
18 June 2001 SCT/Pixel ROD Software Workshop 1

SCTDAQ-
a brief summary

John Hill

University of Cambridge

18 June 2001 SCT/Pixel ROD Software Workshop 2

• Developed for readout of a “few” modules (up to ~20) in
institute labs, PS irradiations, systemtest and (from 2000)
Test Beam.

• Designed to be modular...
– libraries for VME modules developed for general-purpose use

– these libraries also independent of each other

• ...and portable
– code in ANSI-C (for libraries) and C++ (for ROOT macros)

– ROOT for menus and histogram presentation is available on all
likely platforms

• Main authors: Lars Eklund, Gareth Moorhead, Peter
Phillips and John Hill

18 June 2001 SCT/Pixel ROD Software Workshop 3

• Main features of a typical SCTDAQ configuration
– Windows 95, 98 or NT

– NI-VXI interface (though BIT3 in also in use)

– Visual C++ (needed to compile the software)

– VME Hardware readout modules (all 6U modules)
• CLOAC (UCL) - Master Clock and Control

• SLOG (RAL) - Slow Commands to ABCD chips

• MuSTARD - (RAL/Cambridge) - readout of data from ABCDs

• SCTLV (Prague) - Low Voltage power supply, and Hard
Reset/SELECT signals to front ends.

• [SCTHV (Krakow) - High Voltage power supply]

– for optical rather than electrical readout, a BiLED (Oxford) or
OpTIF (Cambridge) VME module is required.

18 June 2001 SCT/Pixel ROD Software Workshop 4

• One set of MuSTARD, SLOG, CLOAC modules can read
out 6 double-sided SCT detector modules. However, the
software is designed to accommodate multiple readout
modules, so >6 detector modules can be handled.

• However, readout density is low (a VME crate would be
filled if reading out 12 detector modules), so the hardware
is strictly aimed at small-scale (<20 detector module)
readouts.

• SCTDAQ was developed within this hardware framework
- i.e. the software was neither designed for, nor has been
tested in, large-scale systems.

18 June 2001 SCT/Pixel ROD Software Workshop 5

Example: CERN systemtest

18 June 2001 SCT/Pixel ROD Software Workshop 6

Basic SCTDAQ structure (1)

ST - simple command line interface for testing and environments without
 root
STLIB - ABCD chip handling functions
 - map detector modules to VME modules using information from
 configuration file
 - write results to ASCII N-tuple for “offline” analysis
 - high level operations (e.g. set up, generate and readout triggers)
MuSTARD etc. - hardware libraries for VME modules

These parts of
SCTDAQ are
fully portable

18 June 2001 SCT/Pixel ROD Software Workshop 7

Basic SCTDAQ structure (2)

•All libraries in previous diagram are in ANSI-C

•Though main platforms used are Windows 95 and NT, EP/LX
(Real Time UNIX) on RAID processor has been used.

•Hardware libraries were also used in RD13 DAQ (DAQ -2??) in
test beam work up to 1999.

•VME i/o in well-defined locations, and simple access only, so
simple to move to alternative interface (as long as memory-
mapped approach is used).

•Structure should allow insertion and replacement of new libraries
in a clean way (e.g. already done with BiLED==> OpTIF). This
should permit ROD and TIM software to be included.

18 June 2001 SCT/Pixel ROD Software Workshop 8

Basic SCTDAQ structure (3)

Requires root
environment

18 June 2001 SCT/Pixel ROD Software Workshop 9

18 June 2001 SCT/Pixel ROD Software Workshop 10

Basic SCTDAQ structure (4)

ST.cpp - basic root user macro - loads stdll, optionally initialises the
VME interface, defines menu buttons, and some of the code for the
menu functions.

STDLL - includes all of stlib and hardware libraries, PLUS C++
code for:

majority of menu functions

histogram definitions and filling

“bursts” of triggers

curve fitting

some CLOAC functionality

other “higher level” functions

Organisation of code not ALWAYS 100% logical!

18 June 2001 SCT/Pixel ROD Software Workshop 11

A few words on root

• Can be used to provide a complete DAQ environment (e.g.
in MINOS)

• Advantages of using root with SCTDAQ:
– GUI framework (menus) and histogram presentation comes “for

free”

– Portable across platforms supported by root - i.e. Windows, Linux,
Unix. User C++ code for SCTDAQ is not machine dependent

– Users can add extra functionality relatively easily by writing their
own macros (they don’t need to delve into the full mysteries of the
system).

18 June 2001 SCT/Pixel ROD Software Workshop 12

Menus

• Large number of menu options!

• They have appeared in the light of experience with real modules

• Significant number of menu functions are designed for the handling of
a few modules with idiosyncrasies.

• Also, SCTDAQ is aimed at characterising modules in a small lab.
environment, not data acquisition, and hence does not have (for
example) sophisticated error recovery.

• However:

– the “TB extensions” (see a little later in the talk) provide a simple
DAQ within the SCTDAQ framework, and were successfully used
in the 2000 test beam

18 June 2001 SCT/Pixel ROD Software Workshop 13

Main Menu
• Startup

• Shutdown
• Restart

• CloacMenu

• Run
• Stop

• ChangeVariable

• ChangeTrigger
• ExecuteConfigs

• TriggerBurst

• TriggerBurst2
• RawBurst

• DecodedBurst

• VTriggerBurst
• DecodedVBurst

• DumpVBurst

• DumpBurst
• SendIDBurst

• RepeatingBurst

• ABCD Tests
• SimpleScans

• KwikPlot

• ShowSCurves
• ShowCounters

• SysmapMenu

• ShowSysmap
• ShowModuleConfig

• ShowModuleTrims

• ShowModuleRC
• HardReset

• OPTO TX On

• OPTO TX Off
• OPTO TX Status

• HV RampUp

• HV RampDown
• HV Status

• LV On

• LV Off
• LV Status

• Recover Trips

• DCSQuery
• DCS->Log

• TestPrograms

• Status
• Documentation

• Exit

18 June 2001 SCT/Pixel ROD Software Workshop 14

Subsidiary Menus
• CloacMenu

– interfaces directly to CLOAC functionality

• ChangeVariable

– set chip parameters, delays on inputs and outputs, etc.

• ChangeTrigger
– alter trigger details

• ABCD Tests
– e.g. check the redundancy features, automatic TrimDAC trimming

• SimpleScans
– simple 1D scans (e.g. threshold scan)

• TestPrograms
– diagnostic programs for VME readout modules

• SysmapMenu
– command line interface to sysmap menu

18 June 2001 SCT/Pixel ROD Software Workshop 15

Scan example - response curve

18 June 2001 SCT/Pixel ROD Software Workshop 16

Test Beam Extensions(1)
• Used in test beam from 2000 (replacing RD13 DAQ and RAID)

• Mainly work of Gareth Moorhead

• Contructed as an “add-on” to previously-described SCTDAQ, so relies
on that to set up detector and standard VME modules:

– Deal with extra hardware in test beam:

• Beam telescope (analogue readout, using DSP-based Siroccos
(IRAMs))

• CAEN V488 TDC (trigger timing relative to 40MHz clock)

• CAEN V262 I/O unit (software polling for beam triggers)

– Structure similar to STDLL/STLIB - code built into TBDLL, which
includes:

• C++ code for beam telescope, data monitoring, run handling, general
bookkeeping

• TBLIB: C code specific to test beam (special hardware, event read out
and writing)

• Libraries for test beam hardware

• STLIB and hardware libraries from SCTDAQ

18 June 2001 SCT/Pixel ROD Software Workshop 17

Test Beam Extensions(2)
• Invoked within root framework after standard SCTDAQ startup has

been done (via ST.cpp)

• Macro TB.cpp loaded - this contains
– TBStart - loads TBDLL, initialises the environment, creates the extra

histograms required for test beam, and sets up the hardware appropriately
for test beam

– TBRun - starts a data-taking run

– TBScan - starts a set of runs to scan a range of values for a specific
variable - very useful for unattended running (or at least running with
minimal intervention).

• Command line interface for TB commands.

• Since existing SCTDAQ menus are available, operation is consistent
with lab use - no new way of working to learn, and all “tricks” to
persuade detector modules to behave, are available automatically.

18 June 2001 SCT/Pixel ROD Software Workshop 18

Use with ROD/BOC/TIM?
• Reasonably clean mapping from existing to new hardware:

– CLOAC+SLOG(+OpTIF) ==> TIM+Outgoing (control) connections from

 ROD/BOC

– MuSTARD(+OpTIF) ==> Incoming (data) connections to ROD/BOC

• TIM functionality is a superset of CLOAC’s (to a good approximation)

• BOC functionality is a superset of OpTIF’s (...)

• SLOG functions (slow commands to front end ASICs):
– in short term will be replaced by sending a bitstream via a ROD primitive

– in longer term, we will probably have bitstreams predefined in the DSP
and just issue the download instruction

• MuSTARD functions (reading data, optional decoding and
histogramming):

– already implemented or planned for ROD

18 June 2001 SCT/Pixel ROD Software Workshop 19

Use with ROD/BOC/TIM?
• Hence, for short term, seems a good solution for a ROD DAQ

– exists and has been tested by many users

– familiar interface for users

– sections (e.g. chip-handling code, analysis macros), which are based on
real experience with detector modules, would probably be reused anyway

• However, not a long term solution
– not designed for 100’s of modules (reaching the practical limits in places

already??)

– intended for the characterisation and control of a handful of prototype
detector modules, so lots of scans, module resets, trip recovery etc. in
menus, but not much emphasis on long term monitoring of a large number
of modules, nor of automated recovery of modules. (TB does attempt this,
but not altogether successfully).

– needs significant rewriting for a final system - best to start from scratch?

18 June 2001 SCT/Pixel ROD Software Workshop 20

Conclusions
• SCTDAQ seems a reasonable starting point for an interim ROD DAQ,

but also needs the Test Stand software to control the ROD.

• There are clear areas where parts of SCTDAQ could be reused in the
longer term:

– chip-handling code

– analysis macros

• Ability to add user scripts within root framework is attractive and
something similar should be provided for the final design.

• One caveat - initial systemtest work will involve debugging of readout
hardware, not dealing with real detector modules, and SCTDAQ is
probably not suitable for this (use Test Stand software and ad-hoc
programs).

