
Computing project: Planet

Write an octave program that simulates a planet moving around a sun, assuming an inverse-
square force law. The differential equations for the position x and velocity v are

dx

dt
= v (1)

dv

dt
= −

A

|x|3
x, (2)

where A = GM is the product of the gravitational constant and the mass of the sun.

Note your dimensions

Next to every equation in your program, include a comment that says the dimensions of the
quantities in the equation. (Comments begin with the ‘#’ character.) For example, a program
that simulates motion of a particle in the absence of any force might look like this:1

Initial condition for position and velocity

x = [93 , 0] ;

x has dimensions [L]

v = [0 , 1.3] ;

v has dimensions [L/T]

Duration of simulation, and time-step; and initial time

T = 1000 ; dt = 5 ; t = 0 ;

T and dt and t have dimensions [T]

while(t < T)

t = t + dt ;

[T] = [T] + [T]

x = x + v * dt ;

[L] = [L] + [L/T] * [T]

endwhile

Always check that the two rules of dimensions are true:

1. All quantities connected by =, +, -, >, or < must have the same dimensions.

2. All quantities appearing inside log, sin, cos, exp must be dimensionless.

Checking dimensions is a good habit because it helps you catch programming errors.

What to do

Set the parameter A to:

A = 238 [L3T−2]

1For information about while loops, which are even simpler than the for loops you learnt about last week,

see the web page http://www.aims.ac.za/wiki/index.php/Octave:Loops and conditions.

1

Try these initial conditions first

(a)

x = [93,0] [L]
v = [0,1.1] [L/T]
dt = 1 [T] (timestep)
T = 1000 [T] (duration)

Make two plots. Plot x1 versus x2. And plot x1 and x2 as functions of time.

Then try changing the initial conditions like this

theta = 0.5 ; # angle for rotating the velocity, dimensionless [1]

M = [cos(theta) sin(theta) ;

-sin(theta) cos(theta)] ; # rotation matrix, dimensionless [1]

(b) v = [0,1.1] * M [L/T]
(c) v = [0,1.6] [L/T]
(d) v = [0,1.6] * M [L/T]
(e) v = [0,2.0] * M [L/T]
(f) v = [0,2.5] * M [L/T]

Investigate what happens if you make the timestep dt bigger or smaller.

Tips

Tip 1: For the plot of x1 versus x2, you may find the command

axis(’equal’)

is useful. This command tries to make the plot have equal size units on both axes. To switch
this effect off again, use:

axis(’normal’)

Tip 2: To keep a record of the sequence of values of x and v, you can use an array like this:

i = 0 ; ## index for rows of the history array

clear history ; ## this makes sure there is nothing in the history

array when we start the simulation

while(t < T)

i ++ ;

history(i , :) = [t , x , v] ; ## put t, x, and v into columns

... ## 1, 2-3, and 4-5 of history

(Each row of the history array is a vector that contains quantities that have different dimensions.
This does not break the rules of dimensions. It is OK to have a vector, such as (x, v), whose
components have different dimensions.)

Tip 3: If we define our time unit to be 1 day, and our distance unit to be the megamile (1
megamile = 106 miles) then the initial conditions in part (c) correspond to earth’s orbit.

So for initial condition (c), the orbit should be roughly circular, with period 365.25 time-
units.

2

