Computing project: Planet

Write an octave program that simulates a planet moving around a sun, assuming an inversesquare force law. The differential equations for the position \mathbf{x} and velocity \mathbf{v} are

$$
\begin{align*}
\frac{\mathrm{d} \mathbf{x}}{\mathrm{dt}} & =\mathbf{v} \tag{1}\\
\frac{\mathrm{d} \mathbf{v}}{\mathrm{dt}} & =-\frac{A}{|\mathbf{x}|^{3}} \mathbf{x} \tag{2}
\end{align*}
$$

where $A=G M$ is the product of the gravitational constant and the mass of the sun.

Note your dimensions

Next to every equation in your program, include a comment that says the dimensions of the quantities in the equation. (Comments begin with the '\#' character.) For example, a program that simulates motion of a particle in the absence of any force might look like this: ${ }^{1}$

```
# Initial condition for position and velocity
    x = [ 93 , 0 ] ;
# x has dimensions [L]
    v = [ 0 , 1.3 ] ;
# v has dimensions [L/T]
# Duration of simulation, and time-step; and initial time
    T = 1000 ; dt = 5 ; t = 0 ;
# T and dt and t have dimensions [T]
while( t < T )
    t = t + dt ;
# [T] = [T] + [T]
    x = x + v * dt ;
# [L] = [L] + [L/T] * [T]
endwhile
```

Always check that the two rules of dimensions are true:

1. All quantities connected by $=,+,-,>$, or $<$ must have the same dimensions.
2. All quantities appearing inside log, sin, cos, exp must be dimensionless.

Checking dimensions is a good habit because it helps you catch programming errors.

What to do

Set the parameter A to:

$$
A=238 \quad\left[\mathrm{~L}^{3} \mathrm{~T}^{-2}\right]
$$

[^0]
Try these initial conditions first

$$
\begin{array}{rlccll}
& \mathbf{x} & =[93,0] & & {[\mathrm{L}]} & \\
\text { (a) } & = & {[0,1.1]} & {[\mathrm{L} / \mathrm{T}]} & \\
& \mathrm{dt} & = & 1 & {[\mathrm{~T}]} & \\
\text { (timestep) } \\
\mathrm{T} & = & 1000 & {[\mathrm{~T}]} & & \text { (duration) }
\end{array}
$$

Make two plots. Plot x_{1} versus x_{2}. And plot x_{1} and x_{2} as functions of time.

Then try changing the initial conditions like this

```
theta = 0.5 ; # angle for rotating the velocity, dimensionless [1]
M = [ cos(theta) sin(theta) ;
    -sin(theta) cos(theta) ] ; # rotation matrix, dimensionless [1]
```

(b) $\mathbf{v}=[0,1.1] * M \quad[\mathrm{~L} / \mathrm{T}]$
(c) $\mathbf{v}=[0,1.6] \quad[\mathrm{L} / \mathrm{T}]$
(d) $\mathbf{v}=[0,1.6] * M[L / T]$
(e) $\mathbf{v}=[0,2.0] * M[L / T]$
(f) $\mathbf{v}=[0,2.5] * M[L / T]$

Investigate what happens if you make the timestep $d t$ bigger or smaller.

Tips

Tip 1: For the plot of x_{1} versus x_{2}, you may find the command

```
axis('equal')
```

is useful. This command tries to make the plot have equal size units on both axes. To switch this effect off again, use:

```
axis('normal')
```

Tip 2: To keep a record of the sequence of values of \mathbf{x} and \mathbf{v}, you can use an array like this:

```
i = 0 ; ## index for rows of the history array
clear history ; ## this makes sure there is nothing in the history
        ## array when we start the simulation
while( t < T )
    i ++ ;
    history( i , : ) = [ t , x , v ] ; ## put t, x, and v into columns
                                ## 1, 2-3, and 4-5 of history
```

(Each row of the history array is a vector that contains quantities that have different dimensions. This does not break the rules of dimensions. It is OK to have a vector, such as (x, v), whose components have different dimensions.)

Tip 3: If we define our time unit to be 1 day, and our distance unit to be the megamile (1 megamile $=10^{6}$ miles) then the initial conditions in part (c) correspond to earth's orbit.

So for initial condition (c), the orbit should be roughly circular, with period 365.25 timeunits.

[^0]: ${ }^{1}$ For information about while loops, which are even simpler than the for loops you learnt about last week, see the web page http://www.aims.ac.za/wiki/index.php/Octave:Loops_and_conditions.

