for yaw. By symmetry, we would expect the equations
to be independent of the absolute value of ψ, and indeed they are. Furthermore, in the case
where motion is constrained to lie within the Z-X plane, we can reduce the system to the

3

X

Y

Z

Z

(X,Y)

θ

ψ

−χ

x

y

z

φ

Figure 1: Diagram showing the degrees of freedom of the unicycle system. The unicycle
state is speciöed by the coordinates of the wheel center projected onto the ground plane
(X , Y), and four angles (ϕ, χ, θ, ψ) corresponding to yaw, pitch, roll and wheel rotation
respectively. The minus sign on the χ label indicates that this angle is measured in an
anticlockwise sense about the x axis.

equations of a no-slip 2D unicycle¹, confirming our assertion that this system is isomorphic to
the inverted pendulum. is provides additional reassurance of the validity of the equations of
motion.

e equations, given in Appendix B, are formidably complicated, and reveal no obvious
general solutions. Even numerical integration is made difficult by the presence of two unknown
Lagrange multipliers, for which initial conditions must be specified. For all this, the model
is oversimplified and includes a point-mass rider, no realistic friction model and no means of
actuating the yaw degree of freedom. To address these issues, we develop a rigid-body physical
model of the unicycle using the Bullet physics library [1]. e details of this implementation
will be discussed in Section 3.1, aer an overview of the control approach.

¹

ψ̈ =
D sinχ− 2Bχ̈

C cosχ

χ̈ =
τψ + Cχ̇2 sinχ− 2AD sinχ/C cosχ

C cosχ− 4AB/C cosχ

Here, the four constants refer to the physical parameters of the unicycle. Using symbols defined in Appendix C,
A = Iax/2 +mr2/2 +Mr2/2, B = Ml2/2, C = Mrl, and D = Mgl. Also included is the nonconservative
torque supplied to thewheel, τψ , which could include rider input and rolling friction. is system, easily numerically
solved, was used in verifying the control approach described in the following paragraphs.

4

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2: A fully connected 3-layer feed-forward network. Each node in the hidden layer
is connected to each node in both the input and output layers. Image credit: Kjell Magne
Fauske.

2.2 Neural networks

A neural network (NN) is a programming construct that aims to emulate the information pro-
cessing techniques of biological neurons. In mathematical terms, a NN is a directed graph in
which the nodes represent artificial neurons. Each node has some number of inputs and out-
puts: its neighbours on the graph. Network edges are assigned real-valued weights, and the
output of any node is defined by the weighted sum of its inputs and by its transfer or “activa-
tion” function A(x), which typically has the form of tanhx, (1 + e−x)−1 or a similar sigmoid.
e output of the ith node, xi, is given by A(x), the weight matrix wij , and a bias value for
that node, bi.

xi = A(bi +
∑
j ̸=i

wijxj)

Why is such a network useful for our purposes? Because it can be shown that a feed-
forward network such as that shown in Figure 2 is a universal function approximator [2, 3].
With a sufficiently large hidden layer, the network can approximate any continuous function
of the inputs onto the outputs.

is is the key result, as the design of a control algorithm is the design of a functionmapping
system state to values of available control inputs. By modifying the number of neurons in the
hidden layer, and the weights of the network connections, we can — in principle at least —
approximate any continuous control law.

In many applications, an appropriate neural network can be found by directly training
the network. A “training set” of inputs are fed into the network, and feedback is pushed back
through the network, strengthening connections that led to good output values, and weakening
the rest. We will not use this method, known as “back-propagation”, to train our networks, for

5

reasons which will soon become clear. Instead, a population of randomly-weighted networks is
created, and each one is evaluated for its usefulness as a controller. A selection process ensures
that only the “fiest” networks survive to the next generation of evaluation. is method is the
subject of the next section.

2.3 Genetic algorithms

Genetic algorithms (GA) are a method for finding and optimizing solutions to a problem in a
space of possible candidates. For nontrivial problems, such spaces typically have high dimen-
sionality, and, in general, no algorithm can efficiently search them. GAs are most useful when
the following criteria are satisfied:

1. No direct optimization of a given candidate is possible. is is usually equivalent to the
statement that no solution space gradient information is available.

2. A simple encoding exists for representing a point in the solution space that can be ran-
domly “mutated”, corresponding to a small random step in the space.

ere are many variations of GA (see Mitchell and Forrest [5], among others), but the
method used here is as follows:

1. Create a population of N candidate solutions, or “individuals”.

2. Evaluate each individual and assign a fitness score.

3. Create the next generation:

(a) For some elitism, η ∈ [0, 1], pick the ⌊ηN⌋ fiest individuals and add them to the
next generation. ese individuals are le untouched by the next three steps.

(b) Randomly pick a further N − ⌊ηN⌋ individuals from the population: their chance
of being picked is proportional to their fitness².

(c) For each of the individuals, crossover the individual with another individual from the
original population with some probability pc. e second individual is again picked
by fitness-proportionate selection. A crossover typically represents some merger of
the solutions represented by the two individuals, while the precise method depends
on the details of the solution encoding.³

(d) For each of the individuals to which the crossover operator was not applied,mutate
the individual. Such a mutation typically corresponds to a small random step in the
solution space.

4. Repeat steps 2 and 3 until an individual achieves a suitable fitness score.

²is is known variously as a roulee-wheel or fitness-proportionate selection. e probability of the ith network
(with fitness fi) being selected is pi = fi/

∑
j fj .

³While a detailed discussion of the value of this step is outside the scope of this report, a well designed crossover
operation is likely to make a much larger step in solution space than mutation, while ensuring that the expected
resulting fitness is larger than if a step of such a size were taken randomly.

6

To summarize, theGA is parameterised by its population size (N), its elitism (η), its crossover
probability (pc), and three operations: the fitness function, which assigns a fitness score to an
individual, and the mutation and crossover operations.

2.4 Control system

Having been introduced to neural networks and genetic algorithms, it is now time to explain
why together they form a sensible approach to designing a control system for the unicycle
problem.

e unicycle has six degrees of freedom,

{X,Y, ϕ, χ, θ, ψ}

which with their time derivatives correspond to twelve variables fully specifying the unicycle
state. Symmetry considerations allow us to rule out X , Y , and ψ as useful parameters to
a control system. Our control inputs are pedal torque, τψ , and a torque associated with the
twisting of the rider’s torso about the seatpost, which we will denote τr . e task, then, is to
design a control function F ,

F (Ẋ, Ẏ , ϕ, ϕ̇, χ, χ̇, θ, θ̇, ψ̇) = (τψ, τr)

which results in a stable unicycle. In practice, we will see that only a subset of these parameters
are needed in the control function. Indeed, computational feasibility requires that we do not
use all the possible inputs.

Many possible functionsF can be represented by a feed-forward neural network with input
nodes corresponding to the state variables, a hidden layer of a size to be determined experimen-
tally, and two output nodes for the control inputs. Such a network is then evaluated in a tight
loop with the physical simulation of the unicycle: at each timestep the state of the unicycle is
fed through the NN, and its outputs are in turn fed back into the physical simulation.

We know what long-timescale success looks like: crudely speaking, the unicycle does not
fall over. But on short timescales we cannot say whether any given response of the network
is “good” or “bad”: that is, given a history of control input to a failed controller, it may not be
possible to specify which of its actions contributed to its failure. is means that optimization
of the network using back-propagation is not possible. Instead, a GA optimizes a population
of networks by searching the space of possible network weightings⁴. Further details of this
approach are described by Whitley et al. [11], and Metni [4]. Both show the use of combined
GA/NN approaches to the solution of the inverted pendulum problem, and give results that we
confirm and extend in studies of a 2D unicycle model.

In summary, a genetic algorithm is used to select a neural network from a large space of
such networks. Each network is evaluated on its ability to stabilise the unicycle (for details of
this evaluation see Appendix D). We now go on to discuss the success of this approach, and will
show that not only are plausible control functions found, the process of finding at least some
of them is computationally feasible on a modern consumer laptop.

⁴In principle the GA could also select the network topology. Our GA only modifies network weights in networks
of a fixed topology.

7

Figure 3: Visualisations of the 2D and 3D unicycle models built for simulation studies. A
motorized reaction wheel sits in place of the rider on the 3D model. Most simulations use
the middle ögure, with a yaw-actuating reaction wheel. The right-hand ögure shows a
roll-actuating reaction wheel, which has control capabilities fundamentally different from
those of a human rider.

3 Implementation & results

e following sections detail the implementation of the unicycle model and some results from
evolved controllers. Detailed discussion of the results will follow in Section 4, while commen-
tary here is intended to be explanatory but brief.

3.1 Physical model

A physical model was built using the Bullet physics engine, comprising three rigid bodies
(wheel, seatpost, reaction wheel) and two rotating constraints connecting them. See Figure 3
for an illustration of this model. Control inputs are torques applied about the wheel and reac-
tion wheel axles. Angular momentum is conserved by applying equal and opposite torques to
each side of the constraint.

Twist friction at the wheel-ground interface was modelled as a combination of coulomb and
viscous friction, following Naveh et al. [7], giving a friction torque about the Z axis through
the wheel of

τfric = −W (γc sgn(ϕ̇) + γvϕ̇)

where W is the applied weight of the unicycle on the ground. Accurate calculation of the
values of γc (with units of m) and γv (m / rad s−1) would have to be performed in a laboratory
seing, but a simple model relates these coefficients to the usual linear friction coefficients and
the contact area of the wheel. A thin contact area of length 2L with even weight distribution
leads to γc =

µcL
2 and γv =

µvL2

3 where µc and µv are the usual linear coefficients of friction.
Reasonable values of L = 5 cm, µc = 0.8, µv = 0.2, give the values of γc and γv given in
Appendix C. Static friction (effective at ϕ̇ = 0) is neglected. e linear slip friction coefficient
is set sufficiently high that no linear slip occurs during simulation.

8

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

e
n
e
r
g
y

/

J

sim time / s

T + V
T
V

-1.5

-1

-0.5

 0

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-2

-1

 0

 1

 2

 3

 4

 5

 6

χ
/

r
a
d

d
ψ
/
d
t

/

r
a
d

s
-
1

sim time / s

χ
dψ/dt

Figure 4: Energy conservation, left, and unicycle parameters in open-loop simulation. The
unicycle falls freely in thewheel plane, stopping abruptly when the reactionwheel hits the
øoor at t ≃ 1.5 s.

Limits on control torques are given by reasonable physical assumptions about the torque
provided by a human rider. Assuming a pedal lever arm of 0.2m, a 60 kg rider can provide
at least 12N m of torque to the pedals. Similarly, assuming the rider can turn his upper body
(I ≃ 30 kg × (0.2m)2) through a quarter turn in half a second, we obtain a lower bound on
upper-body torque of ≃ 10N m. Naveh et al. [7] suggest torques τψ < 15N m, τr < 50N m.
ese values give a limit to the recoverable pitch angle,

χmax = arcsin
τψ,max

mgl
≃ 7◦ (1)

and since we may assume that errors in roll are corrected by yawing then pitching, and that
the unicycle will continue to fall during this motion, we must have θmax < χmax. If the unicycle
exceeds these limits, we can consider the controller to have failed.

Figure 4 shows the behaviour of the unicycle model with the controller switched off. e
“open-loop” behaviour serves as verification of the physical model: we can see that as the
unicycle falls from a vertical position, it transfers the potential energy of the rider initially to
kinetic energy of the wheel, and then back to the rider as the pitch angle increases further. e
le-hand plot confirms that our model conserves energy until the reaction wheel reaches the
floor.

3.2 Control strategy in 2D

In order to ascertainwhether the control strategy described couldwork in themore difficult sys-
tem of the full 3D unicycle, a 2D unicycle model was constructed to serve as proof of principle.
In this case the model was directly modelled from the Lagrangian and numerically integrated.
Figure 5 shows a plot of the unicycle degrees of freedom when controlled by a network that
not only balanced the unicycle, but also allowed for “path following” control. At roughly ten
second intervals the unicycle is asked to move le, stay still, and then move back to the right.

9

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50

-20

-15

-10

-5

 0

 5

χ
/

r
a
d

ψ

/

r
a
d

sim time / s

χ
ψ

Figure 5: 2D unicycle proof of concept. The ögure shows the unicycle horizontal position
(given as the wheel angle, ψ) and the pitch angle, χ, as the unicycle is asked to move left,
stay still, and then move right.

e unicycle’s movement strategy is to introduce a pitch error. Subsequent partial correction
of the pitch error adds wheel speed. Note the reduction in the size of pitch oscillations during
steady motion. Movement instructions were passed in to the neural network as an additional
input, representing a target wheel velocity, and aention paid to this input was rewarded in
the GA fitness function.

3.3 Controller behaviour in 3D

We now present the characteristics of some of the evolved controllers for the 3D model. e
physical parameters of the unicycle for these simulations are given in Appendix C.

Figure 6 shows the trajectory and pitch/roll state of the unicycle under the control of two
different networks which use only four state variables (θ, χ, χ̇, ϕ̇) as inputs and have four
hidden-layer neurons. e output of these networks is interpreted as a nonlinear “bang-bang”
control: output values above 0.75 result in a torque impulse in one direction, and those below
−0.75 result in one in the opposite direction. e size of the torque impulse is set such that if
applied at every timestep, the delivered torque would correspond to the maximum physically
realistic torque, as discussed earlier. Intermediate values leave the unicycle alone.

e two rather different controllers (we will refer to the top controller asA and the boom
as B) were evolved with different fitness functions: A aiming to minimize roll angle and overall
kinetic energy of the unicycle, and B aiming to minimize the imagined “power consumption”
of the controlling motors (a small penalty was introduced for each timestep in which controller
outputs were nonzero).

A full discussion of the features of these controllers will follow in Section 4. For now we

10

-12

-8

-4

 0

-8 -4 0 4

Y

/

m

X / m

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 10 20 30 40 50 60 70 80 90 100

a
n
g
l
e

/

r
a
d

sim time / t

θ
χ

-50

 0

 50

-50 0

Y

/

m

X / m

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50 60 70 80 90 100

a
n
g
l
e

/

r
a
d

sim time / t

θ
χ

Figure 6: Ground trajectory, left, and pitch/roll in two controlled runs. ControllerA on top,
andB below. Note the vertical scale on the right-hand plots.

11

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100 120 140 160 180

-0.02

-0.01

 0

 0.01

 0.02

d
i
s
t
a
n
c
e

/

m

<
τ ψ
>

/

N

m

sim time / s

X

Y
<τψ>

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 120 130 140 150 160 170 180

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

X

/

m

χ
/

r
a
d

sim time / s

X

χ

Figure 7: Preliminary results from roll-actuating controller C . Left: trajectory and time-
averaged pedal torque (averaged over previous 5 s). Right: over a shorter time period, the
relationship between pitch variations and position.

Start angle / rad A successes B successes
0.01 23 39
0.05 29 24
0.10 37 16
0.15 26 6
0.20 15 5

Table 1: Number of runs in which the controller successfully transitioned from a stationary
starting state to a stable moving state, over 50 tests.

note only that both controllers succeed in keeping the unicycle upright for long periods of time.
In the absence of disturbances, controller A can control the unicycle for at least 30 minutes of
simulation time.

Figure 7 shows preliminary results from a roll-actuating controller, C, where the axis of the
reaction wheel lies along the unicycle y-axis, as shown on the right of Figure 3. ese results
also include a basic rolling friction model, where the frictional torque on the wheel, τfric =
−Wrγroll sgn(ψ̇) and γroll = 0.005, a commonly used value for rubber on concrete rolling
resistance. With a fitness function which aims to find a stationary or “idle” unicycle, we evolve
controllers like this one. For this unicycle, M = 20 kg, τr,max = 20N m, τψ,max = 15N m.
Unsurprisingly, the provision of direct actuation of the roll degree of freedom allows controller
C to keep the unicycle upright with near-zero wheel speed indefinitely.

3.4 Startup success

Transient behaviour is visible in Figure 6 at the start of each run. During evaluation, the unicy-
cle is started with its post axis lying along a randomly chosen direction within a cone extending

12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 10 15 20 25 30 35 40

χ
/

r
a
d

sim time / t

-10

-9

-8

-7

-6

-5

-4

-3

-2

 32 32.5 33 33.5 34 34.5 35 35.5 36

d
ψ
/
d
t

/

r
a
d

s
-
1

sim time / t

Figure8: Disturbance rejection: a unicycle is repeatedly subjected to large torque impulses
to the pedals. Left: the pitch angle is rapidly brought back to the equilibrium position.
Right: changes in wheel speed as a result of one of the perturbations.

to 0.1 rad from the world vertical. NeitherA nor B was able to successfully control the unicycle
from all starting orientations. In order to get a beer idea of how difficult the controllers found
it to “start up”, each controller was tested for its ability to make the transition from stationary
to a stable moving state at a variety of angles. e unicycle was started with its axis lying at a
specified angle to the vertical, but with a random orientation. Table 1 summarises the results
of this study.

3.5 Disturbance rejection

eevolved controllers successfully reject large disturbances: Figure 8 shows controllerB being
subjected to pedal torque impulses seven times the size of the control torque while continuing
to control the unicycle. e right-hand plot shows a close-up of the response to one impulse:
the perturbation adds significant speed to the wheel which is quickly removed by the controller.
e controller “overshoots,” but this is deliberate: it enables the correction of the pitch error
which has been introduced as a result of the perturbation. e height of the correction is less
than that of the original perturbation, as expected.

4 Discussion

4.1 Validity of physical model

ewheel-ground friction interaction is one of the most important parts of the physical model.
Real human unicyclists control their yaw by taking advantage of both conservation of angular
momentum and the presence of significant friction at the ground. In particular, the noncon-
servative nature of the friction forces allow a rider to make rotationally asymmetric motions in
yaw with the limited rotation of the upper body. It is not clear whether the friction model used
is valid. In particular, it is possible that static friction plays an important role in real-world

13

unicycle dynamics. ese are questions that would be best resolved in a laboratory with a real
unicycle.

Rolling friction, another nonconservative force associated with wheel rotation, may also
have been another unfortunate omission. As will be discussed shortly, the absence of a means
of dumping excess energy while moving purely longitudinally may mean that certain control
modes available in the real world are unavailable in our simulation.

4.2 2D control

e proof-of-concept study done with a 2D model, while not the focus of this report, deserves
limited aention as a demonstration of the principle of neural network control. Certainly, the
problem is a much easier one to solve (the problem is only mildly underactuated, with one
control input for two degrees of freedom), but we were also able to evolve networks that would
listen to the instructions of a virtual rider, specifying the direction and speed of desired motion.
Yet more impressive, the networks can be trained to ignore out-of-bounds instructions such as
“set wheel velocity to 500 rad s−1”, leading to a robust means of providing a primary objective
(“stay upright”) while still providing rewards for secondary goals (“move le”). All of this is
possible with only a few minutes processing on a consumer-grade computer.

4.3 3D control

e controllers evolved by the GA, three of which are described in Sections 3.3–3.5, are very
different from the more conventional controllers described in the literature. In particular, the
GA has found two controllers in which the longitudinal and lateral systems of the unicycle are
clearly not treated as separate. Indeed, aempts to evolve such separated controllers (by pre-
seing network weights so as to effectively encode two separate networks) consistently “evolve
out” the separation, apparently finding more successful controllers when the two systems are
coupled.

One particular success of this approach is shown in Table 1: a small but significant fraction
of the time, controllersA and B are able to stabilise networks that start with pitch or roll angles
greater than the supposed recoverable pitch angle shown in Equation 1. We had assumed that
such errors were controlled by first yawing into the plane of the error and then correcting the
error with the pedal torque. Watching the controllers in simulation shows that this assumption
is wrong. Such an error can also be corrected by “turning under” the error: a turn towards the
direction of imminent fall cannot (by energy conservation) fully correct such an error, but it
allows the time over which the fall occurs to be lengthened (by delivering kinetic energy to the
wheel rather than the falling rider) so that pedal torque can supply enough energy to correct
the error.

Controllers that have zero average wheel velocity (“idling” controllers) appear to be hard
to find when no direct pitch actuation is available. Many runs of the GA with a variety of
fitness functions suggest that control is more easily achieved when the unicycle is moving.
Successful controllers introduce an initial pitch or roll error, as seen in Figure 6, and it is in the
correction of this error that they pick up wheel speed and find a controllable equilibrium. In

14

fact, most controllers stabilise around a small roll angle⁵. e fact that all the controllers use
roll to introduce this kinetic energy may well be down to a previously mentioned oversight in
the physical model: a lack of rolling friction.

Consider a unicycle which wishes to stabilise itself about some nonzero pitch angle. On the
introduction of, say, a positive pitch error, the unicycle must speed up, effectively “catching up”
with the rider, bringing the pitch angle back to the equilibrium position. But the unicycle now
has an excess of kinetic energy⁶: in the absence of air resistance or wheel rolling resistance,
there is nowhere to dump this energy. By contrast, the same reasoning does not apply to roll
angle because the energy can indeed be dumped by yawing friction.

We also notice that while the first controller remains near the origin of coordinates, circling
in paths of a few wheel diameters in radius, the second controller spirals out, picking up speed
as it goes. is second controller is an example of how a badly designed fitness function can
result in controllers that keep the unicycle upright for a long time, but are not strictly stable. e
increasing kinetic energy of the system eventually causes the unicycle to fall over. Requiring
minimal (or at least bounded) kinetic energy of the system appears to be an important feature of
the fitness function. Nonetheless, this controller does demonstrate the ability to reject noise and
disturbances, as seen in Figure 8. e plot of wheel velocity clearly shows how the “bang-bang”
control corrects the error, applying maximum torque (from t = 33.15 to 33.25 s) to reverse
the pitch error, and subsequently applying torque impulses separated by pauses to damp the
correction.

Although the results are preliminary, it is worth briefly discussing controller C, a controller
that can actuate pitch and roll. e GA easily finds solutions in which at equilibrium the uni-
cycle remains largely stationary. In the le-hand plot of Figure 7, the large initial deviation in
horizontal position corrects a starting pitch error, aer which the the unicycle stabilises and
undergoes small oscillations in pitch and position. ese oscillations are asymmetrical, and
the right-hand plot shows how the shorter excursions (to lower values of X) correspond with
smaller pitch angles. is asymmetry and the nonzero equilibrium pitch positionmay be under-
stood as a consequence of the geometry of the unicycle: the centre of mass of the rider/reaction
wheel is directly above the wheel axle at χ ≃ 0.03 rad.

Lastly, it is noteworthy that controller A appears to be more successful when started at a
nonzero angle (see Table 1). is effect does appear to be statistically significant (difference
from other nearby angles >

√
50) although the sample size is rather small. is may perhaps

be understood by comparison with Figure 6, in which we can see that the equilibrium roll angle
is roughly 0.07 rad while the equilibrium pitch is very close to upright. is gives a particular
value for the equilibrium potential energy of the unicycle, and starting the unicycle with a
nearby value of potential energy appears to help the controller stabilise the system.

4.4 GA and NN observations

e success of any GA depends strongly on its fitness function. A wide variety of fitness func-
tions were tested in this study, and if one thing is clear it is that GA is unforgiving of any

⁵e fact that both yaw-actuated controllers presented stabilise around positive roll angles here is of lile rele-
vance, as the GA also finds controllers that stabilise around a negative roll angle

⁶We are tacitly assuming that the controller is not perfect.

15

slip-ups in fitness function design⁷. A few general principles present themselves:

1. Rewarding controllers that minimize or limit kinetic energy tends to lead to solutions
that are stable over the long term.

2. ere is a fine balance to be struck between “pickiness” and “learnability”. Broadly speak-
ing, this corresponds to the width of the hill the fitness function presents in solution
space. A sharper peak may eventually result in beer solutions, but if it is too sharp,
GA cannot beat a brute-force search of the solution space, making the problem computa-
tionally infeasible. On the other hand, a peak that is too broad may waste computational
power evolving controllers that are inadequate.

3. Fail fast: it is beer to abort evaluation early than continue adding zero to the score of
an individual for many physics integration steps.

Similarly, we can make some general observations about working with neural networks
that may help further study:

1. More hidden-layer nodes are not always beer. Even if the best 10-node network is
beer than the best 5-node network, the addition of these nodes may add more than 50
(!) dimensions to the search space, making the search computationally infeasible.

2. Choice of coordinates is important, but the amount this maers depends on network
architecture. A feedforward network without bias will find the inverted pendulum prob-
lem hard if the vertical axis has been chosen to be χ ̸= 0. If the vertical is χ = 0, the
network need only perform multiplications and can learn the solution faster (and with
fewer nodes). Even with biases, helpful coordinate choices can minimize the number of
mutations required to give a functional network.

Despite its success, there are a number of important issues with this approach to controller
design. In particular, the current implementation results in controllers that are “overdesigned”,
that is, they are useful for only one unicycle with fixed physical parameters. We could aempt
to evolve a more general controller that takes some of the physical parameters of the unicycle as
inputs (saym,M , r, l), and is evaluated against a wide range of physically plausible unicycles,
but this is adding yet more weights to the network, increasing the size of the search space. It
might be more more fruitful to aack this problem by normalising all angular rate inputs to the
unicycle time constant, ∼

√
l/g. It might even be possible to adapt an existing controller in

this way.
In addition, a few limited experiments suggest that obtaining controllers that respect a

target wheel velocity or yaw rate is not as easy as in the 2D case. While a self-balancing
unicycle might be useful, it would be much more useful to be able to direct its motion. As such,
this remains an important limitation of the results described in this report.

⁷Early aempts neglected to penalise controllers that span up the reaction wheel to unphysical speeds, pinning
themselves in the vertical position by conservation of angular momentum. An effective but no doubt nauseating
control method…

16

5 Conclusion

e results presented suggest there is considerablemileage in this approach to controller design,
but also indicate significant challenges not yet addressed.

First, the positive: from a randomly seeded population, the GA successfully bred networks
that were able to keep the unicycle upright over long periods of time. Not only this, but the
networks were able to transition from stationary to stable moving states, oen regarded to be
one of the hardest parts of learning to ride a unicycle. e best controllers treat the longitu-
dinal and lateral systems together, allowing recovery from steeper angles than do uncoupled
controllers.

On the other hand, there are major outstanding issues with this control approach. Neural
networks are “black boxes”, and notoriously difficult to analyse. More work is needed before
the results obtained here become a general control strategy for unicycles. In addition, the
computational requirements of the genetic algorithm do not scale favourably as we increase
the demands on the neural network. As such, it seems that the best place for a neuro-controller
is as a core component of a higher-level control scheme. Such a scheme might achieve control
of yaw and wheel speed by artificially altering the coordinates fed into the network⁸.

e strength of supervised learning techniques for difficult control problems lies in their
generality. In this report we have presented an approach applicable to a wide variety of prob-
lems, including those not accessible to direct analysis, and have shown that even with modest
computing resources good progress can be made. In particular, this author thinks there is a
certain elegance in an approach that, in its own simplistic way, aempts to mimic some of the
processes underlying biological learning.

References

[1] E. Coumans. Bullet physics library. URL http://bulletphysics.com. 4

[2] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control
Signal Systems, 2(4):303–314, Dec 1989. doi: 10.1007/BF02551274. 5

[3] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Net-
works, 4(2):251–257, Jan 1991. doi: 10.1016/0893-6080(91)90009-T. 5

[4] N. Metni. Neuro-control of an inverted pendulum using genetic algorithm. ACTEA, pages
27–33, Apr 2009. doi: 10.1109/ACTEA.2009.5227952. 7

[5] M. Mitchell and S. Forrest. Genetic algorithms and artificial life. Artificial Life, Jan 1994.
doi: 10.1162/artl.1994.1.267. 6

[6] D. J. Montana and L. Davis. Training feedforward neural networks using genetic algo-
rithms. Proceedings of the International Joint Conference on Artificial Intelligence, pages
762–767, May 1989. 22

⁸Yaw could be modified by applying an offset to the measured yaw coordinate, and wheel speed by tricking the
unicycle into thinking that it was on an incline.

17

http://bulletphysics.com

[7] Y. Naveh, P. Z. Bar-Yoseph, and Y. Halevi. Nonlinear modeling and control of a unicycle.
Dynamics and Control, 9(4):279–296, 1999. 2, 8, 9

[8] P. C. Paris and L. Zhang. A disk rolling on a horizontal surface without slip. Mathematical
and computer modelling, Jan 2002. 19

[9] T. Reil and P. Husbands. Evolution of central paern generators for bipedal walking in
a real-time physics environment. Evolutionary Computation, IEEE Transactions on, 6(2):
159–168, 2002. 2

[10] D. W. Vos and A. H. von Flotow. Dynamics and nonlinear adaptive control of an au-
tonomous unicycle: theory and experiment. Proceedings of the 29th IEEE Conference on
Decision and Control, pages 182–187 vol. 1, 1990. 2

[11] D. Whitley, S. Dominic, R. Das, and C. Anderson. Genetic reinforcement learning for
neurocontrol problems. Maine Learning, 13(2):259–284, 1993. 7

[12] J. Zhao, M. Xiong, and H. Jin. Dynamics and a convenient control design approach for
a unicycle robot. IEEE International Conference on Information and Automation, pages
706–711, 2010. 2

4962 words.

18

Appendices

A Derivation of equations of motion

e equations of motion of the unicycle are easily wrien down — if not easily solved — using
the Lagrangian formulation of Newtonian mechanics. What follows is an extension of the
equations of motion for a disk on a horizontal surface as derived by Paris and Zhang [8]. e
no-slip constraint at the wheel contact point is non-holonomic⁹ and will be addressed using the
method of Lagrange multipliers. e constraint representing the fixed length of the unicycle
seatpost is addressedmore simply, by judicious use of the system coordinates in the Lagrangian.

ere are three contributions to the kinetic energy, corresponding to the velocity of the
wheel, that of the rider, and the angular velocity of the wheel. We express these velocities in
terms of vectors a and b, the positions of the wheel centre and rider respectively,

a =

 X
Y

r cos θ


b = a+ l

sinχ cosϕ− cosχ sin θ sinϕ
sinχ sinϕ+ cosχ sin θ cosϕ

cos θ cosχ


and the angular velocity of the disc, measured in the local coordinate basis as indicated in
Figure 1:

ω =

−ψ̇ + ϕ̇ sin θ
−θ̇

ϕ̇ cos θ


e wheel is modelled as a thin disc, radius r, and mass m. e “rider” is a point massM

on the end of a pole, length l, free to rotate about the wheel axle. In the wheel-local coordinate
basis, the inertia tensor of the wheel is

I = diag(Iax, Itr, Itr), Iax =
mr2

2
, Itr =

mr2

4

ere are two simple contributions to the potential energy from the masses of the wheel
and rider, giving an overall Lagrangian, L:

T =
m

2
ȧ2 +

M

2
ḃ
2
+

ωT Iω

2
(2)

V = mga · Ẑ +Mgb · Ẑ (3)

L = T − V (4)

⁹at is, there are an infinite number of paths through the system state space connecting any two states of the
system. is is most easily understood as the fact that a unicyclist may trace out any number of distinct curved
paths on the ground while travelling between two fixed points.

19

which, wrien explicitly in terms of the generalised coordinates, gives¹⁰

L =
m

2

(
Ẋ2 + Ẏ 2 + r2c2θ θ̇

2
)

+
Itr
2

(
c2θϕ̇

2 + θ̇2
)

+
Iax
2

(
−sθϕ̇+ ψ̇

)2

+
M

2

(
lsχcθχ̇+ (r + lcχ)sθθ̇

)2

+
M

2

(
Ẋ − l

(
(cϕcχsθ + sϕsχ) ϕ̇− (sϕsχsθ + cϕcχ) χ̇+ sϕcχcθθ̇

))2

+
M

2

(
Ẏ − l

(
(sϕcχsθ − cϕsχ) ϕ̇+ (cϕsχsθ − sϕcχ) χ̇− cϕcχcθθ̇

))2

− gcθ (mr +M(r + lcχ))

e equations of motion of the system are then given by the Euler-Lagrange equations,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi (5)

where the qi are the coordinates {X,Y, ϕ, χ, θ, ψ}, and the Qi are nonconservative “virtual”
forces and torques acting to satisfy the no-slip constraint at the wheel-ground contact point.

Geometric considerations give the form for the no-slip constraints,

δX = r cosϕ δψ − r sin θ cosϕ δϕ− r cos θ sinϕ δθ
δY = r sinϕ δψ − r sin θ sinϕ δϕ+ r cos θ cosϕ δθ

and d’Alembert’s principle gives the form of the constraint forces, which must do no work. at
is,

δW = 0

=
∑

Qiδqi

= λX (−r cosϕ δψ + r sin θ cosϕ δϕ+ r cos θ sinϕ δθ) +

λY (−r sinϕ δψ + r sin θ sinϕ δϕ− r cos θ cosϕ δθ)

Comparison of coefficients gives the virtual forces:

QX = λX

QY = λY

Qϕ = λXr sin θ cosϕ+ λY r sin θ sinϕ

Qθ = λXr cos θ sinϕ+ λY r cos θ cosϕ

Qψ = −λXr cosϕ− λY r sinϕ
Qχ = 0

e result of all this is a set of formidable nonlinear differential equations for a hopelessly
oversimplified model of unicycle and rider. See Appendix B for the full equations of motion.

¹⁰NB: cξ = cos ξ and sξ = sin ξ.

20

B Equations of motion

For the sake of completeness, we include the full equations of motion.

(m+M) Ẍ

Ml
= − (sϕcχsθ − cϕsχ)

(
ϕ̇2 + χ̇2

)
− sϕcχsθθ̇

2

−2 (cϕsχsθ − sϕcχ) ϕ̇χ̇

+2cθθ̇
(
cϕcχϕ̇− sϕsχχ̇

)
+(cϕcχsθ + sϕsχ) ϕ̈

− (sϕsχsθ + cϕcχ) χ̈

+sϕcχcθθ̈ + λX/Ml

(m+M)Ÿ

Ml
= (cϕcχsθ + sϕsχ)(ϕ̇

2 + χ̇2) + cϕcχsθθ̇
2

−2(sϕsχsθ + cϕcχ)ϕ̇χ̇

+2cθθ̇(sϕcχϕ̇+ cϕsχχ̇)

+(sϕcχsθ − cϕsχ)ϕ̈

+(cϕsχsθ − sϕcχ)χ̈

−cθcϕcχθ̈ + λY /Ml

(
mr2c2θ +Mrs2θ (r + 2lcχ) +Ml2c2χ + Itr

)
θ̈ = cθsθ

{(
Ml2c2χ + Iax − Itr

)
ϕ̇2

−Mlrcχχ̇2

+
(
mr2 −Mr2 − 2rlcχ

)
θ̇2
}

−2Ml2c2χcθϕ̇χ̇+ 2Ml
(
lcχ + rs2θ

)
sχθ̇χ̇− cθIaxϕ̇ψ̇

+Mlcθ
(
sϕcχẌ − cϕcχŸ − lsχcχϕ̈− rsχsθχ̈

)
+g (mr +M (r + lcχ)) sθ
+rcθ(sϕλX − cϕλY)

21

(
Itrc2θ + Iaxs2θ +Ml2

(
c2χs

2
θ + s2χ

))
ϕ̈ = Itrc2θθ̇ϕ̇+ Iax

(
cθθ̇ψ̇ + sθψ̈ − c2θθ̇ϕ̇

)
+Ml (cϕcχsθ + sϕsχ) Ẍ

+Ml (sϕcχsθ − cϕsχ) Ÿ

+Ml2
(
cχsχsθθ̇

2 − s2χc2θϕ̇χ̇− c2χs2θϕ̇θ̇ + 2s2χcθχ̇θ̇ − cχsχcθθ̈ + sθχ̈
)

+rsθ (cϕλX − sϕλY)

Iaxψ̈ = Iax

(
cθθ̇ϕ̇+ sθϕ̈

)
− r (cϕλX + sϕλY)

lχ̈ = lsθϕ̈− rsθcθsχθ̈
−(sϕsχsθ + cϕcχ)Ẍ + (cϕsχsθ − sϕcχ)Ÿ

−(rc2θsχ + lcχsχ)θ̇2 − lsχcχc2θϕ̇2

−2lc2χcθθ̇ϕ̇+ gcθsχ

Ẋ = r cosϕ ψ̇ − r sin θ cosϕ ϕ̇− r cos θ sinϕ θ̇
Ẏ = r sinϕ ψ̇ − r sin θ sinϕ ϕ̇+ r cos θ cosϕ θ̇

C Physical parameters

Symbol Value Description
m 1.0 kg wheel mass
M 10.0 kg rider mass¹¹
r 0.5m wheel radius
l 1.2m seatpost length
dt 0.01 s simulation integration time
τψ,max 10N m maximum pedal torque
τr,max 10N m maximum seatpost twist torque
γc 0.02m rotational coulomb friction coefficient
γv 0.0001m s rad−1 rotational viscous friction coefficient

D GA details

e success of the GA depends strongly on the details of the fitness function, mutation, and
crossover operators. e crossover operator used is that described by Montana and Davis [6].

¹¹Note that the rider mass is not intended to represent a human, but rather a payload of baeries, electronics and
reaction wheel needed to build an automated unicycle.

22

D.1 Fitness function

e fitness of a unicycle, given as f in the pseudocode below, is determined primarily by how
long it can avoid falling over. δ(ξ) is an gaussian peaked at ξ = 0 with δ(0) = 1.

f ← 0
while t < T do
if unicycle has fallen over then

exit loop
5: else

f ← f + dt · δ(|θ|+ |ϕ̇|+ . . .)
end if
step unicycle physics by dt
t← t+ dt

10: end while
return f

e unicycle is deemed to have fallen over if the seat lies outside a cone extending to some fixed
angle about the vertical. In line 6 the unicycle is rewarded for keeping its roll angle near zero,
and having a low rate of yaw. Many other sets of arguments to the delta function are possible,
but this serves as a simple example.

Note that the maximum fitness is T , the maximum evaluation time.

D.2 Mutation operator

emutation operator is parameterised by themutation rate (set such that on average only one
weight is mutated per network) and the mutation size, σ.

for each weight w in NN do
if random.uniform(0, 1) < mutation rate then
w ← w + random.gauss(0, σ)

end if
end for

Here random.uniform(a, b) returns a random real number in the range [a, b), and random.gauss(µ, σ)
returns a random number picked from a gaussian probability distribution with mean µ and
standard deviation σ.

D.3 Crossover operator

e crossover operator takes two NNs,A and B, and creates a new NNwith the same topology.
For each non-input neuron in the new network, the incoming weights are copied from either
A or B, chosen at random.

create new network C
for each non-input neuron n in C do
if random.uniform(0, 1) < 0.5 then

copy incoming weights for n from corresponding neuron in A
else

23

copy incoming weights for n from corresponding neuron in B
end if

end for

24

	1 Introduction
	2 Theory & control approach
	2.1 Unicycle dynamics
	2.2 Neural networks
	2.3 Genetic algorithms
	2.4 Control system

	3 Implementation & results
	3.1 Physical model
	3.2 Control strategy in 2D
	3.3 Controller behaviour in 3D
	3.4 Startup success
	3.5 Disturbance rejection

	4 Discussion
	4.1 Validity of physical model
	4.2 2D control
	4.3 3D control
	4.4 GA and NN observations

	5 Conclusion
	Appendices
	A Derivation of equations of motion
	B Equations of motion
	C Physical parameters
	D GA details
	D.1 Fitness function
	D.2 Mutation operator
	D.3 Crossover operator

