

hep-ph/0507283

What is WMAP trying to tell us?

Omega_DM h^2 = 0.1126 +0.0081 -0.0091 delta((g-2)_mu)/2 = 19.0 +- 8.4 * 10^-10 BR(b->s gamma) = 3.52 +- 0.42 * 10^-4 mb(mb)^MSBAR = 4.2 +- 0.2 GeV mtop = 172.7 +- 2.9 GeV

Sparticle mass bounds from exiting searches:

chi1>37 GeV, chgino>67.7 GeV, slepton>88 GeV etc ...

Look at model of 7 free parameters: (CMSSM + important SM quantities)

m0, A0, m1/2, tanB, mTop, mBottom, alpha_Strong(mZ)

Grid scan granularity 1% needs 10^14 points to cover space.

Metropolis manages with fewer than 10^7 points.

7-D

Look at just the sparticle masses:

What might a count of events with missing transverse momentun > 500 GeV tell us in CMSSM (mSUGRA) ?

(Experimental "data" happens to be a WMAP favoured point for this scan)

Only 15,000 points needed by Metropolis Algorithm.

4-D grid scan with 1% granularity would take 100,000,000 points.

Look! Some degeneracy!

Why?

Right or left sleptons can look like each other to a simple analysis.

Perhaps other observables (lepton counts) would separate them ...

But must continue to make things more general.

Break higgs doublet universality. Gain two new parameters, mu and mA. (or equivalently mHu, mHd at GUT scale)