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please contact me by e-mail at the address on the front page.

1 Avant propos

A sexier title for these lectures would be ‘Current theory of everything’, but other lecturers
wouldn’t allow it. They are intended to take you from something that you (hopefully)
know very well – the Schrödinger equation of non-relativistic quantum mechanics – to the
current state-of-the-art in our understanding of the fundamental particles of Nature and
their interactions. That state-of-the-art is described by a gauge field theory (hence the
dumbed-down title of these lectures) called the “Standard Model” of particle physics, of
which the Higgs boson, recently discovered at the CERN LHC, is a key part. All other
physics (except gravity) and indeed every phenomenon in the Universe, from consciousness
to chemistry, is but a convoluted application of it. Going further, it turns out that (despite
what you may have read in the newspapers) even quantum gravity (in its general relativistic
incarnation) makes perfect sense as a gauge field theory, provided we don’t ask what happens
at energy scales beyond the Planck scale of 1019 GeV. So rather a lot is known. As the
late Sidney Coleman (who is right up there in the list of physicists too smart to have won
a Nobel prize) put it at the beginning of his lecture course, “Not only God knows, but I
know, and by the end of this semester, you will know too.”

A gauge field theory is a special type of quantum field theory, in which matter fields (like
electrons and quarks, which make up protons and neutrons) interact with each other via
forces that are mediated by the exchange of vector bosons (like photons and gluons, which
bind quarks together in nucleons). The Standard Model provides a consistent theoretical
description of all of the known forces except gravity. Perhaps more pertinently, it has been
spectacularly successful in describing essentially all experiments performed so far, including
the most precise measurements in the history of science. The recent discovery of the Higgs
boson, at CERN’s Large Hadron Collider, constitutes the final piece in the jigsaw of its
experimental verification.
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As well as learning about of all of this, we hope to resolve, along the way, a number
of issues that must have appeared mysterious to you in your previous studies. We shall
see why a relativistic generalization of the Schrödinger equation is not possible and hence
why you have been stuck with the non-relativistic version until now, even though you
have known all about relativity for years. We shall learn why electrons have spin half, why
their gyromagnetic ratio is (about) two, and why identical electrons cannot occupy the same
quantum state. More to the point, we shall see how it is even conceivable that two electrons
can be exactly identical. We shall see why it is not possible to write down a Schrödinger
equation for the photon and hence why your lecturers, up until now, have taken great
pains to avoid discussing electromagnetism and quantum mechanics at the same time. We
shall understand why it is possible that three forces of nature (the strong and weak nuclear
forces, together with electromagnetism) which appear to be so different in their nature,
have essentially the same underlying theoretical structure. We shall learn what rôle the
Higgs boson plays in the theory and why it was expected to appear at the LHC. Finally,
we shall learn about tantalizing hints that we need a theory that goes beyond the Standard
Model – gravity, neutrino masses, grand unification, and the hierarchy problem.

That is the good news. The bad news is that all this is rather a lot to learn in only
twelve lectures, given that I assume only that the reader has a working knowledge of non-
relativistic quantum mechanics, special relativity, and Maxwell’s equations.1 Our coverage
of the material will be scandalously brief. Many important derivations and details will be
left out. It goes without saying that any student who wants more than just a glimpse of
this subject will need to devote rather more time to its proper study. For that, the books
recommended below are as good as any place to begin.

2 Bedtime Reading

• Quantum Field Theory, Mandl F and Shaw G (2nd edn Wiley 2009) [1].

This short book makes for a good companion to this course, covering most of the
material using the same (canonical quantization) approach.

• Quantum Field Theory in a Nutshell, Zee A (2nd edn Princeton University Press
2010) [2].

This is a wonderful book, full of charming insights and doing (in not so many pages)
a great job of conveying the ubiquity of quantum field theory in modern particle and
condensed matter physics research. Written mostly using the path integral aproach,
but don’t let that put you off.

• An Introduction to Quantum Field Theory, Peskin M E and Schroeder D V (Addison-
Wesley 1995) [3].

1For those in Cambridge, there are no formal prerequisites, though it surely can do no harm to have
taken the Part III ‘Particle Physics’ or ‘Quantum Field Theory’ Major Options.
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The title claims it is an introduction, but don’t be misled – this book will take you
a lot further than that. Suffice to say, this is where most budding particle theorists
learn field theory these days.

• Gauge Theories in Particle Physics, Aitchison I J R and Hey A J G (4th edn 2 vols
IoP 2012) [4, 5].

These two volumes are designed for experimental particle physicists and offer a gentler
(if longer) introduction to the ideas of gauge theory. The canonical quantization
approach is followed and both volumes are needed to cover this course.

• An Invitation to Quantum Field Theory, Alvarez-Gaume L and Vazquez-Mozo M A
(Springer Lecture Notes in Physics vol 839 2011)[6].

At a similar level to these notes, but discusses other interesting aspects not covered
here. An earlier version can be found at [7].

The necessary group theory aspects of the course are covered in the above books, but
to learn it properly I would read

• Lie Algebras in Particle Physics, Georgi H (2nd edn Frontiers in Physics vol 54 1999)
[8].

3 Notation and conventions

To make the formulæ as streamlined as possible, we use a system of units in which there is
only one dimensionful quantity (so that we may still do dimensional analysis) – energy –
and in which ~ = c = 1. 2 Thus E = mc2 becomes E = m, and so on.

For relativity, we set x0 = t, x1 = x, x2 = y, x3 = z and denote the components of the
position 4-vector by xµ, with a Greek index. The components of spatial 3-vectors will be
denoted by Latin indices, e.g. xi = (x, y, z). We define Lorentz transformations as those
transformations which leave the metric ηµν = diag(1,−1,−1,−1) invariant (they are said
to form the group SO(3, 1)). Thus, under a Lorentz transformation, xµ → x′µ = Λµνxν , we
must have that ηµν → ΛµσΛνρη

σρ = ηµν . The reader may check, for example, that a boost
along the x axis, given by

Λµν =




γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1


 , (3.1)

with γ2 = (1− β2)−1, has just this property.
Any set of four components transforming in the same way as xµ is called a contravari-

ant 4-vector. The derivative ( ∂∂t ,
∂
∂x ,

∂
∂y ,

∂
∂z ) (which we denote by ∂µ), transforms as the

(matrix) inverse of xµ. Thus we define, ∂µ → ∂′µ = Λ ν
µ ∂ν , with Λ ν

µ Λµρ = δνρ , where
δ = diag(1, 1, 1, 1). Any set of four components transforming in the same way as ∂µ is

2Unfortunately I have not been able to find a consistent set of units in which 2π = 1!
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called a covariant 4-vector. We now make the rule that indices may be raised or lowered
using the metric tensor ηµν or its inverse, which we write as ηµν = diag(1,−1,−1,−1).
Thus, xµ = ηµνx

ν = (t,−x,−y,−z). With this rule, any expression in which all indices are
contracted pairwise with one index of each pair upstairs and one downstairs is manifestly
Lorentz invariant. For example,3 xµxµ = t2 − x2 − y2 − z2 → x′µx

′µ = xµx
µ.

When we come to spinors, we shall need the gamma matrices, γµ, which are a set of
four, 4 x 4 matrices satisfying the Clifford algebra {γµ, γν} ≡ γµγν+γνγµ = 2ηµν ·1, where 1

denotes a 4 x 4 unit matrix. In these lecture notes, we shall use two different representations,
both of which are common in the literature. The first is the chiral representation, given by

γµ =

(
0 σµ

σµ 0

)
, (3.2)

where σµ = (1, σi), σµ = (1,−σi), and σi are the usual 2 x 2 Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (3.3)

For this representation,

γ5 ≡ iγ0γ1γ2γ3 =

(
−1 0

0 1

)
. (3.4)

The other representation for gamma matrices is the Pauli-Dirac representation, in which
we replace

γ0 =

(
1 0

0 −1

)
(3.5)

and hence

γ5 =

(
0 1

1 0

)
. (3.6)

We shall often employ Feynman’s slash notation, where, e.g., /a ≡ aµγ
µ and we shall

often write an identity matrix as 1, or indeed omit it altogether. Its presence should always
be clear from the context.4

Finally, it is to be greatly regretted that the electron was discovered before the positron
and hence the particle has negative charge. We therefore set e < 0.

3We employ the usual Einstein summation convention, xµxµ ≡
∑3
µ=0 xµx

µ.
4All this cryptic notation may seem obtuse to you now, but most people grow to love it. If you don’t,

sue me.
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4 Relativistic quantum mechanics

4.1 Why QM does and doesn’t work

I promised, dear reader, that I would begin with the Schrödinger equation of non-relativistic
quantum mechanics. Here it is:

i
∂ψ

∂t
= − 1

2m
∇2ψ + V ψ. (4.1)

For free particles, with V (x) = 0, the equation admits plane wave solutions of the form
ψ ∝ ei(p·x−Et), provided that E = p2

2m , corresponding to the usual Energy-momentum
dispersion relation for free, non-relativistic particles.

No doubt all of this, together with the usual stuff about |ψ(x)|2 being interpreted
as the probability to find a particle at x, is old hat to you. By now, you have solved
countless complicated problems in quantum mechanics with spinning electrons orbiting
protons, bouncing off potential steps, being perturbed by hyperfine interactions, and so on.
But at the risk of boring you, and before we leap into the weird and wonderful world of
relativistic quantum mechanics and quantum field theory, I would like to spend a little time
dwelling on what quantum mechanics really is.

The reason I do so is because the teaching of quantum mechanics these days usually
follows the same dogma: firstly, the student is told about the failure of classical physics at
the beginning of the last century; secondly, the heroic confusions of the founding fathers
are described and the student is given to understand that no humble undergraduate stu-
dent could hope to actually understand quantum mechanics for himself; thirdly, a deus ex
machina arrives in the form of a set of postulates (the Schrödinger equation, the collapse
of the wavefunction, etc); fourthly, a bombardment of experimental verifications is given,
so that the student cannot doubt that QM is correct; fifthly, the student learns how to
solve the problems that will appear on the exam paper, hopefully with as little thought as
possible.

The problem with this approach is that it does not leave much opportunity to wonder
exactly in what regimes quantum mechanics does and does not work, or indeed why it has
a chance of working at all. This, unfortunately, risks leaving the student high and dry when
it turns out that QM (in its non-relativistic, undergraduate incarnation) is not a panacea
and that it too needs to be superseded.

To give an example, every student knows that
∫
dx|ψ(x, t)|2 gives the total probability

to find the particle and that this should be normalized to one. But a priori, this integral
could be a function of t, in which case either the total probability to find the particle would
change with time (when it should be fixed at unity) or (if we let the normalization constant
be time-dependent) the normalized wavefunction would no longer satisfy the Schrödinger
equation. Neither of these is palatable. What every student does not know, perhaps, is that
this calamity is automatically avoided in the following way. It turns out that the current

jµ = (ρ, j) = (ψ∗ψ,− i

2m
(ψ∗∇ψ − ψ∇ψ∗)) (4.2)

– 5 –



is conserved, satisfying ∂µjµ = 0. (For now, you can show this directly using the Schrödinger
equation, but soon we shall see how such conserved currents can be identified just by looking
at the Lagrangian; in this case, the current conservation follows because a phase rotated
wavenfunction ψ′ = eiαψ also satisfies the Schrödinger equation.) Why conserved? Well,
integrating ∂µjµ = 0 we get that the rate of change of the time component of the current
in a given volume is equal to (minus) the flux of the spatial component of the current out
of that volume:

d

dt

∫
ρdV = −

∫

∂V
j · dS. (4.3)

In particular, ψ∗ψ integrated over all space, is constant in time. This is a notion which
is probably familiar to you from classical mechanics and electromagnetism. It says that
ψ∗ψ, which we interpret as the probability density in QM, is conserved, meaning that the
probability interpretation is a consistent one.

This conservation of the total probability to find a particle in QM is both its salvation
and its downfall. Not only does it tell us that QM is consistent in the sense above, but it
also tells that QM cannot hope to describe a theory in which the number of particles present
changes with time. This is easy to see: if a particle disappears, then the total probability
to find it beforehand should be unity and the total probability to find it afterwards should
be zero. Note that in QM we are not forced to consider states with a single particle (like a
single electron in the Coulomb potential of a hydrogen atom), but we are forced to consider
states in which the number of particles is fixed for all time. Another way to see this is that
the wavefunction for a many-particle state is given by ψ(x1, x2, . . . ), where x1, x2, . . . are
the positions of the different particles. But there is no conceivable way for this wavefunction
to describe a process in which a particle at x1 disappears and a different particle appears
at some other x3.

Unfortunately, it happens to be the case in Nature that particles do appear and dis-
appear. An obvious example is one that (amusingly enough) is usually introduced at the
beginning of a QM course, namely the photoelectric effect, in which photons are annihilated
at a surface. It is important to note that it is not the relativistic nature of the photons
which prevents their description using QM, it is the fact that their number is not conserved.
Indeed, phonons arise in condensed matter physics as the quanta of lattice vibrations. They
are non-relativistic, but they cannot be described using QM either.

Ultimately, this is the reason why our attempts to construct a relativistic version of
QM will fail: in the relativistic regime, there is sufficient energy to create new particles
and such processes cannot be described by QM. This particle creation is perhaps not such
a surprise. You already know that in relativity, a particle receives a contribution to its
energy from its mass via E = mc2. This suggests (but certainly does not prove) that if
there is enough E, then we may be able to create new sources of m, in the form of particles.
It turns out that this does indeed happen and indeed much of current research in particle
physics is based on it: by building colliders (such as the Large Hadron Collider) producing
ever-higher energies, we are able to create new particles, previously unknown to science and
to study their properties.
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Even though our imminent attempt to build a relativistic version of QM will eventually
fail, it will turn out to be enormously useful in finding a theory that does work. That theory
is called Quantum Field Theory and it will be the subject of the next section. For now, we
will press ahead with relativistic QM.

4.2 The Klein-Gordon equation

To write down a relativistic version of the Schrödinger equation is easy - so easy, in fact,
that Schrödinger himself wrote it down before he wrote down the equation that made him
famous. Starting from the expectation that the free theory should have plane wave solutions
(just as in the non-relativistic case), of the form φ ∝ e−iEt+ip·x = e−ipµx

µ and noting that
the relativistic dispersion relation pµpµ = m2 should be reproduced, we infer the Klein-
Gordon equation

(∂µ∂
µ +m2)φ = 0. (4.4)

If we assume that φ is a single complex number, then it must be a Lorentz scalar, being
invariant under a Lorentz transformation: φ(xµ)→ φ′(x′µ). The Klein-Gordon equation is
then manifestly invariant under Lorentz transformations. The problems with this equation
quickly become apparent. Firstly, the probability density cannot be |φ|2 as it is in the
non-relativistic case, because |φ|2 transforms as a Lorentz scalar (i.e. it is invariant), rather
than as the time component of a 4-vector (the probability density transforms like the inverse
of a volume, which is Lorentz contracted). Moreover, |φ|2 is not conserved in time. To find
the correct probability density, we must find a conserved quantity. Again, we shall soon
have the tools in hand to do so ourselves, but for now we pull another rabbit out of the
hat, claiming that the 4-current

jµ = i(φ∗∂µφ− φ∂µφ∗) (4.5)

satisfies ∂µjµ = 0 (exercise), meaning that its time component integrated over space,∫
dxi(φ∗ ∂∂tφ− φ ∂

∂tφ
∗) is a conserved quantity. So far so good, but note that

∫
dxi(φ∗ ∂∂tφ−

φ ∂
∂tφ
∗) is not necessarily positive. Indeed, for plane waves of the form φ = Ae∓ipµx

µ , we
obtain ρ = ±2E|A|2. There is a related problem, which is that the solutions φ = Ae±ipµx

µ ,
correspond to both positive and negative energy solutions of the relativistic dispersion rela-
tion: E = ±

√
p2 +m2. Negative energy states are problematic, because there is nothing to

stop the vacuum decaying into these states. In classical relativistic mechanics, the problem
of these negative energy solutions never reared its ugly head, because we could simply throw
them away, declaring that all particles (or rockets or whatever) have positive energy. But
when we solve a wave equation (as we do in QM), completeness requires us to include both
positive and negative energy solutions in order to be able to find a general solution.

4.3 The Dirac equation

In 1928, Dirac tried to solve the problem of negative-energy solutions by looking for a wave
equation that was first order in time-derivatives, the hope being that one could then obtain
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a dispersion relation of the form E = +
√
p2 +m2 directly, without encountering negative-

energy states. Dirac realised that one could write an equation that was linear in both time
and space derivatives of the form

(iγν∂ν −m)ψ = 0 (4.6)

that implied the Klein-Gordon equation for ψ, provided that the 4 constants γν were ma-
trices. To wit, acting on the left with (iγµ∂µ +m), we obtain

(−γµγν∂µ∂ν −m2)ψ = 0. (4.7)

Since ∂µ∂ν = ∂ν∂µ, we may symmetrize to get

(−1

2
{γµ, γν}∂µ∂ν −m2)ψ = 0. (4.8)

Thus, (minus) the Klein-Gordon equation is recovered if the anticommutator is such that

{γµ, γν} = 2ηµν . (4.9)

The γν evidently cannot be simply numbers, since, for example, γ0γ1 = −γ1γ0. In fact, the
smallest possible matrices that implement this relation are 4x4, as you may show by trial
and error. Any set of matrices satisfying the algebra will do, but some are more convenient
than others, depending on the problem at hand. We will either use the chiral representation

γµ =

(
0 σµ

σµ 0

)
, (4.10)

where σµ = (1, σi), σµ = (1,−σi), and σi are the usual 2 x 2 Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(4.11)

or we will use the Pauli-Dirac representation in which we replace

γ0 =

(
1 0

0 −1

)
. (4.12)

Note that γ0 is Hermitian in either representation, whereas γi are anti-Hermitian.
This can be conveniently written as (γµ)† = γ0γµγ0, but note that this equation (and the
hermiticity properties) are not basis-independent. Since the γν are 4 x 4 matrices, the
wavefunction ψ must have 4 components. It is not a 4-vector (and nor are the γν , despite
the suggestive notation, since they are constants and do not transform). It transforms in a
special way under Lorentz transformations (which we don’t have time to go through here,
sadly) and we call it a 4-component spinor. It is easy enough to show that Dirac’s equation
has a conserved current given by (one final rabbit, I promise)

jµ = (ψ†ψ,ψ†γ0γiψ), (4.13)
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where ψ† is the Hermitian conjugate (transpose conjugate) of ψ. Note that the probability
density, ψ†ψ is now positive definite, so Dirac managed to solve one problem. But what
about the negative energy solutions? In the rest frame, with (E, p) = (m, 0), we find
solutions to (4.6) of the form A∓e∓imt, provided that

(±γ0 − 1)A∓ = 0 =⇒ A− ∝




A1

A2

0

0


 , A+ ∝




0

0

A3

A4


 , (4.14)

where we used the Pauli-Dirac basis. So there are four modes, two of which have positive
energy and two of which have negative energy. The two positive energy modes are inter-
preted (as we shall soon see) as the two different spin states of a spin-half particle. Dirac’s
proposal to deal with the negative energy states was as follows. Since the Pauli exclusion
principal for these spin-half fermions forbids multiple occupation of states, one can postu-
late that the vacuum corresponds to a state in which all of the negative energy states are
filled. Then, Dirac argued, if one has enough energy, one might be able to promote one of
these negative-energy particles to a positive-energy particle. One would be left with a ’hole’
in the sea of negative energy states, which would behave just like a particle with opposite
charge to the original particles. Thus Dirac came up with the concept of antiparticles. The
antiparticle of the electron, the positron, was duly found, bringing great acclaim to Dirac.
But this picture of the Dirac sea was soon rendered obsolete by the emergence of quantum
field theory.

It is not much harder to find the plane-wave solutions of the Dirac equation in any frame,
so we do it for completeness. For the positive-energy solutions of (4.6), write ψ = ue−ip·x,

such that (/p−m)u = 0. Writing u =

(
φ

χ

)
implies

u = N

(
φ

σ·p
E+mφ

)
. (4.15)

Finally, taking the two states to be φ1 =

(
1

0

)
and φ2 =

(
0

1

)
, we obtain

u1 = N




1

0
pz

E+m
px+ipy
E+m


 , u2 = N




0

1
px−ipy
E+m
−pz
E+m


 . (4.16)

For the negative-energy solutions, write ψ = ve+ip·x, such that (/p+m)v = 0. Thus,

v = N

(
σ·p
E+mχ

χ

)
, (4.17)
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such that

v1 = N




px−ipy
E+m
−pz
E+m

0

1


 , v2 = N




pz
E+m
px+ipy
E+m

1

0


 . (4.18)

We find it most convenient to normalize in such a way that that there is a number density
ρ = ψ†ψ = u†u = v†v of 2E particles per unit volume. This fixes N =

√
E +m.

We end our treatment of the Dirac equation by showing that it does indeed describe a
spin-half particle. To do so, we show that there exists an operator S, such that J ≡ L + S

is a constant of the motion with S2 = s(s + 1) = 3
4 . First note that the orbital angular

momentum L does not commute with the Hamiltonian, defined, à la Schrödinger, to be
everything that appears on the right of the Dirac equation when i∂ψ∂t appears on the left.
Thus,

H = γ0(γipi +m). (4.19)

Then, for example

[L3, H] = [x1p2 − x2p1, H] = [x1, H]p2 − [x2, H]p1 = iγ0(γ1p2 − γ2p1) 6= 0. (4.20)

The operator S that ensures [H,J i] = 0 is given by S ≡ Σ
2 , where Σi ≡

(
σi 0

0 σi

)
. As a

check (in the chiral basis),

[S3, H] = [
1

2

(
σ3 0

0 σ3

)
,

(
−σipi m

m σipi

)
] = −iγ0(γ1p2 − γ2p1) = −[L3, H]. (4.21)

Moreover, S2 = 1
4σiσi = 3

4 , as required.

4.4 Maxwell’s equations

This is a convenient juncture at which to introduce Maxwell’s equations of electromag-
netism, even though we make no effort to make a quantum mechanical theory out of them
(since the number of photons is not fixed, it is doomed to fail). We shall need them for our
later study of QFT, however.

In some system of units, Maxwell’s equations may be written as

∇ ·E = ρ,∇×E + Ḃ = 0 (4.22)

∇ ·B = 0,∇×B = j + Ė. (4.23)

In terms of the scalar and vector potentials V and A we may solve the two homogeneous
equations by writing

E = −∇V − Ȧ, (4.24)

B = ∇×A. (4.25)
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All of this is more conveniently (and covariantly) written in terms of the 4-vector potential,
Aµ ≡ (V,A), the 4-current, jµ ≡ (ρ, j) and the antisymmetric field strength tensor, Fµν ≡
∂µAν − ∂νAµ; indeed, Maxwell’s equations then reduce to the rather more compact form

∂µF
µν = jν . (4.26)

This rendering makes it obvious that Maxwell’s equations are invariant (as are E and B

themselves) under the gauge transformation Aµ → Aµ + ∂µχ, where χ is an arbitrary
function on spacetime. This ‘gauge’ is the same ‘gauge’ that appears in the title of these
lectures, so it behoves you to play close attention whenever you see the word from now on!

One way we can deal with the gauge freedom is to remove it (wholly or partially) by
gauge fixing. One common choice is the Lorenz (not Lorentz!) gauge ∂µAµ = 0. In this
gauge, each of the four components of the vector Aµ satisfies the Klein-Gordon equation
with m = 0, corresponding to a massless photon. We can find plane wave solutions of the
form Aµ = εµe−ip·x, with p2 = 0. Since we have fixed the gauge ∂µAµ = 0, we must have
that ε ·p = 0. Moreover, the residual gauge invariance implies that shifting the polarization
vector εµ by an amount proportional to pµ gives an equivalent polarization vector. Thus,
there are only two physical degrees of polarization. These could, for example, be taken to
be purely transverse to the photon 3-momentum.5

Finally, we discuss how to couple the electromagnetic field to Klein-Gordon or Dirac
particles. The usual argument given in classical mechanics and non-relativistic QM is that
one should use the rules of minimal subtraction, replacing ∂µ → Dµ ≡ ∂µ + ieAµ.6 Thus,
the Klein-Gordon equation becomes

(∂µ + ieAµ)(∂µ + ieAµ)φ+m2φ = 0. (4.27)

It is interesting to note that, if we take a negative energy solution φ ∝ e+i(Et+p·x) with
charge +e, the complex conjugate field φ∗ ∝ e−i(Et+p·x) (which satisfies the complex con-
jugate of the Klein-Gordon equation) can be interpreted as a positive energy solution with
opposite momentum and opposite charge −e. This presages the interpretation of the neg-
ative energy solutions in terms of antiparticles in quantum field theory.

For the Dirac equation, the coupling to electromagnetism is even more interesting.
Blithely making the minimal substitution, we get

(iγµ(∂µ + ieAµ)−m)ψ = 0. (4.28)

Now, if we act on the left with (iγµ(∂µ + ieAµ) + m) we do not obtain the Klein-Gordon
equation (4.27). Instead, we find the equation (exercise – hint: use 2γµγν ≡ {γµ, γν} +

5The fact that there are two polarizations does not mean that the photon has spin one-half! In fact,
spin – which could be described as the total angular momentum of a particle in its rest frame – is not a
well-defined concept for massless particles, which do not have a rest frame. Massless particles can instead
be described by their helicity, which is defined as the angular momentum parallel to the direction of motion.
It can take just two values (±1 for the photon), leading to the two polarizations just found.

6This is completely unmotivated. We shall , very shortly, have the means at hand to provide a satisfactory
discussion of how things should be done, but for now we beg the reader’s leniency.
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[γµ, γν ])

(D2 +m2 +
ie

2
[γµ, γν ]Fµν) = 0, (4.29)

with the extra term ie
2 [γµ, γν ]Fµν . Now, in the Pauli-Dirac basis, i

2 [γi, γj ] is given by
iεijkΣk where, as we saw before, Σk

2 represents the spin Sk. Thus, in a magnetic field, with
Fij = εijkBk, we get the extra term 2eS ·B. This factor of 2 is crucial – if one works out
the D2 term (which is present even for a spinless particle), one will also find an interaction
between the orbital angular momentum L and B given by eL · B. Thus, Dirac’s theory
predicted that the electron spin would produce a magnetic moment a factor of two larger
that the magnetic moment due to orbital magnetic moment, as was observed in experiment.

In fact, increasing experimental precision eventually showed that the gyromagnetic ratio
of the electron is not quite two, but rather 2.0023193 . . . . In yet another heroic triumph for
theoretical physics, Schwinger showed in 1948 that this tiny discrepancy could be perfectly
accounted for by quantum field theory, to which we shortly turn.

4.5 Transition rates and scattering

Before we go further, we need to modify one more aspect of your quantum mechanics
education. QM has its hegemony in atomic physics, where one is interested in energy
spectra and so on. In particle physics, we are less interested in energy spectra. One reason
is that (as we shall see) we are not able to compute them. A more pragmatic reason is that
many of the particles in particle physics are very short-lived; we learn things about them by
doing scattering experiments, in which we collide stable particles (electrons or protons) to
form new particles, and then observe those new particles decay. The quantities of interest
(that we would like to compute using quantum field theory) are therefore things like decay
rates and cross sections. What a decay rate is should be obvious to you. A cross-section is
only a bit more complicated. Clearly, the probability for two beams of particles to scatter
depends on things like the area of the beams and their densities. The cross-section is a
derived quantity which depends only on the nature of the particles making up the beams
(and their four-momenta).

To derive formulæ for these, we start with something you should know from QM.
Fermi’s Golden rule decrees that the transition rate from state i to state f via a Hamiltonian
perturbation H ′ is given by

Γ = 2π|Tfi|2δ(Ei − Ef ), (4.30)

where

Tfi = 〈f |H ′|i〉+ Σn6=i
〈f |H ′|n〉〈n|H ′|i〉

En − Ei
+ . . . (4.31)

Let’s now try to apply this formula to the decay of a particle into n lighter particles,
a→ 1 + 2 + · · ·+n. There are n− 1 independent 3-momenta in the final state (momentum
must be conserved overall in the decay). Now, for states normalized such that there is one
particle per unit volume in position space, then we have one particle per h3 = (2π)3 volume
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in momentum space (recall the de Broglie relation p = h
λ and recall that ~ = 1 in our

system of units). Thus, the decay rate to produce particles in the final state with momenta
between p and p+ dp is

Γ = 2π

∫
d3p1

(2π)3
. . .

d3pn−1

(2π)3
|Tfi|2δ(Ea − E1 − E2 · · · − En), (4.32)

= (2π)4

∫
d3p1

(2π)3
. . .

d3pn
(2π)3

|Tfi|2δ3(pa − p1 − p2 · · · − pn)δ(Ea − E1 − E2 · · · − En),

(4.33)

where in the last line we have written things more covariantly.
There is one complication, which is that we will not normalize states to one particle per

unit volume. Instead (as we just did for solutions of the Dirac equation), we will normalize
to 2E particles per unit volume. The E is convenient because the density transforms under
a Lorentz transformation like an energy does (the volume is Lorentz contracted). The 2

just makes some formulæ more streamlined. To compensate for this, we divide by 2E

everywhere in the above formula, defining |Tfi|2 = |M|2
2Ea2E1...2En

. Finally, we get

Γ =
(2π)4

2Ea

∫
d3p1

(2π)32E1
. . .

d3pn
(2π)32En

|M|2δ4(pµa − pµ1 − pµ2 · · · − pµn). (4.34)

For two-particle scattering, a+ b→ 1 + 2 + · · ·+ n, the transition rate is, analogously,

(2π)4

2Ea2Eb

∫
d3p1

(2π)32E1
. . .

d3pn
(2π)32En

|M|2δ4(pµa + pµb − p
µ
1 − pµ2 · · · − pµn). (4.35)

To get the cross-section formula with these conventions, we just divide by the flux of a
particles on b in a given frame, which is |va − vb|. In all,

σ =
(2π)4

2Ea2Eb|va − vb|

∫
d3p1

(2π)32E1
. . .

d3pn
(2π)32En

|M|2δ4(pµa + pµb − p
µ
1 − pµ2 · · · − pµn).

(4.36)

It is useful to derive expressions from these general formulæ for two-body final states.
For the two-body decay in the rest frame of a, we find (exercise)

Γ(a→ 1 + 2) =
|p1|

32π2m2
a

∫
|M|2 sin θdθdφ, (4.37)

where particle 1 has 3-momentum (|p1| sin θ cosφ, |p1| sin θ sinφ, |p1| cos θ). For two-body
scattering in the CM frame, we similarly find

σ(a+ b→ 1 + 2) =
|p1|

64π2|pa|s

∫
|M|2 sin θdθdφ. (4.38)

Here we have introduced the first of three Mandelstam variables

s ≡ (pµa + pµb )2, (4.39)

t ≡ (pµ1 − pµa)2, (4.40)

u ≡ (pµa − pµ2 )2. (4.41)

Note that these three variables are dependent, satisfying (exercise)

s+ t+ u = m2
a +m2

b +m2
1 +m2

2. (4.42)
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5 Relativistic quantum fields

5.1 Classical field theory

Before we consider quantum field theory, it is useful to begin with a primer on classical field
theory. Happily (though you may not know it) you are already experts on classical field
theory. Indeed, most undergraduate physics is based on the solution of wave equations,
etc., and that is all classical field theory is. However, you may not be so expert on the
Hamiltonian and Lagrangian formulations of classical field theory; just like in QM, it is
these formulations which are most useful in going from the classical to the quantum regime.

Let us begin with the Lagrangian formulation. Imagine we have a field on spacetime,
which we denote generically by φ(xµ). Just like in classical mechanics, the action, S, is
obtained by integrating the Lagrangian, L, over time. Now, we shall restrict ourselves
to theories in which the Lagrangian can be obtained by integrating something called the
Lagrangian density, L over space.7 Thus

S =

∫
dtL =

∫
d4xµL(φ(x), ∂µφ(x)). (5.1)

From now on, we will almost always deal with the Lagrangian density only and will often
simply call it the Lagrangian.

Given the Lagrangian, the classical (Euler-Lagrange) equations of motion are obtained
by extremizing the action. Thus, consider the variation δS that results from a field variation
δφ:

δS =

∫
d4x

(
δL
δφ
δφ+

δL
δ∂µφ

δ∂µφ

)
(5.2)

=

∫
d4x

(
δL
δφ
− ∂µ δL

δ∂µφ

)
δφ, (5.3)

where we have integrated by parts. The action is thus extremal when

δL
δφ
− ∂µ δL

δ∂µφ
= 0. (5.4)

As an example, the Klein-Gordon Lagrangian is the most general Lorentz-invariant with
two or fewer derivatives and is given by

L = ∂µφ∂
µφ−m2φ2; (5.5)

you may easily show that the Klein-Gordon equation (4.4) follows from extremization (ex-
ercise).

7This is an extremely important assumption, in that it restricts us to theories which are local in space-
time, in the sense that the fields only couple to other fields which are at the same point in space or are at
most infinitesimally far away. It is not obvious that this is a necessary requirement. The only motivations
for it are (i) that all observations so far seem to be consistent with it, (ii) even slightly non-local physics
looks local if viewed from far enough away and (iii) we have almost no idea of how to write down a consistent
theory, bar string theory, which violates locality. Perhaps you can find one.
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This formalism is particularly useful for identifying symmetries of the dynamics and
the consequent implications. This is encoded in Nöther’s theorem. Suppose that the action
is invariant under some symmetry transformation of the fields, φ→ φ+ δφ. The fact that
the action is invariant means that the Lagrangian can change at most by a total derivative,
∂µK

µ (which integrates to zero in the action). Thus we have that

δL = ∂µK
µ =

δL
δφ
δφ+

δL
δ∂µφ

δ∂µφ (5.6)

=
δL
δφ
δφ− ∂µ

δL
δ∂µφ

δφ+ ∂µ

(
δL
δ∂µφ

δφ

)
. (5.7)

But when the equations of motion hold – on classical trajectories – the first two terms on
the right hand side cancel. Thus, classically, we have the conserved current

∂µJ
µ = 0, where Jµ ≡ δL

δ∂µφ
δφ−Kµ. (5.8)

As an example, consider the theory of a complex Klein-Gordon field. Its Lagrangian is
given by

L = ∂µφ
∗∂µφ−m2φ∗φ. (5.9)

The action (and indeed the Lagrangian) is invariant under φ → eiαφ; we can derive the
conserved current by taking α to be small, such that δφ = iαφ and δφ∗ = −iαφ∗. Thus
(ignoring the irrelevant overall factor of α)

Jµ = iφ∗∂µφ− iφ∂µφ∗, (5.10)

which is precisely the probability current that we encountered in our discussion of the
Klein-Gordon equation in QM. Similarly, the Dirac Lagrangian is given by

L = ψ(i/∂ −m)ψ. (5.11)

Here we introduce for the first time the notation ψ = ψ†γ0. Its utility lies in the fact
that ψψ is a Lorentz invariant, whereas ψ†ψ is not.8 Indeed, as we have seen, ψ†ψ is the
time component of a 4-vector, namely the probability current. The invariance of the Dirac
Lagrangian under a global rephasing of ψ results in the conservation of this probability
current, a fact that we pulled out of a hat in our earlier discussion.

The theories that we concern ourselves with here are also Lorentz- (indeed, Poincaré-
) invariant and this too has consequences for the dynamics. Consider, for example, the
effect of the invariance under spacetime translations xµ → xµ + aµ. A field transforms
correspondingly as φ(xµ)→ φ(xµ + aµ) ' φ(xµ) + aν∂νφ(xµ), for small aν .The Lagrangian
also changes by L → L+aµ∂µL (a total derivative as required) and there are four resulting
conserved currents (one for each ν) given by

Tµν =
δL
δ∂µφ

∂νφ− δµνL. (5.12)

8Sadly, I cannot show this without first showing you explicitly how a spinor transforms. You will have
to look in a book.
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This is called the energy-momentum tensor. ∂µT
µ
0 = 0 corresponds to the invariance under

time translations and hence expresses conservation of energy (T 0
0 is just the energy density)

and ∂µT
µ
i = 0 expresses conservation of momentum. Similarly, invariance under rotations

(a subgroup of Lorentz transformations) implies conservation of angular momentum.
At this point, the Lagrangians that we have written down may seem completely arbi-

trary. In fact, it usually turns out in particle physics that the form of the Lagrangian is
essentially fixed, up to a few free parameters, once one has specified the particle content
and the symmetries that one desires.9 Let us illustrate this by ‘deriving’ the Lagrangian
for electromagnetism. Here the key symmetry principles are Lorentz invariance and gauge
invariance. The second of these dictates that the Lagrangian should be built out of gauge-
invariant objects, for which the only candidate is the field strength tensor, Fµν . The first
dictates that all indices should be contracted together. If we are primarily interested in the
long-distance (hence low energy) behaviour of the theory, then the dominant term will be
the one with the smallest number of derivatives. Thus we arrive at the Lagrangian

L = −1

4
FµνF

µν . (5.13)

It is worthwhile to point out that while the coefficient in front is merely conventional,
the sign is not. The minus ensures that the term involving the spatial components of the
gauge field (which ‘contain’ the physical degrees of freedom), Ȧi

2
, has a positive contri-

bution to the kinetic energy (recall that L = T − V ). In fact, we can get a lot further
by means of symmetry considerations. We can even, for example, determine exactly how
the electromagnetic field should couple to complex Klein-Gordon or Dirac fields. We have
already seen how both of these fields have an invariance under a global phase rotation, say
φ → eieχφ. Now suppose that we try to increase the symmetry even further, by promot-
ing this to a local transformation, in which the phase χ, previously a constant, becomes a
function of spacetime χ(xµ). The mass terms in the Klein-Gordon or Dirac Lagrangians
remain invariant under this enlarged symmetry. But the derivative terms do not, because
∂µφ→ eieχ∂µφ+ ie∂µχe

ieχφ. But now suppose that we introduce an electromagnetic field
Aµ whose gauge transformation is given by

Aµ → Aµ − ∂µχ. (5.14)

Then, the quantity (∂µ + ieAµ)φ ≡ Dµφ → eieχDµφ and the kinetic terms in the action
will be invariant.

Let us now pause for breath. What have we done? We have shown that if we take a
complex Klein-Gordon or Dirac field with a global re-phasing invariance, we can promote it

9It is interesting to ponder, in the long winter evenings, why Nature exhibits such a high degree of
symmetry. (It is true that glancing casually at an atlas does not suggest that Nature is terribly symmetric.
But we shall see that at short distances, Nature shows a breathtakingly high degree of symmetry.) Some
attribute it to the genius of some higher intelligence. Others are more prosaic, arguing that it could not
really be any other way. Indeed, as you well know, it is extremely difficult to build a mathematical theory
of physics which is fully consistent in all regimes. Every theory breaks down somewhere. The only chance
that a theory has to be consistent is for its dynamics to be very strongly constrained, so that nothing can
go wrong. But this is precisely what symmetry achieves. A good analogy is a mechanical system, where
experience tells us that the fewer moving parts, the less likely it is to break!
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to a local symmetry at the expense of introducing a new, gauge field Aµ via the covariant
derivativeDµ.10 We have thus ‘derived’ the arbitrary principle of minimal substitution. But
is the principle of local symmetry any less arbitrary? Our general ‘theological’ argument is
that nature is symmetric because symmetry is necessary for consistency of physical laws.
But making such an argument for a local symmetry looks like a con. After all, the local
part of a symmetry is really just a redundancy of description: we can completely remove
it by fixing the gauge. Nevertheless, requiring local symmetry does restrict the possible
dynamics (in the sense that various possible terms in the Lagrangian are forbidden) and
indeed it is the only way in which we can build a consistent theory of force-carrying vector
particles.11

The principle of gauge invariance (together with Lorentz invariance) fixes the form of
the action involving electrons (which are described by a Dirac field) and electromagnetic
radiation (or photons) - it is precisely the one which gives rise to Maxwell’s equations in the
classical limit. The quantum version of this theory, which is called quantum electrodynamics
or QED, explains at a stroke all of chemistry and most of physics as well. It has successfully
predicted the results of measurements (like the gyromagnetic ratio of the electron) that are
the most precise ever carried out in Science. Gauge invariance even dictates how the photon
can couple to particles, like the Higgs boson, that do not carry electric charge and in fact
this coupling was crucial in the recent discovery of the Higgs boson. Not bad for a humble
re-phasing invariance, I would say.

5.2 Scalar field quantization

You must be champing at the bit by now. Fifteen pages and still no quantum field theory.
Well, here we go.

There exist two popular formalisms for QFT. Each has its advantages and disadvan-
tages. Here we follow the approach of canonical quantization. Its great advantage, for our
purposes, is that it is rather close to what you have already done in QM. Its great disad-
vantage is that it is not well-suited to gauge field theories. We shall circumvent this hurdle
by studying only simple examples of QFTs, which are suited to canonical quantization, to
begin with, and by using these examples to motivate the form of the Feynman rules for
more complex theories. Those of you who view this course as the beginning of your career
in physics (rather than the end) would be well advised to consult the literature for how to
do canonical quantization properly and for the other, path integral, approach.

We begin with a real, scalar field. The Lagrangian is12

L =
1

2
(∂µφ∂µφ−m2φ2). (5.15)

10Note that the field strength can be written in terms of the covariant derivative as Fµν ∼ [Dµ, Dν ].
11This can be proven, but I won’t do it here. For what comes later, I add that this is also true for

non-renormalizable, effective theories. There, all terms are allowed in the Lagrangian, but the sizes of their
coefficients are fixed by the principle of gauge invariance and this guarantees consistency.

12The factor of one-half is conventional.

– 17 –



The point of departure from QM is that we shall try to quantize the field φ, rather than the
position x.13 Thus, we compute the momentum conjugate to the field φ, namely π ≡ δL

δφ̇
and impose the commutation relations

[φ(xi, t), π(x′i, t)] = iδ3(xi − x′i), (5.16)

[φ(xi, t), φ(x′i, t)] = [π(xi, t), π(x′i, t)] = 0. (5.17)

The δ function simply accounts for the fact that the fields at different space points are
considered to be independent. Notice that, since the operators φ and π depend on time, we
are working in the Heisenberg picture of QM, rather than the Schrödinger picture (in the
latter, operators are constant in time and states have all the time dependence). We’ll have
more to say about this later on.

The basic goal in QM is to find the spectrum of energies and eigenstates of the Hamil-
tonian. This looks like a hard problem for our field theory, for which the Hamiltonian
(density) is given by

H(φ, π) ≡ πφ̇− L =
1

2
(π2 + (∇φ)2 +m2φ2). (5.18)

Thankfully, it is rendered almost trivial if we make the Fourier transform

φ(x, t) =

∫
d3p

(2π)32E

(
ape
−iEt+ip·x + a†pe

+iEt−ip·x
)
, (5.19)

with E ≡ +
√
p2 +m2. Note that we have forced φ to be real (or rather Hermitian, since

it is now to be interpreted as an operator). Note also that we have normalized using the
Lorentz-invariant integration measure d3p

(2π)32E
.14

With this transformation, one may show (recall that
∫
d3peip·x = (2π)3δ3(x)) that the

commutation relations (5.16) can be reproduced by

[ap, a
†
p′ ] = (2π)32Eδ3(p− p′), (5.20)

[ap, ap′ ] = [a†p, a
†
p′ ] = 0. (5.21)

This is encouraging, since (apart from a normalization factor) these are the usual commu-
tation relations for the ladder operators a and a† of the simple harmonic oscillator, with
one oscillator for each p. The delta function expresses the fact that the different oscilla-
tors are independent. Even better, the various contributions to the Hamiltonian (not the

13Such a dramatic change makes it hard to imagine how QM can be recovered as a limit of QFT; we shall
have to go through some acrobatics later on to do so.

14This is Lorentz invariant, because it can also be written as 1
(2π)3

∫
d4pδ(p2 −m2).
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Hamiltonian density, for once) may be written as (note that E = E′ when p′ = −p, etc)

1

2

∫
d3x m2φ2 =

1

(2π)38E2

∫
d3p m2

(
apa−pe

−2iEt + a†pa
†
−pe

+2iEt + apa
†
p + a†pap

)

(5.22)
1

2

∫
d3x (∇φ)2 =

1

(2π)38E2

∫
d3p p2

(
apa−pe

−2iEt + a†pa
†
−pe

+2iEt + apa
†
p + a†pap

)

(5.23)
1

2

∫
d3x π2 =

1

(2π)38E2

∫
d3p E2

(
−apa−pe

−2iEt − a†pa†−pe
+2iEt + apa

†
p + a†pap

)
.

(5.24)

All in all, we end up with

H =

∫
d3p

(2π)32E

E

2

(
apa

†
p + a†pap

)
. (5.25)

Again, this is nothing other than the Hamiltonian of a set of independent simple harmonic
oscillators15 (one for each p) of frequency ω = E, summed over p with the density of
states factor. It is then simple to figure out the spectrum. Define the vacuum (a.k.a. the
ground state) to be the state |0〉 annihilated by all of the annihilation operators, ap, viz.
ap|0〉 = 0∀p. Then, acting on the vacuum with a single creation operator, a†p, one produces
a state |p〉 ≡ a†p|0〉 of momentum p and energy E. (To show this explicitly, one should
act on the state a†p|0〉 with the Hamiltonian H and with the momentum P, where P here
is not the field momentum π, but rather is the operator corresponding to the generator
of spatial translations. We shall do this later on.) In QM we call this the first excited
state, but in QFT we interpret it as a state with a single particle of momentum p. A
two-particle state would be given by |p,p′〉 ≡ a†p′a

†
p|0〉, where the particles have momenta

p and p′, and so on. Note how the commutation relation [a†p, a
†
p′ ] = 0 implies immediately

that a multiparticle wavefunction is symmetric under the interchange of any two particles:
. . . a†p . . . a

†
p′ . . . |0〉 = . . . a†p′ . . . a

†
p . . . |0〉. Thus, quantum field theory predicts that spinless

excitations of the Klein-Gordon field obey Bose-Einstein statistics. Amazing.
The simple harmonic oscillator number operator a†pap is now interpreted as counting

the number of particles that are present with momentum p. Note that the total number of
particles is measured by the operator

N =

∫
d3p

(2π)32E
a†pap (5.26)

which is not a conserved quantity for the real Klein-Gordon field (it does not correspond
to a symmetry of the action). So the total number of particles, unlike in QM, is not fixed.

Notice also that the problem of negative energy solutions has gone away. Indeed, the
negative frequency modes in the superposition (5.19) now have a different interpretation:

15Recall that the SHO Hamiltonian may be written as ω
(
a†a+ 1

2

)
≡

fracω2
(
a†a+ aa†

)
.
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they accompany the annihilation operators ap and reflect the fact that annihilating a par-
ticle of energy E causes the total energy stored in the field to decrease by E.

In its place, a different problem appears. Let us try to calculate the energy of the
vacuum state |0〉. It is

〈0|H|0〉 =

∫
d3p δ3(0)

E

2
. (5.27)

The first disturbing thing about this expression is that it contains δ(0). This in fact just
corresponds to the volume of space: since

∫
d3x eip·x = (2π)3δ3(p), we may write V ≡∫

d3x = (2π)3δ3(0). But even the Hamiltonian density is divergent, because it is a sum
over all momentum modes of the SHO zero point energy E

2 . At least if we forget about
gravity, we can sidestep this problem by observing that we are only able to measure energy
differences in experiment. Thus we can simply re-define the Hamiltonian to be H−〈0|H|0〉.
Effectively, this can be implemented by ensuring that we always put operators in normal
order, by which we mean that annihilation operators always appear to the right of creation
operators. This guarantees that a normally-ordered operator will vanish when acting on the
vacuum state. A normally-ordered operator is denoted by enclosing it in a pair of colons.
The normally-ordered Hamiltonian, for example, is given by

: H : ≡
∫

d3p

(2π)32E
Ea†pap. (5.28)

This problem of the vacuum energy is only the first of many peccadillos that appear
in quantum field theory. In this case, it seems relatively benign. The other peccadillos
(which confused the founding fathers for decades) are now well understood. But this first
problem of the vacuum energy reappears when we consider coupling quantum field theory
to gravity, giving rise to the cosmological constant problem. It is arguably the greatest
unsolved problem in the Universe today.

5.3 Multiple scalar fields

Quantization of more than one scalar field is trivial, but it is helpful to point out one
or two conceptual issues. Consider n real, scalar fields, φi. If we allow a maximum of
two derivatives and two fields in each term, we claim that the Lagrangian can be written,
without loss of generality, as

L =
1

2
(∂µφi∂

µφi −m2
iφ

2
i ). (5.29)

Why? The most general kinetic term (the one involving the derivatives) could be written
as Zij∂µφi∂µφj , but the matrix Zij may be diagonalized by an orthogonal transformation
of the fields φi. An independent rescaling of the fields φi can then make each of the
eigenvalues equal to ±1. An eigenvalue of −1 would result in an inconsistent theory, since
the kinetic energy would be unbounded below. So the kinetic term can always be written
in the canonical form δij∂µφi∂

µφj . Now, this kinetic term (which must be present in order
to have a consistent theory) has a global O(n) symmetry,16 corresponding to orthogonal

16O(n) just means the group of n× n orthogonal matrices. We’ll say more about it later on.
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rotations of the fields φi. This then is the largest possible symmetry that a theory based on
n real scalar fields can have, since the kinetic term must always be present for a dynamical
field. This observation will be important when we come to consider gauge theories, since
the name of the game there will be to promote a subgroup of this to a local symmetry.

As for the mass term, this too could be an arbitrary symmetric matrix, in the basis
in which the kinetic term is canonical. This too can be diagonalized by an orthogonal
transformation, without changing the form of the kinetic term. Hence we arrive at the
Lagrangian written above. Note that the mass terms break the O(n) symmetry, unless we
force all the mi to be equal.

A particularly interesting example is n = 2, with m1 = m2 ≡ m. This theory has
SO(2) symmetry, which you may know is (locally) equivalent to a U(1) symmetry.17 One
possibility is to simply quantize the two fields, φ1 and φ2 independently, as we did in the
last section. Evidently there are two types of ‘particle’, related somehow by the SO(2)

symmetry. More illuminating is to define a complex scalar field, φ ≡ 1√
2
(φ1 + iφ2), in terms

of which the Lagrangian may be written as

L = (∂µφ
∗∂µφ−m2|φ|2). (5.30)

This can be quantized via the mode expansion

φ(x, t) =

∫
d3p

(2π)32E

(
ape
−iEt+ip·x + b†pe

+iEt−ip·x
)
, (5.31)

with

[ap, a
†
p′ ] = (2π)32Eδ3(p− p′), (5.32)

[bp, b
†
p′ ] = (2π)32Eδ3(p− p′), (5.33)

with all other commutators vanishing. It is not surprising that there are now two particle
creation operators, since there were two real scalar fields to begin with. In the complex
field formalism here, we need two mode operators in the Fourier expansion because φ is
complex. The Hamiltonian is given by

: H :=

∫
d3p

(2π)32E
E
(
a†pap + b†pbp

)
. (5.34)

As expected, since the two types of particle have the same mass, they contribute in the
same way to the total energy.

What about the SO(2) invariance? In the complex field formalism, it maps to the
simple U(1) rephasing: φ → eiαφ. Nöther’s theorem tells us that there is a conserved
charge and in terms of creation and annihilation operators it is given by

Q =

∫
d3p

(2π)32E

(
a†pap − b†pbp

)
. (5.35)

17Again, if you don’t know what SO(2) and U(1) mean yet, don’t panic: I’ll say more about them later
on. For now, SO(2) is the group of 2× 2, orthogonal matrices with unit determinant and U(1) is the group
of 1× 1, unitary matrices, a.k.a complex numbers of the form eiθ.
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Note, crucially, that it is the number of particles of type a minus the number of particles
of type b that is conserved. We call the particles of type b antiparticles. They have the
same mass as the particles, but the opposite charge (recall that when we couple such a field
to electromagnetism, we do so precisely by gauging the phase invariance φ → eiαφ, so the
charge Q is to be interpreted as the electric charge.

This leads us naturally on to study charge conjugation. Roughly speaking, this oper-
ation is defined as exchanging particles with their antiparticles and is related to complex
conjugation; many treatments therefore define it in association with various flips of i to
minus i and e to minus e, etc.

This, in my view, is deeply confusing, since i and e are supposed to be fixed constants
of Nature (indeed, we have known since the old testament that we should only exchange an
i for an i . . . ). Much better is to define charge conjugation as a symmetry in exactly the
way that we defined other symmetries above: a transformation acting on fields that leaves
the action invariant.

We’ll begin with the Klein-Gordon field. The Lagrangian is

L = (∂µ − ieAµ)φ∗(∂µ + ieAµ)φ−m2|φ|2. (5.36)

I hope it is obvious that this is invariant under the transformation Aµ → −Aµ and φ →
φ∗. More particularly, the transformation corresponds to the symmetry group Z2, because
transforming twice takes Aµ → −Aµ → Aµ and φ → φ∗ → φ, which is the same as the
identity transformation. Because it is a discrete transformation, Nöther’s theorem does not
imply a conserved charge in this case. Note that the transformation Aµ → −Aµ is just
what we expect for charge conjugation from Maxwell’s equations, which will be unchanged
if we also flip the sign of the charge and the current (which in QFT will be generated by
field configurations like φ and ψ).

Now let’s do it for the Dirac field. Here it is not so simple to guess what the symmetry
transformation is by looking at the Lagrangian, so we’ll find our way along with the help
of Simplicio, Salviati, and Sagredo, the three fictional characters of the Galilean trialogue.

The Dirac Lagrangian is

L = ψ(i /D −m)ψ, (5.37)

with Dµ = ∂µ + ieAµ. Simplicio knows, from his study of Maxwell’s equations, that the
transformation of Aµ must be Aµ → −Aµ and he guesses that he can just complex conjugate
ψ, as he did for the Klein-Gordon field. This doesn’t work well at all. Consider the mass
term for example, this transforms as

ψψ → ψTγ0ψ∗ = −ψ†(γ0)Tψ = −ψ†γ0ψ = −ψψ. (5.38)

This argument is a bit subtle: in the second step we have used the fact that the whole
quantity is just a number (not a matrix) and therefore equals its transpose. But as we
shall see in the next subsection, this theory can only make sense as a QFT if the field
anticommutes with itself. Thus, the transpose of a product of two fields is equal to minus
the reversed product of the transposed fields. Once we take this into account, we see that
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charge conjugation cannot just involve complex conjugation of the fields, because the mass
term in the Lagrangian would not be invariant. If we wanted the electron to be charged, it
would have to be massless, which it is not. Simplicio is stuck.

Now Salviati enters the fray. He realises that complex conjugation is somewhat am-
biguously defined for a multi-component spinor, since one could also mix up the different
components at the same time. So he says, “Maybe it should be ψ → Cγ0ψ∗,18 for some
matrix C. Then we’d find

ψψ → ψψ,

ψγµψ′ → −ψ′γµψ, (5.39)

provided CC† = 1 and C†γµC = −(γµ)T .” Note that Salviati carefully wrote the second
relation for a bi-linear combination of two different fields ψ and ψ′, to stress that they get
flipped by C.

Only now does Sagredo realise the true genius of Salviati. Sagredo realises that if we
set ψ′ = ψ in (5.39), we find ψAµγ

µψ → ψAµγ
µψ, whereas if we set ψ′ = ∂µψ, we find

ψ∂µγ
µψ → −∂µψγµψ → +ψ∂µγ

µψ (where in the last step we integrated by parts). So all
terms in the Lagrangian will be invariant.

Simplicio hasn’t really followed any of this, but he does point out that a suitable C is
iγ2γ0. Thus, we can now forget the trialogue and remember only that charge conjugation
can be implemented on Dirac spinors as ψ → iγ2ψ∗.

Let me make one last point, which will be important when we study non-Abelian gauge
theories. Imagine that ψ carries an extra index i and that Aµ is really a matrix with indices
i and j. Then, by an obvious generalization of Salviati’s result, ψiγµψj → −ψjγµψi and
charge conjugation will only be a symmetry of the Lagrangian if we also define Aµij → −A

µ
ji.

So a matrix-valued gauge field must go to minus its transpose under charge conjugation.

5.4 Spin-half quantization

We now wish to quantize the Dirac Lagrangian19

L = ψ(i/∂ −m)ψ. (5.40)

To do so, we first derive the Hamiltonian. The field momenta conjugate to the fields ψ and
ψ are

π ≡ δL
δψ̇

= iψ†, (5.41)

π ≡ δL
δψ̇

= 0, (5.42)

whence the Hamiltonian is

H = −ψiγ · ∇ψ +mψψ. (5.43)

18The γ0 is conventional.
19We’ll worry about the coupling to photons later, so for now we put D → ∂.
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We guess from our experience with the Klein-Gordon system that our best chance at solving
this system is to do a Fourier transform. For this, we need a complete set of plane wave
solutions to the Dirac equation. For the positive-energy solutions, we write these as ψ =

uspe
−ip·x; plugging into the Dirac equation, we find that they satisfy

(/p−m)usp = 0. (5.44)

There are two solutions (one for each of the two possible spin states), which we label by
s ∈ {1, 2}. We found explicit expressions for these earlier in the Pauli-Dirac basis, but we
do not need them here. Instead we simply note that since the u provide a complete set of
states, the combination

∑

s

uspu
s
p (5.45)

must satisfy a completeness relation. Moreover, this must be proportional to /p+m, since
acting on the left with /p −m then gives something proportional to /p2 −m2 = p2 −m2 =

0. This is as it should be, since (/p − m)usp = 0. We fix the normalization so that the
proportionality constant is unity (this corresponds to 2E particles per unit volume, as for
the Klein-Gordon field). Thus

∑

s

uspu
s
p = /p+m. (5.46)

Similarly, for the two negative energy solutions, we write ψ = vspe
+ip·x; plugging into the

Dirac equation, we find that they satisfy

(/p+m)vsp = 0 (5.47)

with completeness relation
∑

s

vspv
s
p = /p−m. (5.48)

Our mode expansion is then

ψ =

∫
d3p

(2π)32E

(
cspu

s
pe
−ip·x + ds†p v

s
pe

+ip·x
)
, (5.49)

where a sum on s is implicit. As for the complex Klein-Gordon case, since ψ is complex we
need two operators c and d.

So far, we have made no mention of commutation relations, with good reason. To see
why, let us compute the form of the conserved charge, Q ≡

∫
d3xψ†ψ (corresponding to the

re-phasing symmetry ψ → eiαψ). We find

Q =

∫
d3p

(2π)3(2E)2

(
us†p u

s′
p c

s†
p c

s′
p + vs†p v

s′
p d

s
pd

s′†
p + us†p v

s′
−pc

s†
p d

s′†
−pe

+2iEt + vs†p u
s′
−pd

s
pc
s′
−pe

−2iEt
)
,

(5.50)
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or something similar. We can simplify things using our completeness relations. Consider,
for example

∑

s

uspu
s
p = /p+m. (5.51)

Multiplying this matrix equation on the right by γ0 and then taking the trace, we get
∑

s

u†sp u
s
p = tr[(/p+m)γ0] = 4E. (5.52)

But since this corresponds to a sum over two orthogonal spin states, we must have that

u†sp u
s′
p = 2E δss

′
. (5.53)

We similarly derive v†sp vs
′

p = 2E δss
′ . To get an expression for us†p vs

′
−p, which appears in Q

above, requires a little more ingenuity. Consider
∑

s u
s
pv

s
p. This must vanish when we act

on the left with /p −m (since (/p −m)up = 0), whence it is proportional to /p + m. But it
also must vanish when we act on the right with /p+m, so it is proportional to /p−m. Hence
it vanishes identically. But the vp are proportional to v†−p (one may easily check that they
both satisfy the same equation). Hence us†p vs

′
−p = 0. In all, Q simplifies to

Q =

∫
d3p

(2π)32E

(
cs†p c

s
p + dspd

s†
p

)
. (5.54)

Similarly, one may show that

H =

∫
d3p

(2π)32E
E
(
cs†p c

s
p − dspds†p

)
. (5.55)

Now, if we impose commutation relations on c and d, we may simply permute the d with
the d† to get operators into normal order, but we end up with a disaster: not only will the
charge count the numbers of both particles and antiparticles, but also the antiparticles will
give a negative contribution to the total energy as measured by the Hamiltonian. Now, you
may try as you like to insert factors of i to try to patch things up, but nothing will work.
What does work is to make the simple but bold step of declaring that the commutation
relations should be replaced by anticommutation relations. Thus,

{csp, cs
′†

p } = (2π)3δ3(p− p′)δss
′
, (5.56)

{dsp, ds
′†

p } = (2π)3δ3(p− p′)δss
′

(5.57)

with other anti-commutators vanishing. Then the charge measures the number of particles
minus the number of antiparticles and both particles and antiparticles contribute positively
to the energy. Moreover, any n-particle state . . . c† . . . c† . . . |0〉 is manifestly antisymmetric
under the interchange of two particles. As Pauli realized, this means that if we try to put
two particles into the same state, we find (c†sp )2|0〉 = 0. So the Pauli exclusion principle of
QM follows from the fact that in QFT, we can only quantize spin-half fields consistently
by using anticommutation relations. Amazing.20

20Another philosophical discourse: Even if QFTs of both fermions and bosons are mathematically consis-
tent, why did Nature choose to realize them both? One possibility is that consistency of the laws of Nature at
a more fundamental level (e.g. including gravity) requires an even larger symmetry, called supersymmetry.
If you want to know more, take courses on supersymmetry and string theory.
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5.5 Gauge field quantization

To quantize the electromagnetic field presents a thorny problem, which has a variety of
more or less elegant workarounds. The basic problem is that the field component A0 does
not appear in the Lagrangian with a time derivative. It is non-dynamical, and as a result,
its conjugate momentum vanishes: π0 ≡ δL

δȦ0
= 0. The Hamiltonian is given by

H =

∫
d3x

(
E2 + B2 −A0∇ ·E

)
. (5.58)

Here, A0 appears as a Lagrange multiplier, enforcing Gauss’ law, ∇·E = 0 as a constraint.
Thus, the problem we face (and the problem in quantizing gauge theories in general) is the
problem of how to quantize a dynamical system with constraints. This is a most interesting
problem, first studied by (who else?) Dirac, with a variety of elegant solutions. Here we
shall follow what is perhaps the least elegant solution (but most direct) of all, which is to
make sure that we first fix the gauge completely.21 To do so, we set ∂µAµ = 0 and A0 = 0,
removing the non-dynamical field A0. This is called Coulomb gauge. A plane-wave solution
then takes the form Ai = εie−ip·x, with p2 = 0 and the condition ∇ ·A = 0 =⇒ ε · p = 0.
Thus εi has two independent polarizations.

The components of the gauge field Ai can then be quantized like massless Klein-Gordon
fields

Ai(x) =

∫
d3p

(2π)32E

∑

P

(
aPp ε

P
i e
−ip·x + a†Pp ε∗Pi e+ip·x

)
(5.59)

where εPi are the polarization vectors for the two physical components. These satisfy the
completeness relation

∑

P

εPi ε
P
j = δij −

pipj
p2

, (5.60)

whose tensor structure is fixed by the requirement that ε ·p = 0. For example, if we choose
the two states to be circularly polarized, for waves travelling in the z direction, we have

εL,Rµ =
1√
2

(0,−1,±i, 0). (5.61)

The required commutation relations are

[aPp , a
†P ′
p′ ] = (2π)32EδPP

′
δ3(p− p′) (5.62)

and they result in the Hamiltonian

H =

∫
d3p

(2π)32E

∑

P

Ea†Pp aPp , (5.63)

after normal ordering, where now E =
√

p2.
21This approach will not work for the non-Abelian gauge theories that we study later. But there we shall

bypass the details of the quantization procedure.
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5.6 How to go back again

We have opened the Pandora’s box that is quantum field theory. Having come this far, the
poor reader might be forgiven for wondering how on Earth he or she might go back again
to the mundane world of QM! That is to say, starting from quantum field theory, how can
one re-derive quantum mechanics (relativistic or otherwise) as a limiting case?22

At first glance, passing from quantum field theory to quantum mechanics would seem
to be child’s play. Indeed, the Euler-Lagrange equation of motion for either the Klein-
Gordon or Dirac field is precisely the respective quantum-mechanical Klein-Gordon or Dirac
equation. We can even take the non-relativistic limit in either case to obtain the Schrödinger
equation. For the complex Klein-Gordon field, for example,23 satisfying

(∂µ∂
µ −m2)φ = 0, (5.64)

we make the substitution φ = e−imtχ. This substitution accounts for the fact that, in the
low energy limit, the energy E in the argument of the plane-wave exponential is dominated
by the rest mass m. The remaining piece, χ should then have a small time dependence,
such that χ̇ � mχ. Making the substitution in the Klein-Gordon equation, we directly
obtain the Schrödinger equation i∂χ∂t = − 1

2m∇2χ.
Unfortunately, this argument is unsatisfactory for a number of reasons. For one thing,

the Euler-Lagrange equation of motion corresponds to the classical limit, ~ → 0,24 rather
than the limit of quantum mechanics. Moreover, in this framework, the position x is just
a label, not an operator, as it should be in QM. Finally, the interpretation of χ∗χ as the
probability density in QM is missing.

How, then, does QM really arise as the limit of QFT? Well, let us first recall that QM is
a theory with a fixed number of particles, which forces us to consider (i) the non-relativistic
limit and (ii) a theory in which the number of particles can be conserved by a symmetry.
Otherwise the limit cannot be consistent. This immediately rules out there being such a
limit for the real Klein-Gordon field, for which there is no candidate conserved charge that
could correspond to particle number in the low energy limit. For the complex Klein-Gordon
field, there is a candidate charge, but in the full theory it conserves the number of particles
minus the number of antiparticles, rather than the number of particles (which is what we
want in order for QM to be consistent). Nevertheless, we shall now show that it is possible
to have a consistent theory of QM in the low-energy limit.

22This is a topic that does not seem to be adequately addressed in the majority of field theory textbooks
and so I beg the reader’s indulgence here in allowing me to treat it in some detail. Those who wish to
remain in blissful ignorance may skip it.

23The case of the Dirac field is set as an exercise.
24One way to see that ~→ 0 is the limit of classical mechanics is to note that all commutation relations

vanish in this limit, meaning that operators can be replaced by numbers. A much more elegant way is to
note that in the path integral formulation of QM or QFT, amplitudes are obtained by integrating over all
paths in spacetime weighted by a factor of eiS/~, where S is the action. In the limit ~→ 0, the path integral
is dominated by paths for which δS = 0, viz. those that satisfy the classical equations of motion. The units
~ = 1 are obviously not ideal for the present discussion!
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To do so, we make the same substitution φ = e−imtχ as before, but in the Lagrangian.
We get

L′ = iχ†χ̇− 1

2m
∇χ†∇χ (5.65)

where we have integrated by parts, taken the non-relativistic limit χ̇ � mχ, and divided
by 2m. The canonical momentum conjugate to the field χ is then π ≡ δL

δχ̇ = iχ† and the
Hamiltonian is

H′ = +
1

2m
∇χ†∇χ. (5.66)

The canonical commutation relations are then

[χ, χ†] = δ(x− y) (5.67)

(with all others vanishing). Now, the important point is that we can consistently realize
these commutation relations with a single particle annihilation operator defined by

χ(x) =

∫
d3p

(2π)3
ape

ip·x, (5.68)

with

[ap, a
†
q] = (2π)3δ(p− q) (5.69)

This can be traced back to the fact that the Lagrangian is first-order in the time derivative.
As a result, it is possible to quantize, in the low energy limit, in a way in which there are
only particles in the theory, with no antiparticles. Intuitively, the reason this is possible is
because in the non-relativistic limit, starting from a configuration of particles only, there is
insufficient energy to produce particle-antiparticle pairs from the vacuum.

It is important to note that this cannot be the only possible way to quantize the
theory at low energy, since it is also perfectly possible to have configurations consisting of
antiparticles only, or indeed of both particles and antiparticles.

The fact that it is possible to quantize the theory in terms of particles only is not enough
to guarantee the consistency of QM. (Indeed, we already know that this can be done for
the real Klein-Gordon field and we shall soon show that this does not have a consistent QM
limit.) We must also show that the number of particles is a conserved quantity. This is
easily done: the low-energy Lagrangian has a symmetry χ→ eiαχ whose conserved charge
is Q =

∫ d3p
(2π)3

a†pap. This charge simply counts the number of particles in a state (as one

may easily show for, e.g. the one-particle states a†p|0〉.
So, we have shown that there is a consistent limit of the theory in which there is a fixed

number of particles. It remains to show that this limit really corresponds to QM, with its
commutation relations, the Schrödinger equation, and so on.

To do so, one may first easily show that the Hamiltonian and the conserved momentum
25 arising from the Nöther current corresponding to the symmetry of the Lagrangian under

25Note, this is not the momentum π conjugate to the field χ.
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time and space translations are given by26

H =

∫
d3p

(2π)3

p2

2m
a†pap, (5.70)

P =

∫
d3p

(2π)3
pa†pap. (5.71)

Note that the momentum P is indeed an operator and it is this momentum that should
obey the usual QM commutation relation [X,P] = i. To show this explicitly, we must first
identify the position operator X. We claim that it is

X ≡
∫
d3xxχ†(x)χ(x). (5.72)

To verify this, note that X acting on a one-particle state at x, viz. |x〉 ≡ χ†(x)|0〉, returns
eigenvalue x: X|x〉 = x|x〉. An arbitrary state, with wavefunction ψ(x), may then be
written as

|ψ〉 ≡
∫
d3xψ(x)|x〉, (5.73)

and one may then show (exercise) that

X|ψ〉 =

∫
d3xxψ(x)|x〉, (5.74)

P|ψ〉 =

∫
d3x(−i∇ψ)|x〉. (5.75)

Thus we have the usual correspondence P → −i ∂∂x of QM and the usual commutation
relation [X,P ] = i. Similarly, one may show that

H|ψ〉 =

∫
d3x− 1

2m
∇2ψ(x)|x〉, (5.76)

so that ψ(x) satisfies the usual time-dependent Schrödinger equation i∂ψ∂t = − 1
2m∇2ψ(x).

Finally, the probability for the particle to be found at X is given by |〈X|ψ〉|2, which one
may show (exercise) is given by |ψ(x)|2.

To check that you understand things, you should now worry how we can obtain the
usual QM commutation relations [X,P ] = i for the non-relativistic limit of the Dirac theory,
in which all operators obey anticommutation relations. (Hint: X and P both involve two
creation or annihilation operators.)

5.7 Interactions

If you have understood this far, you may rightly feel pleased with yourself. We have
successfully quantized relativistic field theories containing particles with spin (or helicity)
zero, one-half, and one. This covers everything we have seen thus far in Nature, with the
exception of the spin-two graviton.

26These expressions are not unexpected: they sum the kinetic energies and momenta for each state
labelled by p, multiplied by the occupation number of each state.
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You may, however, have noticed the elephant in the room: thus far we have only dealt
with Lagrangians that are quadratic in the fields. These correspond to linear equations of
motion, which everybody knows are far easier to solve than non-linear equations of motion,
in that solutions may be superposed. We call the quantum versions of such theories free
or non-interacting theories. They are decidedly dull, in that particles that are present
remain present for ever. Interacting theories, which contain terms with more than two
powers of fields in the Lagrangian, are far more interesting: they provide the catalyst by
which particles can appear or disappear, being transformed into other sources of energy
and momentum. So rich, in fact, are such theories, that no one has been able to solve them,
except in a few very special cases (if you manage it, let me know – we can write a paper
together). We are forced to resort to perturbation theory. Let us now develop the necessary
formalism to do this. Unfortunately, this is one of the things that is perhaps more easily
done in the path integral approach to field theory. Since our ultimate goal is to get to the
Feynman rules, which provide a straightforward mnemonic for doing real calculations, I will
merely sketch how things go in canonical quantization.

Thus far, we have been working in the Heisenberg picture of QM, in which operators
(like φ(x, t)) depend on time, but states do not. You have probably spent much of your
previous career working in the Schrödinger picture, in which the opposite happens. It is
simple to go between the two. In the Schrödinger picture, everyone knows that the time-
dependence of the states is given by i ∂∂t |ψ〉S = HS |ψ〉S , where the subscripts are to remind
us that this is the Schrödinger picture. In the Heisenberg picture, we define

OH(t) = eiHtOSe
−iHt (5.77)

|ψ〉H = eiHt|ψ〉S . (5.78)

The pictures are equivalent, because we always sandwich operators between states to com-
pute amplitudes, which are the things we use to make physical predictions.

For doing perturbation theory, a third picture, the interaction picture, is useful. In this
picture, we split the Hamiltonian into a free part H0 (that we can solve) and a perturbation
H1 and we instead define

OI(t) = eiH0tOSe
−iH0t (5.79)

|ψ〉I = eiH0t|ψ〉S . (5.80)

As a result, the operators evolve according toH0 (meaning that operator expressions like eq.
5.19, which was written in the Heisenberg picture of the free theory, are equally valid in the
interaction picture), while the states evolve according to (exercise) HI ≡ eiH0t(H1)Se

−iH0t:

i
∂

∂t
|ψ〉I = HI |ψ〉I . (5.81)

Note that HI is explicitly time dependent. Given an initial state |ψ(t0)〉I , Dyson showed
that a formal solution to this last equation is given by |ψ(t)〉I = U(t, t0)|ψ(t0)〉I , where

U(t, t0) = T exp−i
∫ t

t0

HI(t
′)dt′. (5.82)
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Here, the time-ordering operator acting on a product of fields is defined by

TO1(t1)O2(t2) =

{
O1(t1)O2(t2), if t1 > t2

O2(t2)O1(t1), if t2 > t1
(5.83)

Acting on an exponential, the time ordering is obtained by Taylor expanding the exponen-
tial and then acting on the individual terms in the expansion (which are simple products
of fields). You may wonder why time ordering is needed. The point is that HI , being time
dependent, does not commute with itself at different times. So HI(t)e

−i
∫ t dt′HI(t′) is not

the same thing as e−i
∫ t dt′HI(t′)HI(t). But with time ordering, ∂

∂t acting on U(t, t0) unam-
biguously gives −iHI(t)U(t, t0), since t is a later time than any time appearing in U(t, t0).
Hence (5.82) solves (5.81). Intuitively, the role of time ordering is to enforce causality in
the theory: colloquially, it prevents particles from being destroyed before they are created.

Formally, we have now solved quantum field theory. Unfortunately, nobody knows how
to compute U(t, t0) for non-trivial HI . The best we can do is to attempt a perturbative
expansion. Provided HI is small enough,27 we may expand

U(t, t0) = 1− i
∫ t

t0

HI(t
′)dt′ +

(−i)2

2
T

(∫ t

t0

dt′
∫ t

t0

dt′′ HI(t
′)HI(t

′′)
)

+ . . . (5.84)

In the H2
I term, we integrate over a square region in (t′, t′′) we may simplify the time-

ordering operation by splitting the integration region into two triangles: one with t′′ > t′

and one with t′′ < t′. Thus,

T

(∫ t

t0

dt′
∫ t

t0

dt′′ HI(t
′)HI(t

′′)
)

=

∫ t

t0

dt′
∫ t′

t0

dt′′ HI(t
′)HI(t

′′) +

∫ t

t0

dt′′
∫ t′′

t0

dt′ HI(t
′′)HI(t

′). (5.85)

Perversely, we chose to do the first integral with respect to t′′ and then t′, but we did the
second integral the other way round. Actually this is not so perverse, since it shows that the
two contributions are identical, once we interchange the dummy variables t′ ↔ t′′. Thus,
in toto, we have

U(t, t0) = 1− i
∫ t

t0

HI(t
′)dt′ −

∫ t

t0

dt′
∫ t′

t0

dt′′ HI(t
′)HI(t

′′) + . . . (5.86)

In particle physics experiments, we typically prepare some particles (a pair of protons
at the LHC, for example), arrange for them to collide, and try to detect the products. Now,
the relevant time and distance scales for particle physics tend to be so small that, to a very
good approximation, we may consider the initial and final states to be in the infinite far past
and future, respectively, and we also may safely integrate over all of space in computing the

27I make no attempt to define ‘small enough’; it turns out that the perturbative expansion of QFT almost
never converges, being at best an asymptotic expansion. This is in some sense a good thing, since there are
devils to be found in the details: many of the rich phenomena that have been discovered in QFT in recent
decades are non-perturbative.
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Hamiltonian from the Hamiltonian density. We thus claim that the quantities of interest
for particle physics are the amplitudes

〈f |U(+∞,−∞)|i〉. (5.87)

We now have an idea how to compute U as a perturbation series in HI (and shall do so
explicitly for some examples presently). But how do we compute |i〉 and |f〉? They are
eigenstates of the full interacting theory (albeit in the interaction picture). One might hope
that since the particles are well separated in space, they might be considered to be the
n-particle eigenstates of H0, e.g. a†|0〉, that we computed before. Unfortunately, this is
not quite correct, because even though the particles are well-separated from each other,
they are not well-separated from the vacuum, which, in QFT, is a complicated place, with
particles being created and annihilated on quantum timescales.28 Fortunately, the theorists
have declared that it is safe to consider |i〉 and |f〉 as free eigenstates, provided we make
one or two modifications to the Feynman rules later on. We will take their word for it for
now.29

Once we accept this, doing calculations in QFT is easy, if tedious. All we do is to
take initial and final states (of the form a†|0〉), sandwich them between products of time-
ordered Hamiltonians (expressed in terms of creation and annihilation operators as a†a),
and (anti-)commute the as and a†s until we are left with a c-number. This is the desired
amplitude, which we should square to find the decay rate, cross-section or whatever (taking
into account phase space, of course). In fact, it is even easier than that. Feynman showed
that the whole tedious business can be reproduced by the mnemonic of drawing Feynman
diagrams, from which the amplitudes are reconstructed via the Feynman rules. Our strategy
in later lectures will be to take the Feynman rules as a starting point and compute from
there, but here we shall compute two processes the tedious way, so that you can fully
appreciate the favour that was done unto you by RPF.

5.8 e+e− pair production

Our first process is conversion of a photon γ into an electron-positron pair. This can-
not happen in free space, because of energy-momentum conservation (exercise), but it can
occur in a material (which recoils). We have already seen that the electromagnetic inter-
action is given by HI = +eAµψγ

µψ and that the scattering amplitude, at leading order
in perturbation theory, is given by −i〈f |

∫
d4xHI |i〉. Let’s examine the different pieces

of this in turn. Firstly, the initial state is to be a photon, of momentum k, say, and
polarization P . So |i〉 = a†Pk |0〉. Similarly, we want the final state to consist of an elec-
tron of momentum p1 and spin s1 and a positron of momentum p2 and spin s2.30 So
|f〉 = c†s1p1 d

†s2
p2 |0〉 =⇒ 〈f | = 〈0|ds2p2

cs1p1
. The bit in the middle is e

∫
d4xAµψγ

µψ. When we
plug in the Fourier mode expansions, we have that Aµ ∼ a + a†, but only the a piece will

28In fact, the vacuum is so complicated that we can compute everything in QFT from it: as we have seen,
every amplitude is just given by 〈0| . . . |0〉, where . . . represent some operator.

29Those who feel their intelligence to have been insulted by this may consult a proper quantum field
textbook for epiphany.

30If this doesn’t make sense to you, go back and read §5.4.

– 32 –



γ

e−

e+

Figure 1. Feynman diagram representing the process γ → e+e−.

give a non-vanishing contribution to the matrix element (the a† piece can be commuted
to the left, where it will annihilate 〈0|. Similarly, only the d† and c† pieces of ψ and ψ,
respectively, contribute. Moreover, all of these contributions can be reduced to c-numbers
by commutation. For example, we can commute the a piece through the a† in |i〉 to get
a delta-function (as in (5.62)) together with a term that annihilates |0〉. Doing this, our
amplitude reduces to3132

− i〈f |
∫
d4x HI |i〉 = −ie

∫
d4x εPµ u

s1γµvs2e−i(k−p1−p2)·x =

− ie(2π)4δ4(k − p1 − p2)εPµ u
s1γµvs2 . (5.88)

It is pleasing to see that conservation of 4-momentum is manifest. This happens because
we took the Fourier transform. To check conservation of angular momentum, you’d need
to work out the spin and polarization states explicitly.

For what comes later, it is useful to extract the overall (2π)4δ(pf − pi) (which al-
ways appears, cf. our discussion of Fermi’s Golden rule), defining the matrix element by
〈f |U(+∞,−∞)|i〉 ≡ i(2π)4δ(pf − pi)M. Hence, we have

iM = −ieεPµ us1γµvs2 . (5.89)

We can think of this as arising from the following factors: a factor εPµ representing an
incoming photon; us1 and vs2 representing an outgoing electron and positron, respectively;
and −ieγµ representing the interaction vertex. When we get to the Feynman rules, our
process will be represented by the diagram in Fig. 1 with the external lines telling us
to include the various ingoing and outgoing factors and with the dot representing the
vertex factor. You should now convince yourself (exercise) that the matrix element for
e−(s1) + γ(P )→ e−(s2) is iM = −ieεPµ us2γµus1 , so that the vertex factor for an incoming
electron is us1 .

5.9 Compton scattering

For our second process, we wish to compute the amplitude for a photon to scatter off an
electron. Again, this cannot happen for free particles, but it can happen for an electron

31Previously, we worked in Coulomb gauge, A0 = 0 and wrote the polarization vector of a photon as a
3-vector εPi ; more generally, we may write it as a 4-vector, εPµ .

32This sort of argument is straightforward, but is liable to make one’s eyes glaze over. Suffice to say that
you will only really get to grips with it if you sit down and work out all the intermediate steps for yourself
(exercise). At this point, the angel on your right shoulder is probably saying “Yes. Go and get a pen and
paper and do it right now, once and for all.” The demon on your left shoulder is probably saying “Let’s
just quickly check the Facebook . . . ”
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that is bound in an atom. It is called Compton scattering and you will doubtless have
heard it touted in your QM courses as evidence for the corpuscular nature of light. Touted
as it was, you probably did not go beyond computing the kinematics. That is because to
compute the scattering amplitude requires at least relativistic QM, and better still QFT.
Let’s do it at last.

Compton scattering is more complicated than pair production, because it cannot hap-
pen in leading order perturbation theory (exercise). So we need the second order perturba-
tion

〈f |T
∫

t,t′
HI(t)HI(t

′)|i〉 (5.90)

and the issue of time-ordering rears its ugly head. You have by now realised that the game
in computing QFT matrix elements is to move all the annihilation operators to the right
and all the creation operators to the left, where they vanish when acting on |0〉. But this is
precisely what we previously called normal ordering. So it would be very useful to have a
theorem that tells us how to convert from time-ordering to normal ordering. That theorem
is called Wick’s theorem. It decrees that

Tφ(x1)φ(x2) · · · =: φ(x1)φ(x2) · · · : +contractions, (5.91)

where ‘contractions’ instructs us to take all possible pairs of operators from the list and
replace them with something called the propagator. We shall not prove Wick’s theorem in
general, nor shall we derive the propagator for all fields. Rather, we shall content ourselves
with showing how things work for a product of two Klein-Gordon fields.

For these, there is only one possible contraction, so we write

Tφ(x)φ(y) =: φ(x)φ(y) : +∆F (x− y), (5.92)

where ∆F (x − y) is known as the Feynman propagator and our goal is to determine it,
or at least to find an expression for it in momentum space. Let us first consider the
case x0 > y0, such that Tφ(x)φ(y) = φ(x)φ(y) . Then, when we write out the mode
expansion for φ(x)φ(y), the piece which is not in normal order is the piece containing
ape
−ip·xa†p′e

+ip′·y. When we normally order it, we generate the additional contribution
[ap, a

†
p′ ]e
−ip·xe+ip′·y = (2π)32Eδ3(p−p′)e−ip·(x−y). If instead x0 < y0, we shall find a piece

(2π)32Eδ3(p− p′)e−ip·(y−x). Thus, we may write

∆F (x− y) =

∫
d3p

(2π)32E

(
θ(x0 − y0)e−ip·(x−y) + θ(y0 − x0)e−ip·(y−x)

)
. (5.93)

This involves a Lorentz-invariant measure and indeed it may be written as (exercise)

∆F (x− y) =

∫
d4p

(2π)4

i

p2 −m2 + iε
e−ip·(x−y), (5.94)
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Figure 2. Feynman diagram representing Compton scattering, e− + γ → e− + γ.

where ε > 0 is a small quantity telling us how to avoid the poles at p0 = ±
√
p2 +m2 in

the complex p0 plane.33

We can now see how to compute the matrix element for Compton scattering. We must
first apply Wick’s theorem to the expression

(−ie)2〈f |T
∫

x,x′
Aµ(x)ψ(x)γµψ(x)Aν(x′)ψ(x′)γνψ(x′)|i〉. (5.95)

Given that the initial and final states both contain an electron and a photon, the only
contractions in (5.91) that give a non-vanishing contribution involve one ψ and one ψ.
There are two such contractions and these are represented by the Feynman diagrams in
Fig. 2, where the propagator is represented by the line joining the two blobs, which are
called vertices. This propagator is the Dirac propagator given by

S(x− y) =

∫
d4p

(2π)4

i

/p−m+ iε
e−ip·(x−y), (5.97)

Its form is easy to understand: it too is a Green function, but this time for the Dirac
equation. The uncontracted fields act on the states |i〉 and |f〉; for them we derive the same
in/outgoing electron/photon factors that we derived above. In all the amplitude is given
by (ignoring the iεs)

iM = (−ie)2ε∗′µ u
′
(
γµ

i(/p+ /k +m)

(p+ k)2 −m2
γν + γν

i(/p− /k′ +m)

(p− k′)2 −m2
γµ

)
uεν . (5.98)

Since there are two contributions to the amplitude, the cross-section (which goes as |M|2)
contains interference terms.

In the examples, we’ll turn this into a cross-section.

6 Gauge field theories

Our construction of the edifice of QFT thus far has been painful to say the least. We
went down many blind alleys, broke Lorentz invariance (by giving t a special rôle in the

33These poles are present because ∆F (x − y) is a Green function of the Klein-Gordon equation and is
defined only up to a solution of the homogeneous equation until boundary conditions are specified. In this
case the iε prescription amounts to specifying the boundary conditions to be Lorentz-invariant and causal
(meaning that ∆F (x−y) should vanish outside the light cone). Note that the latter condition is forced upon
us by the time ordering. So insisting on causality in time (together with Lorentz invariance) guarantees
causality in spacetime.
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equations) and recovered it again, violated gauge symmetry, swept infinities under the rug,
and more. All this without ever calculating a cross-section. But I hope at least that you
learnt something. We started with quantum mechanics and we ended up with quantum
field theory, more or less. With the foundations in place, we can now relax a bit. For the
rest of the course, we shall not worry too much about the unpleasantries of quantization.
We shall start from the Lagrangian and from that write down the Feynman rules. As we
have hinted, even the Lagrangian itself is fixed to a large extent, once we have specified the
field content and the symmetries that we desire the theory to have.

6.1 Quantum electrodynamics

Consider, for example, quantum electrodynamics (QED). This is a theory containing a
spin-half Dirac field ψ (the electron) and a vector (helicity-one) field Aµ (the photon). We
insist that the theory possess the local (gauge) symmetry

ψ → eieα(x)ψ, Aµ → Aµ − ∂µα. (6.1)

This together with Lorentz invariance, fixes the form of the Lagrangian to be

LQED = ψ(i /D −m)ψ − 1

4
FµνF

µν , (6.2)

provided we allow terms which are at most cubic in the fields (the reasons for this will
be discussed in the next Section). Recall that the covariant derivative is given by Dµ =

∂µ+ ieAµ and that Fµν = ∂µAν−∂νAµ. The theory has just two free parameters, the mass
m of the electron and the electron charge e (n.b. e < 0). Note how a mass term for the
photon, ∼ AµAµ, which is allowed by Lorentz invariance, is forbidden by gauge invariance.

We now claim that a valid set of Feynman rules (in momentum space) for computing
the matrix element, iM, in QED are as follows.

1. The basic building blocks of Feynman diagrams are: a photon propagator, an electron
propagator, and an electron-photon-electron interaction vertex, as shown in Fig 3.
(The arrow on the electron propagator denotes the direction of particle number flow.
It is conserved at a vertex, meaning arrows never clash.)

2. Draw all possible diagrams containing these elements with the required initial and
final states, with the number of vertices fixed by the desired order of perturbation
theory.

3. Assign momenta to the various internal lines so that the 4-momentum is conserved
at each vertex.

4. For each internal photon line with 4-momentum q, associate the propagator −igµν
q2+iε

.
For an external in(out)-going photon of polarization P , assign the factor εPµ (ε∗Pµ ).

5. For each (in)outgoing electron, assign a factor (us)us. For each (in)outgoing positron,
assign a factor (vs)vs. For each internal propagator with momentum q in the direction
of the arrow, write i

/q−m+iε . For each vertex, write −ieγµ.
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=
−igµν
q2 + iε

(6.3)

=
i

/q −m+ iε
(6.4)

= −ieγµ (6.5)

Figure 3. Feynman rules for QED.

6. Any loop in a diagram will have an unfixed 4-momentum, k. Integrate over it with
measure

∫
d4k

(2π)4
.

7. Fret about the overall sign.

The last rule perhaps requires some further clarification. Since fermions anticommute, it
happens that different diagrams contributing to the same amplitude have a relative minus
sign (the overall sign is not important, because we always take the modulus squared of the
amplitude). The sign can be easily figured out by going back to canonical quantization and
studying the positions of the fermion operators. In particular, it turns out that any closed
loop of fermions will always contribute a minus sign.

These rules should make sense to you after what we have done so far and we shall not
make an exhaustive derivation of them. In particular, we have written the propagator for
the photon as −igµν

q2+iε
, when in fact the propagator is undefined until we deal with the gauge

fixing. For a proper treatment, see the textbooks.
As an exercise, you should try to compute the amplitude for electron-electron scattering,

at order e2. Hint: there are two diagrams and you need to worry about the relative sign.
You can figure it out by going back to canonical quantization and moving the creation and
annihilation operators around.

6.2 Janet and John do group theory

We have been going on and on about the central rôle played by symmetry in QFT. You
surely know by now that the correct mathematical language in which to study symmetry is
called group theory,34 and so it is proper that we discuss how group theory enters in QFT.

34Funnily enough, most of the group theory used by physicists is actually called representation theory by
mathematicians.
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Figure 4. Probably you are far too young to find this amusing. Never mind.

The reason I have held off mentioning group theory until now is that, unfortunately,
the group theory that you learnt in Part IB is not the sort of group theory that will pass
muster here. The key difference is that whilst you learnt all about discrete groups, of finite
order, we shall only be interested in continuous groups, of infinite order. The ones we are
interested in are called Lie groups.35

Let’s start slowly, by seeing how group theory appears in QED. The symmetry is
ψ → eieα(x)ψ, or in the global case, ψ → eieαψ. This is a continuous symmetry, because
every value of α ∈ [0, 2π] corresponds to a different symmetry transformation. In contrast,
if we allowed only, say, α ∈ {0, π}, we would have the discrete symmetry Z2.

There is, by the way, a good reason why we are only interested in continuous symmetries
for gauge theory. The reason is that to promote a global symmetry to a gauge symmetry,
α→ α(x), the derivative ∂α(x) needs to be well-defined, since it appears in the rule for the
transformation of the gauge field.

Getting back to QED, we note that U ≡ eieα can be thought of as 1 x 1 matrix.
Moreover, it is a unitary matrix, in that U †U = e−ieαeieα = 1. We are thus entitled to say,
somewhat pompously, that QED is a U(1) gauge theory.

Back in the good old days,36 the only particles knocking around were electrons, positrons
and photons (well, and nuclei), and QED described all these quite nicely. But then someone
had the misfortune to discover (in cosmic rays) a new particle called the muon. It is rather
heavier that the electron (about 200 times), but it was straightforwardly incorporated into

35As always our level of rigour will be embarassingly low. For a more thorough treatment, you could
start by reading [8].

36This was a time when the Cavendish could be said to have had something of a monopoly on particle
physics, having discovered both the neutron and the electron and Dirac having predicted the positron. It is
probably stretching it a bit far to claim that Newton’s corpuscular theory of light pre-empted the photon,
however. It certainly pre-dated the Cavendish, in any case.
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QED. Indeed, consider two fields ψ1 and ψ2, transforming as

ψ1 → eie1α(x)ψ1, ψ2 → eie2α(x)ψ2. (6.6)

Then we can write down the locally U(1) invariant Lagrangian

LQED = ψ1(i/∂ − e1 /A−m1)ψ1 + ψ2(i/∂ − e2 /A−m2)ψ2 −
1

4
FµνF

µν , (6.7)

which describes two particles, each of arbitrary mass and charge, coupled to the photon. In
a sense, this Lagrangian asks more questions than it answers, since it allows both particles
to have arbitrary mass and charge, whereas experiment showed that the charge of the muon
is exactly the same as that of the electron. In the intervening decades, we have managed to
discover many new particles and all of them have charges with are integer multiples of e

3 .
Neither QED nor indeed the Standard Model explains this basic feature of Nature, but we
shall see later on how it might be explained in the context of a grand unified theory.37

This way of thinking about QED as a theory based on the group U(1) begs the question
of whether it might be possible to build a gauge theory based on a larger symmetry group, for
example the N ×N unitary matrices, U(N). This question was answered in the affirmative
by Yang and Mills in the ’50s, who showed that the resulting theory is far richer than QED,
but it took a long time for us to realise that Nature actually chooses to do things this way.
By now, the pendulum has come full circle, in that our current ‘theory of everything’ (the
Standard Model of particle physics) is nothing but a gauge theory.38

The basic reason why gauge theories can be much richer (read: harder to answer exam
questions on) than QED is that QED is an Abelian theory.39 That is, two successive U(1)

transformations commute (it is, after all, just the product of two complex numbers). But
two N × N matrices do not commute, in general, and so we have the possibility of a
non-Abelian theory. Let’s consider unitary matrices in more detail.40 A generic unitary
matrix U can be re-written as eiH , where H is an Hermitian matrix, H† = H, and the
exponential is defined by the power series. Since this is a continuous group, and since every
group contains the identity element 1 = e0, we may consider elements that are close to the
identity, writing them in terms of a basis for Hermitian N × N matrices, {T a} and some
real parameters εa. For elements close to the identity, the εa are small, and we may expand
eiε

aTa = 1 + iεaT a + . . . . Now consider two elements (parameterised by εa and ηa) and
compute41

eiε
aTaeiη

bT be−iε
aTae−iη

bT b = 1− εaηb[T a, T b] +O(ε2, η2, ηε). (6.8)

37Even if we could explain the muon charge in this way, nobody yet has a good explanation for why the
muon, a heavy cousin of the electron, exists at all. Do you?

38The moral of this story is that if you have a theory that is too elegant not to be true, but doesn’t seem
to be realised in Nature, you just need to be patient.

39The ‘A’ in Abel is pronounced as in ‘gargle’.
40It will turn out that all of the groups that we consider can be written in terms of unitary matrices, so

there is no loss of generality.
41This corresponds to the ‘difference’ between the product and its reverse, so will vanish for an Abelian

group.
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This is a product of group elements and so must itself be a group element (by the axiom of
closure). Since {T a} form a basis, it must be possible to write

[T a, T b] = ifabcT c, (6.9)

for some real constants fabc, which are manifestly antisymmetric in the first two indices
and in fact may be taken to be antisymmetric in all three. This type of structure is called
a Lie algebra. The arguments we just made apply equally for a subgroup of the unitary
matrices, for which the T a form a basis for the relevant subalgebra. We call the number of
basis elements the dimension of the Lie algebra. For N ×N unitary matrices, for example,
a basis for the N ×N Hermitian matrices contains N2 elements.

The algebra is a much simpler object to work with than the group itself. (Locally, in
the vicinity of the identity element, the two are equivalent, but we shall see that groups with
the same algebra can have a distinct global structure. Everything we will say applies at the
level of the algebra.) Remarkably, just from the form of the relation (6.9), it is possible to
classify all of the possible Lie algebras. They are built from building blocks consisting of
three infinite series, corresponding to: N × N unitary matrices (which can be thought of
as matrices such that U †δU = δ) with unit determinant, called SU(N); N ×N orthogonal
matrices (which can be thought of as matrices such that UT δU = δ) with unit determinant

(called SO(N)); and 2N ×2N matrices satisfying UTΩU = Ω, with Ω =

(
0 In
−In 0

)
(called

Sp(2N)).42 On top of these three infinite series, there are five exceptional algebras called
G2, F4, E6, E7, and E8. The subscript denotes the rank of the Lie algebra, which is the
maximal number of commuting generators that one can find. If you are lucky, you may
never need to worry about the exceptional algebras, though they do crop up in grand unified
theories and in string theory.

The algebra (6.9) is also sufficiently strongly constraining to determine the possible
representations that each Lie algebra has. Recall that a representation is any set of matrices
that respects the multiplicative structure of the group (or, equivalently, the algebra (6.9)).
Recall too that representations can be divided up into those that are reducible and those
that are irreducible (henceforth, ‘irreps’), meaning that they cannot be further decomposed.
Representations are important for gauge theories, because it turns out (as we shall see) that
matter (such as the electrons of QED) must transform in some representation of the gauge
group.

Some representations are easy to find. For example, for SU(N) we have the defining
representation carried by vectors in CN , on which the N×N matrices act by multiplication.
It turns out that one can build all of the other representations by taking tensor products of
this (together with its complex conjugate representation) and decomposing into irreps and
we shall do things in that way. SO(N) similarly has a defining representation on vectors in
RN , but it is not possible to obtain all irreps from tensor products of this: one misses the

42In this picture, the Lorentz group consist of matrices such that UT ηU = η, with η = diag(1,−1,−1,−1).
This group is called SO(3, 1). Though clearly related, it does not appear in our classification because it
cannot be represented by (finite-dimensional) unitary matrices.
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spinor representations. You have already met these before in QM, in the form of the spin-1
2

(or doublet) representation of angular momentum operators, which are nothing but the Lie
algebra corresponding to the group SO(3) of spatial rotations. We also met spinors in the
context of the Lorentz group SO(3, 1), for which the Dirac field comes in a 4-dimensional
spinor representation, whereas a gauge field comes in the vector representation (which is
also 4-dimensional, but inequivalent to the spinor).

One representation, called the adjoint, is especially important, and is present for every
Lie algebra. To find it, we note that the Lie algebra (6.9) implies the Jacobi identity

[T a, [T b, T c]] + cyclic permutations = 0, (6.10)

which you can confirm by simply expanding. But [T a, [T b, T c]] = if bcd[T a, T d] = −f bcdfadeT e
and so

f bcdfade + fabdf cde + f cadf bde = 0. (6.11)

So far this is just mindless algebra, but if we define (T aadj)
bc ≡ −ifabc, we see that we can

recast this as

[T aadj, T
b
adj] = ifabcT cadj. (6.12)

That is, the matrices T aadj form a representation of the algebra! This representation exists
for any Lie group and is called the adjoint representation. The dimension of the adjoint
representation is the same as the dimension of the Lie algebra itself. As examples, SU(N)

is generated by traceless, Hermitian matrices, and so has dimension N2 − 1; SO(N) is
generated by antisymmetric, Hermitian matrices, and so has dimension N

2 (N − 1).
One last point: the algebra (6.9) implies that the overall normalization of the generators

in any representation is fixed, once we have decided on the normalization for the fabc, or
equivalently the generators T aadj. This is the underlying reason why charges are quantized
in non-Abelian gauge theories.

6.3 Non-Abelian gauge theory

Suppose we wish to build a non-Abelian gauge theory with gauge group G with matter
transforming in rep r of G. Under a global G transformation, the matter fields (fermions,
say) transform as

ψ → Uψ ≡ eigαaTar ψ. (6.13)

Remember that each T ar is really an nr × nr matrix, where nr is the dimension of the
representation r. Thus ψ is really a vector of dimension nr, but we write everything in
matrix notation to avoid drowning in a sea of indices.43 For now g is just a constant, but
it will become the gauge coupling (lie e in QED). To have a chance of promoting G to a
local symmetry (such that αa → αa(x), we need a derivative which tranforms covariantly.

43Don’t forget that ψ is also a spinor of the Lorentz group. Agh!
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Following our noses, we assume that this takes the same form Dµ = ∂µ + igAµ, as in QED
and deduce how A must transform (Aµ → A′µ), in order that Dµψ → UDµψ. We find that

∂µ + igA′µ = U(∂µ + igAµ)U−1. (6.14)

But since ∂µU−1 = U−1∂µ + (∂µU
−1) (remember that this is an operator relation), we find

that

A′µ = UAµU
−1 − i

g
U∂µU

−1 = UAµU
−1 +

i

g
(∂µU)U−1. (6.15)

Note that for QED, where everything commutes, we recover Aµ → Aµ − ∂µα.
It is clear that Aµ is an nr × nr matrix, but the transformation law for the gauge

field may be defined in a way that makes no reference to the representation r. Writing
Aµ ≡ AaµT ar and considering an infinitesimal transformation, we find that (exercise)

A′aµ = Aaµ − ∂αa − gf bcaαbAcµ. (6.16)

So, the transformation of the Aa is fixed solely by the structure constants fabc and indeed,
apart from the derivative term, Aa obeys the transformation law for a field in the adjoint
representation. This is hardly surprising, given that the number of fields Aa is equal to the
dimension of the Lie algebra.

We have not yet completed our formulation of the gauge theory, because we have no
dynamical terms for the gauge field in the action. In QED, we found the gauge-invariant
field strength tensor Fµν by inspection, but here we shall have to be more clever. To find
an analogue of the field strength tensor, we use the covariance property Dµ → UDµU

−1 of
the covariant derivative. This means that [Dµ, Dν ] also transforms covariantly. Call this
igF aµνT

a
r (which amounts to an implicit definition of F aµν . Now,

[Dµ, Dν ] = ig([Aµ, ∂ν ] + [∂µ, Aν ])− g2[Aµ, Aν ] = ig(∂µAν − ∂νAµ)− g2[Aµ, Aν ]. (6.17)

We now expand Aµ = AaµT
a
r (recall that r is any representation) and use the Lie algebra to

get (exercise)

F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν . (6.18)

This is a bit like the QED field strength tensor, except that it is not gauge invariant (it trans-
forms covariantly) and it is not linear in the fields. But 1

2g2
tr[Dµ, Dν ][Dµ, Dν ] = −1

4F
a
µνF

aµν

is gauge invariant and is the appropriate generalization of the Maxwell Lagrangian. But
note that it necessarily contains terms that are cubic and quartic in the gauge fields. Thus,
a non-Abelian gauge theory (unlike QED) automatically contains self-interactions of the
gauge field! Physically, the difference with QED is easy to understand: in QED, the gauge
field does not transform under a global U(1) transformation, so we think of it as uncharged;
in a non-Abelian gauge theory, the gauge field itself transforms as an adjoint under a global
G transformation, so carries charge, so couples to itself.
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6.4 The strong nuclear force: quantum chromodynamics

It is the self interactions of the gauge field that give rise to much of the aforementioned
richness of non-Abelian gauge theory and indeed much of the richness of the world around
us. As our first example, it was convincingly demonstrated in the 1970s and 1980s that the
strong nuclear force is actually an SU(3) gauge theory, called quantum chromodynamics or
QCD. There are N2 − 1 = 8 gauge bosons, which we call gluons, which couple to fermions,
which we call quarks, which transform in the defining 3-dimensional representation of SU(3).
The three different values for the index are sometimes labelled by different colours (red,
green, and blue), hence the name chromodynamics. It turns out that there is more than one
quark (they are called different flavours), all transforming as colour triplets. The different
flavours are called up, down, strange, charm, bottom, and top, in order of increasing mass.
The QCD Lagrangian is thus given by

LQCD = −1

4
GaµνG

aµν +
∑

f∈{u,d,s,c,b,t}
ψ

(
i/∂ − gs /Aa

λa

2
−mf

)
ψ. (6.19)

Here, the Gell-Mann matrices

λ1 =




0 1 0

1 0 0

0 0 0


 , λ2 =




0 −i 0

i 0 0

0 0 0


 , λ3 =




1 0 0

0 −1 0

0 0 0




λ4 =




0 0 1

0 0 0

1 0 0


 , λ5 =




0 0 −i
0 0 0

i 0 0


 , λ6 =




0 0 0

0 0 1

0 1 0




λ7 =




0 0 0

0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0

0 1 0

0 0 −2




provide an explicit basis for the defining triplet representation. Note that it is conventional
to denote the gluon field strength by Gaµν and the strong coupling constant by gs. The
Feynman rules are given in Fig. 5. Actually, they are not really the Feynman rules. The
subtleties of gauge-fixing in non-Abelian theories (which we have completely circumvented)
mean that one needs to modify the rules in general. But the rules we give suffice for
tree-level computations (that is, diagrams without loops of propagators).

Now, it turns out (for reasons that will become clearer later on) that the force between
two quarks – the analogue of the Coulomb interaction in QED – is strong at low energies.
So strong, in fact, that it is physically impossible to isolate a single quark. Rather quarks
are confined in nuclei. This ‘explains’ at a stroke both why we have never seen a single
quark in the laboratory and why it took so long to establish QCD as the correct theory of
the strong nuclear force: the force is so strong at the relatively low energy scales of nuclear
physics that we are well beyond the realm of perturbation theory. In fact, nobody has yet
managed to start from the Lagrangian of QCD and show analytically that it predicts the
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Aaµ Abν =
−igµνδab
q2 + iε

(6.20)

qi qj =
iδij

/q −m+ iε
(6.21)

qi qj

Aaµ

= −igsγµ
λaij
2

(6.22)

Aaµ(p)

Abν(q)

Acλ(r) = −gsfabc(ηµν(p− q)λ + ηνλ(q − r)µ + ηλµ(r − p)ν)

(6.23)

= −ig2
s [f

eacfebd(ηµνηλρ − ηµρηνλ) (6.24)

Aaµ

Abν

Acλ

Adρ

+ feadfebc(ηµνηλρ − ηµληνρ) (6.25)

+ feabfecd(ηµληνρ − ηµρηνλ)] (6.26)

Figure 5. Feynman rules for QCD. All momenta are defined to be ingoing.

confinement of quarks in nuclei. We have strong indications from numerical simulations
that it is so, but we do not have a proof.44

The flipside of this (and the reason we know that QCD must be the correct theory of
the strong nuclear force) is that QCD is perturbative at high energies (like at the LHC),
so we can use the formalism we have already developed there. For example, the relevant
Feynman diagram for computing the amplitude for scattering two quarks of distinct flavours
(e.g. an up quark and a down quark) is shown in Fig. 6. Compared to the analogous QED

44If you think you have found a proof, scribble it down and send it off to these people: http://www.
claymath.org/millennium/Yang-Mills_Theory/. If they think you are right, they will send you back a
cheque for a million dollars.
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qi

q′k

qj

q′l

Figure 6. Feynman diagram for scattering of quarks of different flavours.

+ + (6.29)

Figure 7. Feynman diagrams for quark-gluon scattering.

scattering the only different factor in the matrix element is the representation matrix, so
that

MQCD = T aijT
a
klMQED, (6.27)

where i, j, k, and l are colour indices. To get the cross-section for unpolarized scattering,
we need to average over the initial colours and sum over the final state colours. In all, we
get

σQCD

σQED
=

1

3 · 3
∑

i,j,k,l

T aijT
a
kl(T

b
ijT

b
kl)
∗ =

1

9
(trT aT b)2 =

2

9
. (6.28)

The analogue of Compton scattering in QED, quark-gluon scattering, is more complicated,
because the three-gluon vertex comes into play. Fig. 7 shows the contributing diagrams at
leading order.

6.5 The weak nuclear force and SU(2)× U(1)

Having built a gauge theory for the strong nuclear force, we now try to build a gauge
theory for the weak nuclear force. We’ll try to do this in the same way as our ancestors
did, piecing together the experimental facts one by one. This makes for a longer and more
arduous journey, but I think it is far more instructive than presenting the final theory as a
fait accompli.

So, what do you know about the weak force? The one thing you should know, is that
it is responsible for things like β decay, in which n → p + e + ν. Our theory of the strong
force tells us that a proton is basically made up of two up quarks and a down quark and
that the neutron is made up of two downs and an up, so at a more fundamental level, β
decay involves u → d + e− + ν. How could we describe this using a non-Abelian gauge
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theory? Suppose we regard this process as occurring via exchange of a gauge boson. In
a non-Abelian theory, the effect of a gauge boson vertex is to take one component of a
field carrying some representation and to change it to another (as an example, in QCD, the
quark colour is changed when it interacts with a gluon). Since baryon and lepton number
are conserved to a very good degree in Nature, we expect that the gauge boson should turn
an up quark into a down quark at one vertex (conserving quark or baryon number) and turn
an electron into a neutrino at the other (conserving lepton number). Our representations
must contain at least two elements (since one particle gets turned into a different one at a
vertex). Are there any reps which contain only two elements? There is one, which is the
fundamental (defining) representation of the simplest non-Abelian Lie group, SU(2). Let’s
try to build a theory of the weak interactions using SU(2). Fortunately (though you may
not know it), you are already quite good at doing SU(2) group theory. The reason (already
mentioned above) is that symmetry under spatial rotations corresponds to the group SO(3)

(orthogonal rotations in 3 dimensions), but the Lie algebra of SO(3) is exactly the same
as the Lie algebra of SU(2). (Remember we said before that two Lie groups can have
the same Lie algebra? Well, here’s an example.) This means that the theory of angular
momentum in QM (recall that angular momentum operators are really the Lie algebra of
spatial rotations) is really just the representation theory of SU(2). So, for example, the
smallest rep is of dimension two (you call it spin-half) and the generators in that rep are
just given by the Pauli matrices (divided by two, in the usual normalization convention
trT aT b = δab

2 ). Another way of seeing why the Pauli matrices appear is to note that the
Lie algebra of SU(2) should be represented by a basis for 2 × 2, traceless (because of the
‘S’ in SU(2)), Hermitian (because of the ‘U ’ in SU(2)) matrices. The Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(6.30)

are just that. With the Pauli matrices in hand, we can easily work out the Lie algebra of
SU(2). It is (exercise) [σ

i

2 ,
σj

2 ] = iεijk
σk

2 .
Denoting the SU(2) gauge field by W i

µ, the covariant derivative for the 2-dimensional
rep is then given by

Dµ = ∂µ + i
g

2
W i
µσ

i = ∂µ + i
g

2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)
= ∂µ + i

g

2

(
W 3
µ

√
2W+

µ√
2W−µ −W 3

µ

)
,

(6.31)

where we have defined a complex gauge field W±µ ≡ 1√
2
(W 1

µ ∓ iW 2
µ) (the

√
2 is included so

that we get the usual normalization for the kinetic term of a complex field). The reason
for introducing W±µ becomes clear when we package the quarks and leptons up into SU(2)

doublets l ≡
(
ν

e

)
and q ≡

(
u

d

)
: the part of the Lagrangian involving the covariant

derivative

L ⊃ li /Dl + qi /Dq (6.32)
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contains interactions like ig
√

2ν /W
+
e− and the ± superscript on W±µ is just the electric

charge (which is conserved) carried by the gauge boson. Even more satisfyingly, recall from
our discussion of charge conjugation that a matrix gauge field should transform into minus
its transpose. This sendsW±µ →W∓µ , meaning that the particle is sent into its antiparticle,
as we expect.

This is starting to look like a good model for weak interactions, but now we encounter its
first big flaw. The flaw is that it was observed in the 1950s by Madam Wu and collaborators
(at the suggestion of Lee and Yang) that the weak interactions do not conserve parity. That
is to say, the Lagrangian is not invariant under the spatial inversion x → −x. This result
shocked the physics community. Hitherto, no one had really bothered to question the status
of such symmetries; with the discovery that they were in fact broken, the race was on to
find out how and why.45

6.6 Intermezzo: Parity violation and all that

To understand how parity can be violated in a gauge theory, we need to go back and work
out how to implement parity in a theory containing fermions. This is not too difficult. Start
with the Dirac equation

(iγ0∂t + iγi∂i −m)ψ = 0 (6.33)

and premultiply by γ0. Now, γ0 commutes with itself, but anticommutes with γi. Thus

(iγ0∂t − iγi∂i −m)γ0ψ = 0 (6.34)

and ψ′(t,−xi) ≡ γ0ψ(t, xi) satisfies the Dirac equation in a space-reflected Universe (where
∂i → −∂i).

We want to know how to write down a Lagrangian that violates parity, but is still
Lorentz invariant. It is easy to show that the Lorentz invariant terms we have been writing
down, like ψψ and ψ/∂ψ, are also parity invariant. For example,

ψψ → ψ
′
ψ′ = ψ†(γ0)3ψ = ψψ. (6.35)

As an exercise, you can now show parity invariance of ψ/∂ψ. But if we introduce the matrix

γ5 ≡ iγ0γ1γ2γ3, (6.36)

45At the same time, a race began to determine the status of similar symmetries like time reversal in-
variance and charge conjugation. In turns out that none of these symmetries is sacrosanct in QFT (and
surprise, surprise, none is sacrosanct in nature), though the combined operation of CPT is. CP violation
is particularly interesting in that the Standard Model gives a very good description of all CP violation ob-
served in experiments up until now, but it is also known that amount of CP violation in the SM is too small
to explain the predominance of matter over antimatter that we see in the Universe. This predominance
should be pretty important to you, because you would not be here without it — your proto-self would long
ago have annihilated with your anti-self.
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(equal to

(
−1 0

0 1

)
in the chiral basis), we find that it anticommutes with γµ. Hence, objects

like ψγ5ψ and ψγ5/∂ψ are odd under parity.46 For example,

ψγ5ψ → ψ
′
γ5ψ′ = ψ†(γ0)2γ5γ0ψ = −ψγ5ψ. (6.37)

Exercise: show parity oddness of ψγ5/∂ψ.
These considerations have even more far reaching consequences than mere parity vi-

olation. The combinations PL,R ≡ 1
2(1 ∓ γ5) have the properties of a set of projection

operators when acting on a Dirac fermion ψ.47 We define ψL,R ≡ PL,Rψ and call them left-
and right-handed fermions.48 Let’s now write the Dirac Lagrangian in terms of ψL,R. We
get49

L = i(ψL/∂ψL + ψR /∂ψR)−m(ψLψR + ψRψL). (6.38)

This rendering makes two points clear. The first point is that, for massless fermions,
we could write a Lagrangian using just ψL (or ψR) alone. Such a theory describes a
massless Weyl fermion. Note that there are only two degrees of freedom (corresponding
to a particle spinning one way and an antiparticle spinning the other way). It violates
parity, but not Lorentz invariance. There is, furthermore, nothing to stop us promoting the
derivative to a covariant derivative and making a gauge theory involving Weyl fermions.
The second (related) point is that even in a theory which contains both left- and right-
handed components, we can assign the different components to different representations of
the gauge group. But if we do so, the mass term (which couples left to right) will no longer
be gauge invariant.

There is a third point, which is not relevant to our present discussion, but which will
be relevant when we discuss neutrino masses. The point is that we can write a different
mass term for a Weyl fermion, ψL say, called a Majorana mass term. It takes the form

L ⊃ −1

2
mψTLCψL + h. c., (6.39)

46Smart alecs will sniff that we have not shown Lorentz invariance of ψγ5ψ , to which my churlish retort
is that we never showed Lorentz invariance of ψψ either. And so the house of cards collapses . . .

47A set of projection operators should add up to the unit operator (PL + PR = 1), should be orthogonal
(PLPR = 0), and should be idempotent (P 2

L,R = PL,R), so that repeated projections have no further effect.
48Why left- and right-handed? Well, consider the limit in which a fermion is massless and moving in the

+z direction. The Dirac equation in the chiral basis is just /pψ = 0 =⇒

(
0 E(1 + σ3)

E(1− σ3) 0

)
ψ = 0.

Now γ5 is diagonal in this basis (which is why we chose the basis in the first place), and so ψL has only the
top two components non-vanishing, whilst ψR has only the bottom two components non-vanishing. We find

that the Dirac equation implies that ψL ∝
(

0 1 0 0
)T

and ψR ∝
(

0 0 1 0
)T

. But these are eigenstates of

the spin operator Σi =

(
σi 0

0 σi

)
, spinning opposite to, and along, the direction of motion, respectively.

49One has to be a bit careful with the notation here, because (ψL) = ψ†Lγ
0 = ψ† 1−γ

5

2
γ0 = ψ†γ0 1+γ5

2
≡

(ψ)R.

– 48 –



where C = iγ2γ0 is called the charge conjugation matrix (since ψ → Cγ0ψ∗ is nothing but
charge conjugation) and the ‘+h. c.’ instructs us to add the Hermitian conjugate term to
make the action real. Note that only ψL is required. The flipside is that ψL is coupled to
itself, rather than to its complex conjugate. Thus this term is not invariant under a U(1)

phase rotation ψL → eiαψL and cannot describe a particle carrying electromagnetic charge.
It could describe a neutrino, however.

When we come to study grand unification, it will be useful to know that charge con-
jugation switches a left handed field to a right-handed field.50 Thus we can replace any
right-handed field by its charge conjugate and consider all fields as being left-handed.

6.7 Back to the weak interactions

Now we know how to violate parity, we can incoporate it into the weak interactions. We
do it by declaring that only the left-handed parts of the quarks and leptons couple to the
Wµ via SU(2). (This introduces a further problem of how the quarks and leptons can
have a mass, which we shall only be able to solve after another intermezzo.) This can be
straightforwardly implemented in the Feynman rules by including a projection factor PL in
the vertex.

So far, we checked that W±µ could be the culprit behind β decay. But what about W 3?
Could it be the Z boson? From (6.32), we find the couplings ig

2
/W

3
(νLνL− eLeL). This is a

bit like the Z boson, but unfortunately it turns out that the Z also couples to right-handed
quarks and leptons.51 Quel chagrin!

Salvation comes by noticing that there are two neutral bosons in Nature: the Z boson
and the photon. Both couple to left- and right-handed fermions. But could it be that they
are mixtures of W 3

µ (which couples to only left-handed fermions) and a second U(1) boson
(call it Bµ) which couples to both left and right-handed fermions?

Before we go further, it is useful to pause and appreciate what this means. The sug-
gestion is that the weak force and electromagnetism are not distinct phenomena, but are
somehow mixed up in a unified electroweak theory. The claim is that these two forces, which
manifest themselves completely differently to our eyes (quite literally), are really different
aspects of the same thing. Gadzooks!

Let’s see how it works. We put the left handed fermions in doublets qL and lL of SU(2)

as before (and call the coupling constant g) and also give them each a charge, called weak
hypercharge Yq,l, under a U(1) phase transformation gauged by Bµ (for which the coupling
constant is denoted g′). We make the right-handed fermions uR, dR, eR52 singlets of SU(2)

(meaning they don’t transform) and give them weak hypercharges Yu,d,e. We then demand
that the physical gauge boson eigenstates Aµ and Zµ be some mixture of W 3

µ and Bµ, such

50Proof: γ2PL = PRγ
2 . . .

51You might wonder how we know this. A direct way is to produce polarised electrons and positrons and
scatter them off each other.

52We discuss the possibility of a νR later on.
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that

W 3
µ = cos θWZµ + sin θWAµ, (6.40)

Bµ = − sin θWZµ + cos θWAµ. (6.41)

Here θW is the Weinberg angle. Roughly, sin2 θW = 0.231.
Now we try to work out what the charges must be. On the one hand, the covariant

derivative for the right handed fermions contains a piece

L ⊃ −ψRg′Yψ /BψR ⊃ −ψRg′ cos θWYψ /AψR. (6.42)

Thus we have no choice but to identify g′ cos θW with the electric charge |e| and Yψ with
the electric charge of that particle. Thus53

Ye = −1, Yu = +
2

3
, Yd = −1

3
. (6.43)

On the other hand, the covariant derivative for the left-handed fermions contains a piece

L ⊃ −ψL(g
σ3

2
/W 3 + g′Yψ /B)ψL ⊃ −ψL(g sin θW

σ3

2
+ g′ cos θWYψ) /AψL. (6.44)

Now, both l and q doublets contain two states whose electric charges differ by one (in units
of e). This can only happen here if we set g sin θW = |e|. Furthermore, we can only get the
absolute values of the charges right if we set Yq = +1

6 and Yl = −1
2 .

Thus we are able to fix everything up so that the photon couples in the same way to
left- and right-handed fields (and with the correct charge for each particle). This brings us
back to our original, parity-invariant theory of QED. But the couplings of the Zµ are not
the same for left and right. Specifically the charges are (exercise)

g cos θW I3 − g′ sin θWY =
|e|

sin 2θW
(I3 −Q sin2 θW ), (6.45)

where I3 = 0,±1
2 is the weak isospin (the eigenvalue of the third SU(2) generator) and Q

is the electric charge in units of |e|.
Yet again, you may or may not have noticed an elephant in the room and the time has

come to chase it out. The elephant is manifest in two ways. The first way is that we have
put left and right fermions in different representations of SU(2) × U(1). This forbids us
from writing a mass term for fermions, contrary to what we observe in Nature.54

The second way is that we claimed to have made a conceptual breakthrough in mixing
neutral gauge fields to obtain the physical photon and the Z boson. This is nonsense,
because we never specified what we meant by physical.

The resolution to both of these problems lies in what is apparently a third problem
- our theories of the weak force and electromagnetism are basically the same. Ok, the

53Oops! I didn’t tell you what the electric charges of the quarks are. But you can work it out for yourself
from the fact that p ∼ uud and n ∼ udd.

54In fact, the top quark is the heaviest particle yet discovered!
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charges and the symmetry groups are different, but that turns out not to be a big deal.
This flies totally in the face of what we observe in Nature. Specifically, the photon as far
as we are able to tell, is strictly massless, which translates to electromagnetism being a
long-range force. The weak interaction, on the other hand, is mediated over a very short
range, meaning that the corresponding gauge boson must have a mass (via the uncertainty
principle). We can even work out roughly what the mass should be. The Fermi constant
that describes beta decay has mass dimension minus two and value

10−5GeV−2, (6.46)

from which we infer a mass scale of about 102GeV.
Uh oh! We said at the very beginning that gauge invariance forbids a gauge boson

mass. The particular kind of gauge invariance we have here (different symmetry for left
and right fermions) also forbids fermion masses. How do we get all our masses back?

Enter the Higgs boson. The Higgs mechanism55 solves both of these problems via the
mechanism of spontaneous symmetry breaking. That is a big deal. It also predicts the
existence of the Higgs boson and we have spent several decades and several billion dollars
looking for it. And now, serendipitously, it would seem that the LHC has found it. Hurrah.

So, what is spontaneous symmetry breaking and what is the Higgs mechanism? Time
for another intermezzo.

6.8 Intermezzo: Spontaneous symmetry breaking

Let’s start simply. Consider a complex scalar field, with the Klein-Gordon Lagrangian

L = ∂φ∗∂φ−m2|φ|2. (6.47)

This has a global symmetry φ→ eiαφ. We could also add an interaction, whilst maintaining
the symmetry, of the form −λ|φ|4. This is candidly called phi-to-the-fourth theory and you
now know how to go and compute the effect of λ in perturbation theory. Let’s not bother.
Instead, let’s go back and think about the structure of the vacuum. The terms in the
Lagrangian which do not involve derivatives may be thought of as a potential for the field,
of the form

V (φ) = m2|φ|2 + λ|φ|4. (6.48)

This potential has its minimum (which gives the classical vacuum) at the origin. That’s
why, back in the dark ages of canonical quantization, we started with φ = 0 and considered
fluctuations about that point. Indeed, you can go back and verify that 〈0|φ|0〉, which we
call the vacuum expectation value (VEV), vanishes.

What would happen if m2 was actually negative? The global minima of the potential
would now be at points such that

|φ| =
√
−m2

2λ
≡ v√

2
(6.49)

55Conceived in the 1960s by a number of people, only one of whom is named Higgs, and only two of
whom were rewarded with the Nobel prize.
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and we should quantize about one of those points instead.56 For our purposes though, it
is enough to think about what happens classically. Firstly, notice that (6.49) describes
not a single point in field space, but rather a circle of points in the complex φ plane.
Any one of these points (which are degenerate in energy) could be the minimum. But
whichever point the theory picks, the symmetry φ → eiαφ will be broken by the vacuum
configuration. This is the phenomenon of spontaneous symmetry breaking.57 It has an
immediate consequence, which is that fluctuations of the field about the minimum in the
degenerate direction have no associated potential energy. So provided the wavelength of
the fluctuations is large enough, the kinetic (and hence total) energy cost of the fluctuation
will be small. This is formalized as Goldstone’s theorem and in Lorentz-invariant theories,
it means that spontaneous symmetry breaking always implies the existence of a massless
particle.

You can check that it works for φ4 theory right now. Choose the vacuum direction to
be along the real φ axis and expand

φ =
1√
2

(v + φ1 + iφ2), (6.50)

where φ1,2 are real scalar fields. You should find (by substituting in the Lagrangian and
picking out the quadratic terms — exercise) that φ1 has mass

√
−2m2 and that φ2 is

massless.
Now let’s ask what would happen if we had promoted the symmetry φ → eiαφ to a

U(1) gauge symmetry, viz. α→ α(x). Then the Lagrangian would be

L = (Dµφ)∗Dµφ−m2|φ|2 − λ|φ|4, (6.51)

with Dµ = ∂µ + ieAµ as always. This is called the Abelian Higgs model. When we allow φ

to have a VEV, 〈0|φ|0〉 = v√
2
, we find the gauge boson mass term58

L ⊃ +
e2v2

2
AµAµ. (6.52)

So spontaneous breaking of a gauge field gives rise to a gauge boson mass! There is some-
thing a bit fishy here, which is that a massive vector boson has three polarizations (corre-
sponding to the three directions the spin can point it in its rest frame), whilst a massless
vector boson has only two (corresponding to whether its helicity is plus or minus). We
seem to have got a degree of freedom ‘for free’, just by flipping the sign of a parameter in
the Lagrangian. This is not so. Indeed, we musn’t forget about the freedom to do gauge
transformations. In particular, there exists a transformation, given by α = − tan φ2

v+φ1
, in

which the degree of freedom φ′2 (that was previously the Goldstone boson) of the gauge-
transformed scalar field vanishes. This is nothing other than a choice of gauge fixing, called

56Note that in quantum mechanics (or in QFT in d = 1 + 1), we would instead find that the vacuum is
some linear superposition of states localized about each of the points. But QFT in d > 1 + 1 is different.

57Note that if you tried this trick for a fermion or a vector, rather than a scalar, you would end up
breaking Lorentz invariance as well.

58Note that this is a positive mass squared term in the potential for the spatial components of the gauge
field.
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the unitary gauge. Colloquially, we say that the massless Goldstone boson gets ‘eaten’ by
the gauge field to become the third polarization of a massive vector field.

All of this discussion generalizes directly to theories with non-Abelian symmetry group
G. Depending on what rep of G the scalar field comes in and depending on how the VEV is
aligned, the group G will get broken to some subgroup H ⊂ G. In the global version, there
will be as many massless Goldstone bosons as there are generators of G (more precisely, its
Lie algebra) which are not in H. In the local (gauged) version, the gauge boson mass term
is given by

g2

2
v†T ar T

b
r vA

µaAbµ =
(m2)ab

2
AµaAbµ; (6.53)

gauge bosons which correspond to broken generators (T av 6= 0) become massive, whilst
those corresponding to unbroken generators remain massless.

We are now in a position to go back and work out the final details of the weak inter-
actions. Before we do, you might be worrying that I am trying to pull the wool over your
eyes. I gave you gauge symmetry with one hand and I took it away with the other, by
breaking it. Aren’t we back where we started?

The answer is a resounding no. Actually, as we hinted earlier on, gauge symmetry is
not really a symmetry at all, or at least it is no more of a symmetry than the underlying
global symmetry. One way to see this is to note there are no extra conservation laws that
appear once one gauges a symmetry. Rather, gauge symmetry is a convenient redundancy
of description, which can be got rid of by gauge fixing.

Moreover, spontaneous symmetry breaking is not really a symmetry breaking. The
symmetry is still present, but acts on the physical degrees of freedom in a different way. In
particular, for a globally symmetric theory, in the unbroken version, the scalar fields trans-
form linearly, like a representation: φ → eiαφ. But in the ‘broken’ version, the Goldstone
boson transforms non-linearly: φ2 → φ2 + vα + . . . . So pedants say that the symmetry
is not broken, but rather is non-linearly realized. And they are right, as they usually are.
The symmetry still restricts the form of the Lagrangian and indeed allows us to have a
consistent theoretical description of a massive vector boson force-carrier.

6.9 Back to the electroweak interaction

Let’s now show what happens for the electroweak theory, a.k.a. the Standard Model. You
are probably getting tired of repeating the mistakes of your predecessors by now, so I will
just lay down the facts.

We have a gauge theory of SU(2) × U(1), containing gauge bosons W±µ ,W 3
µ and Bµ.

We want to break things in such a way that the W±µ , together with the combination of
W 3
µ and Bµ that we called Zµ, become massive, while the combination Aµ stays massless.

Clearly we need to break SU(2) × U(1) down to U(1), where the unbroken U(1) is the
‘right’ combination of the original U(1) and a U(1) subgroup of SU(2). It can be done as
follows. Introduce a scalar field (the Higgs field), H, transforming as a doublet of SU(2),
with hypercharge Y = 1

2 . The Higgs potential takes the form

−µ2H†H + λ(H†H)2. (6.54)
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This is minimized when

√
H†H ≡ v√

2
=

√
µ2

2λ
(6.55)

and we may choose, without loss of generality,

〈H〉 =

(
0
v√
2

)
, (6.56)

with v real. The covariant derivative

DµH = (∂µ + ig
σi

2
W i
µ + i

g′

2
Bµ)H (6.57)

then results in a gauge boson mass matrix

1

8

(
0 v
)(gW 3

µ + g′Bµ
√

2gW+
µ√

2gW−µ −gW 3
µ + g′Bµ

)(
gW 3

µ + g′Bµ
√

2gW+
µ√

2gW−µ −gW 3
µ + g′Bµ

)(
0

v

)
(6.58)

or, using (6.40) together with cos θW = g√
g2+g′2

, sin θW = g′√
g2+g′2

(gv)2

4
W+
µ W

−µ +
(g2 + g′2)v2

8
ZµZ

µ (6.59)

Taking into account the different normalizations (the mass term is m2φ∗φ for a complex
field but m2

2 φ
2 for a real field), we find

mW =
gv

2
, mZ =

√
g2 + g′2v

2
=

mW

cos θW
, mA = 0. (6.60)

Miraculously, we find massiveW and Z bosons, together with a massless photon. Moreover,
the theory predicts the ratio of W and Z masses to be given by cos θW , in agreement with
experiment (mW = 80.2 and mZ = 91.2 GeV).59 Was it really a miracle? In many ways, no.
Once we fixed the charges of the Higgs and of the fermions, we had no choice but to break
SU(2) × U(1) to electromagnetism (or not to break it at all). The mW /mZ mass ratio
prediction is non-trivial, in that choosing a different representation for the Higgs would
spoil it. Then again, choosing an arbitrary representation for the Higgs would not give the
right pattern of symmetry breaking. In the end, everything which appears miraculous can
be traced back to the choices of charges for the fermions and the Higgs. They are what they
are observed to be, but still the question remains of why Nature chose them that way. Why
for example, are all the hypercharges quantized in units of one-sixth (recall that it need not
be so; indeed, we could have chosen a charge of π for one of the fermions, a priori)? Could
it be that Nature had to choose them that way, in the sense that the theory could not be
consistent otherwise? Questions like these drive us to look for theories of physics that go
beyond the Standard Model, in the hope that we may gain a deeper level of understanding
of why things are the way they are.

59Strictly speaking, the ratio disagrees with experiment, because it receives corrections from higher orders
in perturbation theory. But once these are taken into account everything fits nicely.
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6.10 Fermion Masses

We have explained how the gauge bosons get their masses by the Higgs mechanism, but
what about the quarks and leptons? Again, the answer is straightforward. Given a Higgs
field transforming as a doublet of SU(2) with hypercharge one-half, we can write down the
Yukawa couplings

L ⊃ −λuqLHcuR − λdqLHdR − λelLHeR + h.c. (6.61)

where Hc ≡ iσ2H∗ is an SU(2) doublet field with hypercharge minus one-half.60 These
terms represent interactions, but when we plug in the Higgs VEV, lo and behold, we get
fermion masses

mu =
λuv√

2
, md =

λdv√
2
, me =

λev√
2
. (6.62)

It just works.TM

6.11 Three Generations

We have described what happens for the first generation of quarks and leptons. In fact
there are three generations (we already know about the muon and the various flavours of
quarks) and it turns out that the extension of the theory just described gives an elegant
(and more to the point, correct) description of flavour physics (namely transitions between
the generations). In particular, the Yukawa couplings in (6.61) can be complex, and this
is what gives rise to CP violation, once we have three generations. We don’t have time to
describe it here, but I encourage you to look it up.

6.12 The Standard Model and the Higgs boson

We have almost finished our description of the Standard Model. To recap, we show in Table
1 the different fields and their representations under the SM gauge group SU(3)×SU(2)×
U(1) (recall that SU(3) corresponds to QCD, or the strong nuclear force).

We have worked out the properties of all of the particles, but one: the Higgs boson.
What Higgs boson? Remember in the Abelian Higgs model that the Goldstone boson got
eaten by the gauge field, but we were left with one massive scalar mode, corresponding to
fluctuations in the radial direction in the complex plane of the field φ. For the Higgs field
H in the Standard Model, we have four real scalar degrees of freedom (since H is a complex
doublet); three of these get ‘eaten’ to form the longitudinal polarizations of the W±µ and
Zµ. One scalar remains: the Higgs boson. We can work out its properties by going to the
unitary gauge, in which the three Goldstone bosons are manifestly eaten. In the SM, this
amounts to choosing

H(x) =
1√
2

(
0

v + h(x)

)
. (6.63)

60It is easy to see that Hc transforms with Y = − 1
2
, since it involves the complex conjugate of H. It is a

doublet of SU(2) because the complex conjugate of SU(2) transforms as an anti-doublet of SU(2), which
is equivalent to the doublet representation. The iσ2is just the similarity transform that takes us from one
rep to the other. Go and look in the group theory book if you’re worried about it.
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Field SU(3)c SU(2)L U(1)Y
g 8 1 0
W 1 3 0
B 1 1 0

qL = (uLdL)T 3 2 +1
6

uR 3 1 +2
3

dR 3 1 −1
3

lL = (νLeL)T 1 2 −1
2

eR 1 1 −1

H 1 2 +1
2

Table 1. Fields of the Standard Model and their SU(3)× SU(2)× U(1) representations

The Higgs boson, h(x), is a real scalar field. It is not charged under electromagnetism (it
can’t be, since it is real). Its couplings to other fields can be worked out by replacing v
with v + h in our previous expressions. Thus, from (6.62), we find a Yukawa coupling to
fermion i given by

L ⊃ −mi

v
hψiψi. (6.64)

Similarly, from (6.59), we find couplings to gauge bosons given by

L ⊃ m2
W

(
2h

v
+
h2

v2

)
W+
µ W

−µ +
m2
Z

2

(
2h

v
+
h2

v2

)
ZµZ

µ. (6.65)

Finally, the Higgs boson has self interactions, coming from the potential

L ⊃ +
µ2

2
(v + h)2 − λ

4
(v + h)4 ⊃ −λv2h2 − λvh3 − λ

4
h4 = −m

2
h

2
h2 − m2

h

2v
h3 − m2

h

8v2
h4.

(6.66)

Thus m2
h = 2λv2, such that we know the value of the coupling λ once we know the mass of

the Higgs. The recent LHC measurement of mh ' 125 GeV thus fixes λ ' 0.13.
With these couplings worked out, we can roughly work out the phenomenology of

Higgs boson decays. The self interactions are not relevant here, because energy-momentum
conservation obviously prevents the Higgs boson decaying to two or three Higgs bosons!
For the same reason, if the Higgs is light, it will lie below the required mass threshold for
decay to pairs of heavier particles, such as W+W− or ZZ or top quarks (mt ∼ 175 GeV, in
case you didn’t know). This consideration must be balanced against the fact that the Higgs
boson couplings to particles all grow with the mass of the particle. Thus, for a lightish
Higgs (above about 10 GeV), decays to bottom quark pairs will dominate (mb ' 4.1 GeV).
But by the time the Higgs has become very heavy (mh & 2mW ), decays toW+W− and ZZ
must dominate. Interestingly enough, the crossover does not occur near the mass threshold
mh = 2mW ∼ 160 GeV, but somewhat below, nearer mh ' 140 GeV. The reason is that
QFT allows the Higgs boson to decay to a W+W− or ZZ pair in which one of the gauge
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FIG. 2: Select Standard Model Higgs boson partial widths, as a function of mass, MH . Individual

partial widths are labeled, while the total width (sum of all partial widths, some minor ones not

shown) is the black curve. Widths calculated with hdecay [22].

The astute reader will have noticed by now that Fig. 2 contains curves for Higgs partial
widths to massless final states! (Have another look if you didn’t notice.) We know the
Higgs couples to particles proportional to their masses, so this requires some explanation.
Recall that loop-induced transitions can occur at higher orders in perturbation theory. Such
interactions typically are important to calculate only when a tree-level interaction doesn’t
exist. They are responsible for rare decays of various mesons, for instance, and are in some
cases sensitive to new physics which may appear in the loop. Here, we consider only SM
particles in the loop. Which ones are important? Recall also once again that the Higgs
boson couples proportional to particle mass. Thus, the top quark and EW gauge bosons are
most important. For H → gg, then, that means only the top quark, while for H → γγ it is
both the top quark and W loops (there is no ZZγ vertex). The H → gg expression (for the
Feynman diagram of Fig. 3) is [24]:

Γgg =
α2

sGF M3
H

16
√

2 π3

∣∣∣∣
∑

i

τi

[
1 + (1 − τi)f(τi)

]∣∣∣∣
2

(3)

with τi =
4m2

f

M2
H

and f(τ) =

{[
sin−1

√
1/τ

]2
τ ≥ 1

−1
4

[
ln 1+

√
1−τ

1−√
1−τ

− iπ
]2

τ < 1
(4)

7

Figure 8. Higgs boson partial decay widths, from [9].

bosons is virtual, in that the mass-shell condition E2 = p2 + m2 is not satisfied.61 The
virtual gauge boson then decays to real (on-shell) quarks or leptons by the usual gauge
interaction. The partial decays widths and branching ratios, as a function of mh, are shown
in Figs. 8 and 9. Remarkably, at the point mh = 125 GeV where the Higgs was found, we
see comparable branching ratios to a variety of final states. This has the disadvantage of
making it very difficult to discover the Higgs in the first place, since the number of Higgs
decays in a single final state is suppressed compared to the fixed background of things that
look like the Higgs decaying that way, but are not. But it has the great advantage that it
makes it easy for us to make a variety of experimental tests that the Higgs boson that we
claim to have discovered really does have the properties predicted in the SM. So far, the
LHC data suggest one or two small anomalies (the rate of Higgs decays to photons is too
large by a factor of about two, but the statistical significance is only around two sigma),
but otherwise things look pretty good.

There is one thing that may be bothering you in the Figures. They suggest that the
Higgs has a small coupling to both a pair of photons γγ and to a pair of gluons gg. How can
this be, when the Higgs carries neither colour nor electric charge? The answer is that loop
Feynman diagrams, like those in Fig. 10 generate such couplings. Though small, they are
very important for Higgs boson phenomenology at the LHC. Indeed, the LHC is a proton-
proton collider. Protons are mostly made of up and down quarks, but the coupling of the
Higgs boson to these is very small (it doesn’t even appear in the Figures we just showed).
But the proton also contains gluons, that bind the quarks together and these provide a

61If you want to prove this for yourself, draw the Feynman diagram and show that the resulting amplitude
is non-vanishing.
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FIG. 4: Select Standard Model Higgs boson branching ratios as a function of mass, MH [22]. The

Higgs prefers to decay to the most massive possible final state. The ratio of fermionic branching

ratios are proportional to fermion masses squared, modulo color factors and radiative corrections.

2. A brief word on statistics – the simple view

Now that we understand the basics of Higgs decay, and production in electron-positron
collisions, we should take a moment to consider statistics. The reason we must resort to
statistics is that particle detectors are imperfect instruments. It is impossible to precisely
measure the energy of all outgoing particles in every collision. The calorimeters are sampling
devices, which means they don’t capture all the energy; rather they’re calibrated to give
an accurate central value at large statistics, with some Gaussian uncertainty about the
mean for any single event. Excess energy can also appear, due to cosmic rays, beam–
gas or beam secondary interactions. Quark final states hadronize, resulting in the true
final state in the detector (a jet) being far more complicated and difficult even to identify
uniquely. The electronics can suffer hiccups, and software always has bugs, leading to
imperfect analysis. Thus, we would never see two or three events at precisely the Higgs
mass of, say, 122.6288... GeV, and pop the champagne. Rather, we’ll get a distribution of
masses and have to identify the central value and its associated uncertainty.

In any experiment, event counts are quantum rolls of the dice. For a sufficient number

9

Figure 9. Higgs boson branching ratios, from [9].

th

γ

γ

Figure 10. Feynman diagram with a loop of top quarks, contributing to the process h→ γγ.

way for us to produce the Higgs boson in pp collisions at the LHC. Similarly, the coupling
to photons is small, but a pair of photons has a much lower background (from non-Higgs
events) in LHC collisions than, say, a pair of b-quarks. So, even if you are experimentally-
minded and think that theoretical physics is pointless, I hope you can appreciate that the
nitty-gritty of theoretical QFT calculations was absolutely essential to the success of the
LHC experiment. On a related note, I encourage you now to go back and work out the
various Feynman rules for interactions involving the Higgs boson.62

7 Renormalization

Congratulations! You now know (nearly) as much as anyone else about Nature, or at least
the underlying particle physics. The state of the art is finding out all about the properties
of the Higgs and you are au fait with it. Cock-a-hoop as we are, let’s take our hubris
to the next level and see if we can follow some of the theoretical speculation about what

62By way of an incentive: if you don’t, you might struggle when it comes to the exam ;-)
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Figure 11. Loop contribution to the self-energy of the electron.

+ + + . . . (7.3)

Figure 12. Contributions to the electron self-energy.

lies beyond the Standard Model. To do so, we need to delve a bit deeper into the seedy
underbelly of QFT.

7.1 Ultraviolet divergences in quantum field theory

You are now in a position to write down the Feynman rules and compute the Feynman
diagram for any process you like. Should you do so, you will, most likely, quickly encounter
a problem. Most loop amplitudes that you calculate will be infinite. As an example,
consider the one-loop correction to the electron propagator shown in Fig. 11. Referring
back to the Feynman rules, we find

iM =

∫
d4k

(2π)4
u(−ieγµ)

−igµν
k2

i(/p− /k −m)

(p− k)2 −m2
(−ieγν)u. (7.1)

At large k, this goes like
∫
d4k /k

k4
, which is linearly divergent. In fact, the integral is only

logarithmically divergent, because the integrand is odd under kµ → −kµ, but it is divergent
nevertheless.

These divergences crop up all over the place and they were a great source of insomnia
for our predecessors. Eventually, they came up with a ruse for getting rid of them. Here’s
how it works in the example above. Call the divergent amplitude iΣ and consider the
sequence of diagrams shown in Fig. 12. We can sum them up to get

(7.2)
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i

/p−m
+

i

/p−m
iΣ

i

/p−m
+

i

/p−m
iΣ

i

/p−m
iΣ

i

/p−m
+ . . . (7.4)

=
i

/p−m

(
1 + iΣ

i

/p−m
+ . . .

)
(7.5)

=
i

/p−m

(
1− iΣ i

/p−m

)−1

(7.6)

=
i

/p−m− Σ
. (7.7)

Thus Σ may be considered as an (infinite) shift of the mass parameter m in the Lagrangian.
This would not pose a problem if m itself were chosen to be infinite, in just such a way that
m+ Σ yields the measured electron mass of 511 keV.

This procedure of absorbing the divergences into the original parameters of the La-
grangian can only work if we are able to absorb all of the divergences in this way. Let’s
see if it has a chance of working. To do so, we need to do a bit of dimensional analysis. In
units where ~ = c = 1, this is easy, because we only have a dimension of energy or mass.
So first let’s figure out the dimensions of all the fields.

The action has the same dimensions as ~, so is dimensionless in our units. Since the
4-momentum corresponds to ∂µ in these units, space and time both have (mass) dimension
-1. The Lagrangian (density) must therefore have dimension 4, since

∫
d4xL yields the

dimensionless action. The field dimensions can then be figured out from the kinetic terms.
Bosonic fields must have dimension one, since the kinetic term involves two derivatives.
Fermions on the other hand must have dimension three-halves. You can then check that
the mass parameters in the respective Lagrangians really do have dimensions of mass and
that the gauge couplings are dimensionless.

This dimensional analysis enables us to quickly work out the degree of divergence of
any Feynman diagram. We call it the superficial degree of divergence, D, because it may
be that the real degree of divergence is smaller (cf. the log rather than linear divergence of
the one-loop electron self-energy diagram in QED that we wrote down above).

Consider a diagram with L loops, FI,E internal or external fermion propagators, BI,E
internal or external boson propagators, and V vertices. If we roll the plane of the diagram
into a sphere, the internal lines and loops make a convex polyhedron, for which Euler tells
us that the number of vertices minus edges plus faces equals two. In other words,

L = FI +BI − V + 1. (7.8)

Now let’s think about the vertices. Each one comes from a dimension four term in the
Lagrangian. If vertex j involves Fj and Bj fermionic and bosonic fields, together with Pj
momenta, then its coupling constant has dimension

gj = 4− 3

2
Fj −Bj − Pj . (7.9)
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Furthermore, since every internal propagator ends on two vertices and every external prop-
agator lands on one vertex, it must be that

∑

j

Fj = 2FI + FE ,
∑

j

Bj = 2BI +BE , (7.10)

where we sum over all vertices in the diagram. From this mess, you can obtain the relation
(exercise)

D = 4− 3

2
FE −BE −

∑

j

gj . (7.11)

This relation is most instructive: it tells us the superficial degree of divergence for fixed
initial and final states depends only on the dimensions of couplings that appear. Moreover,
if any coupling has negative mass dimension, we have no chance of carrying out the renor-
malization programme, since more and more divergences appear as we include more and
more vertices in diagrams. Conversely, renormalization might work for theories like QED
or the SM (where we only have couplings of positive or vanishing mass dimension), because
diagrams get less and less divergent as they get more complicated.

This is not the same as saying that it does work, however. To prove renormalizability
of the electroweak theory took a heroic effort by ’t Hooft and Veltman. Heroic enough
to win them the Nobel prize, the real breakthrough being a clever choice of gauge by the
young ’t Hooft.

Our arguments also tell us immediately why gravity cannot be included straightfor-
wardly within the quantum gauge field theory framework. The classical action for gravity
is the Einstein-Hilbert action

S =
1

M2
P

∫
d4x

√
−detgµνR

σ
σ, (7.12)

where g and R are the metric and Riemann tensors, respectively. This is a gauge theory (the
symmetry being diffeomorphism invariance), but the coupling constant 1

M2
P

has negative
mass dimension. The theory cannot be perturbatively renormalizable.

7.2 Non-renormalizable interactions and effective theories: the modern view

Even though the SM is renormalizable and the infinities can be swept away, this procedure
hardly seems aesthetically attractive. Nowadays we have a rather different view of renor-
malizability. The problems appear because we tried to define the theory up to arbitrarily
high energy (and this short distance) scales, way beyond those which we are able to probe
in our current experiments. We would not have to worry about infinities at all if we im-
posed some large momentum cut-off, Λ, on the theory, beyond the reach of our experiments.
But since there are then no infinities, even non-renormalizable theories make perfect sense,
provided we understand that they come with a cut-off, Λ. This is called an effective field
theory.

In fact, this should have been obvious all along and indeed it is the way we have
always done physics: we build a theory which works on the scales probed by our current
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experiments, accepting that we may need to revise it once we are able to probe new scales.
QFT (which, via loop diagrams, prevents us from simply ignoring the effect of physics
at other scales) merely brought this issue into focus. Moreover, even in quantum physics
we have long had concrete examples of this. Perhaps the best is Fermi’s theory of the
weak interaction, containing a four-fermion interaction to describe β decay. A four-fermion
interaction has mass dimension six and so the coupling, GF has mass dimension minus two.
The theory, considered as a QFT, is non-renormalizable, but this presents no problems
provided that we do not ask questions about what happens at mass scales higher than the
cut-off, c. 100 GeV, which is set by the mass scale associated with GF . Moreover, the
cut-off that is present in Fermi’s description can be seen as a strong hint that something
interesting happens in weak interactions at scales around 100 GeV. As we have seen, that
is indeed what happens – we discover that the four-fermion effective interaction arises from
the exchange of W and Z gauge bosons having that mass. Given the complete electroweak
theory, we can go back to Fermi’s theory, by considering only energies below 100 GeV, for
which we can ‘integrate out’ the W and Z.63

If there is nothing wrong with non-renormalizable theories, then why is the Standard
Model renormalizable? A better way to phrase this is as follows. We could extend the
Standard Model by adding non-renormalizable operators to it, whilst still maintaining gauge
invariance (we will do exactly that when we consider neutrino masses in the next Section).
The fact that the SM gives a good description of all physics seen so far translates into the
statement that the mass scale (a.k.a. the cut-off) associated with these higher-dimensional
operators must be very large, meaning that the new physics (beyond the SM) that they
provide an effective description of must be a long way out of our reach. No one knows
why this must be the case and indeed there are strong (but indirect) arguments for why it
should not be the case. Unfortunately, so far, experiments like the LHC indicate that the
SM provides a very good description of physics at energy scales within reach.

8 Beyond the Standard Model

We now move on to consider some aspects of physics beyond the SM. With one exception,
this is speculative, in that we have no concrete experimental evidence for it. We start with
the exception.

8.1 Neutrino masses

The story of neutrino masses goes back several decades, beginning with the discovery in
the 1960s that the flux of electron neutrinos from the sun was less than half of what was
predicted by models of the nuclear reactions that fuel the sun. One way to resolve the
deficit is to postulate that neutrinos can undergo oscillations between the different flavours,
in much the same way as neutral mesons. In order for neutrino oscillations to be physical,
there must be some distinguishing feature between the different neutrino generations. Since

63This procedure is called integrating out because in the path integral formalism of QFT it corresponds
to doing the path integral with respect to the fields W and Z.
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they have identical gauge couplings, the most obvious distinguishing feature is a neutrino
mass, which may differ between the generations.

Despite many corroborating experimental hints, the hypothesis of solar neutrino os-
cillations into other flavours was not confirmed beyond doubt until 2001, by the Sudbury
Neutrino Observatory. Whilst we do not have a direct measurement of the masses (though
a bound on the sum of around an eV may be inferred from cosmological data), we do know
that the two mass-squared differences are around 10−3 and 10−5 eV2.

The challenge then, is to give a theoretical description of neutrino masses and, hopefully,
to explain their smallness (in comparison, the lightest charged particle, the electron, has
mass 511 keV). The renormalizable Standard Model cannot account for massive neutrinos.
However, it turns out that the Standard Model does provide an elegant description of
neutrino masses, when we consider it as a non-renormalizable, effective field theory.

Indeed, consider the Lorentz-invariant operators of dimension greater than four that
respect the SU(3) × SU(2) × U(1) gauge symmetry and hence could be added to the SM
Lagrangian. The low-energy effects of the operators will be largest for the operators of
lowest dimension. The lowest dimension greater than four is five and we find exactly one
dimension five operator that can be added to the Lagrangian. It takes the form

L ⊃ − 1

Λ
(lTLH

cC(Hc)T lL) + h. c. (8.1)

where 1
Λ is the coupling (written so that Λ has dimensions of mass) and where +h. c.

instructs us to add the Hermitian conjugate (so that the Lagrangian comes out to be real).
This is an interaction involving two Higgs fields and two lepton doublets, but when the
Higgs field gets a VEV, we find a Majorana mass term for the neutrino of the form (6.39):

L ⊃ − v
2

2Λ
νTLCνL + h. c. (8.2)

The neutrino mass comes out to be m = v2

Λ , which is in itself very interesting: we can
explain the small mass of neutrinos ∼ 10−1 eV if Λ is very large, ∼ 1014 GeV. Why is this
interesting? Recall from our discussion of effective field theories above that Λ corresponds
to the scale at which the effective theory breaks down and must be replaced by a more
complete description of the physics. The smallness of neutrino masses is indirectly telling
us that the SM could provide a good description of physics all the way up to a very high
scale of ∼ 1014 GeV. In comparison, the LHC probes energies around 103 GeV. Moreover,
our effective field theory approach tells that neutrino masses are expected to be the first
sign of deviation from the SM that we observe, in the sense that they are generated by the
operator of lowest dimension: if all the higher-dimension operators are suppressed by the
same mass scale (which, by the way, they need not be), then the neutrino mass operator
above will have the largest effect at the relatively low energies at which we perform our
experiments.

It is interesting to speculate what the new physics might be. One simple possibility
is to add a new particle to the SM called a right-handed neutrino. This is simply a right-
handed fermion which is completely neutral with respect to the SM gauge group. The most
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general, renormalizable Lagrangian then includes the extra terms

L ⊃ λν lLHcνR −MνTRCνR + h. c. (8.3)

The first term is simply a generalization of the Yukawa couplings (6.61) and the second
is a Majorana mass term (6.39). We can now identify two qualitatively different scenarios
reproducing the observed small neutrino masses. The first way would be to allow the Yukawa
coupling to be of order unity; then a small neutrino mass could only be accomplished by
choosing the Majorana mass M around ∼ 1014GeV. Then, diagonalizing the mass matrix
for νL and νR one finds one light eigenstate with mass around 0.1 eV and one heavy state
around 1014 GeV. This is often called the see-saw mechanism. We could then integrate out
the heavy state (which is mostly νR) to obtain the effective theory description containing
only νL given above. The second scenario is to imagine that the Majorana mass term is
forbidden. One could do this example by declaring that the theory should be invariant
under a global phase rotation of all leptons, including νR. This corresponds to insisting
on conservation of lepton number and is enough to forbid the Majorana mass term.64

Then neutrino masses come from the Yukawa term alone, and both left- and right- handed
neutrinos are light. In fact, they are degenerate, since they together make up a Dirac
fermion. Notice that in this second picture we cannot integrate out a heavy neutrino to
obtain an effective theory as in (8.1). This is an important caveat: the scale Λ ∼ 1014 GeV
indicated by (8.1) is only an upper bound for the scale at which new physics should appear.

8.2 The gauge hierarchy problem

In our modern view of quantum field theory as an effective field theory, non-renormalizable
operators are not a problem. We recognize that they represent the effects of new physics
at high energy scales. They are suppressed by the scale Λ of new physics. Provided that Λ

is rather large, they give small contributions that we can take into account using the tools
of perturbation theory.

But this interpretation shows that there is now a problem with the renormalizable
operators. Indeed, in our enlightened understanding, we take the view that the physics
at our low scale is determined by the physics at higher scales, which corresponds to some
more fundamental theory. But then all mass scales in our current theory should be set by
the higher scale theory. This includes not only the operators of negative mass dimension,
but also the operators of positive mass dimension. Concretely, in the SM there is exactly
one coupling of positive mass dimension: the mass parameter, µ of the Higgs field. Why
on Earth does this have a value of around 100 GeV when we believe that it is ultimately
determined by a more fundamental theory at a much higher scale? We certainly have
evidence for the existence of physics at higher scales: neutrino masses indicate new physics
at 1014 GeV and the mass scale associated with gravity is the Planck mass, 1019 GeV.

This problem of how to explain the hierarchy between the scale of weak interactions
and other scales believed to exist in physics is called the gauge hierarchy problem. It is

64It is important to note that this is very different from what happens in the SM. There we find that
once we insist on the gauge symmetry, lepton (and baryon) numbers are automatically conserved by all
operators of dimension four or less. They are called accidental symmetries of the theory.
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compounded by the fact that QFT has loops which are sensitive to arbitrarily high scales.
This may all sound rather abstract to you, but I assure you that the problem can be viewed
concretely. Take a theory with two scalar fields. One like the Higgs, should be set to be
light. Make the other one heavy. Then compute the corrections to the mass of the light
scalar from loop diagrams containing the heavy scalar. You will find that the mass of the
light scalar gets lifted up to the mass of the heavy one.

Several beautiful solutions to this hierarchy problem have been put forward, involving
concepts like supersymmetry, strong dynamics, and extra dimensions. They all involve rich
dynamics (usually in the form of many new particles) at the TeV scale. We are looking for
them at the LHC, but so far our searches have come up empty-handed.

8.3 Grand unification

There is yet another compelling hint for physics beyond the SM. It turns out that one
consequence of renormalization is that the parameters of the theory must be interpreted as
being dependent on the scale at which the theory is probed. I’m afraid you will have to read
a QFT textbook to see why. It turns out that the QCD coupling gets smaller as the energy
scale goes up (this is why we are able to do QCD perturbation theory for understanding
LHC physics as the TeV scale, whilst needing non-perturbative insight in order to able to
prove confinement of quarks into hadrons at the GeV scale), while the electroweak couplings
g and g′ get bigger. Remarkably, if one extrapolates far enough, one finds that all three
couplings are nearly65 equal66 at a very high scale, c. 1015 GeV. Could it be that, just as
electromagnetism and the weak force become the unified electroweak force at the 100 GeV
scale, all three forces become unified at 1015 GeV?

The fact that the couplings seem to become equal is a hint that we could try to make all
three groups in SU(3)× SU(2)× U(1) subgroups of one big group, with a single coupling
constant. The group SU(5) is an obvious contender and in fact it is the smallest one.
How does SU(3) × SU(2) × U(1) fit into SU(5)? Consider SU(5) in terms of its defining
representation: 5 × 5 unitary matrices with unit determinant acting on 5-dimensional
vectors. We can get an SU(3) subgroup by considering the upper-left 3 × 3 block and
we can get an independent SU(2) subgroup from the lower right 2 × 2 block. There is
one more Hermitian, traceless generator that is orthogonal to the generators of these two
subgroups: it is T =

√
3
5diag(−1

3 ,−1
3 ,−1

3 ,
1
2 ,

1
2), with the usual normalization. Our goal

will be to try to identify this with the hypercharge U(1) in the SM. To do so, we first have
to work out how the SM fermions fit into reps of SU(5). To do so, it is most convenient
to write the right-handed fermions of the SM as charge conjugates of left-handed fermions.
Then the multiplets are qL, ucL, d

c
L, l, e

c
L, with the charges as given in Table 1, except that

we must take the conjugate reps for the multiplets with a ‘c’.

65Nearly enough to be impressive, but not quite. The discrepancy might be resolved by extra, supersym-
metric particles, however.

66At the moment, this is an trivial statement: the normalization of g′ is arbitrary and can always be
chosen to make all three couplings meet at the same point. But we will soon be able to give real meaning
to it.
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Before going further, let’s do a bit of basic SU(N) representation theory. The defining,
or fundamental, representation is an N -dimensional vector, acted on by N × N matrices.
We can write the action as αi → U ijα

j , with the indices i, j enumerating the N components.
Given this rep, we can immediately find another by taking the complex conjugate. This
is called the antifundamental rep. It is convenient to denote an object which transforms
according to the antifundamental with a downstairs index, βi. Why? The conjugate of
αi → U ijα

j is α∗i → U∗ij α
∗j = U †ji α

∗j . So if we define things that transform according to
the conjugate with a downstairs index, we can write βi → U †ji βj . The beauty of this is that
αiβi → αjU ijU

†k
i βk = αjδkj βk = αkβk, where we used UU † = 1. Thus when we contract

an upstairs index with a downstairs index, we get a singlet. This is, of course, much like
what happens with µ indices for Lorentz transformations. Note that the Kronecker delta,
δkj , naturally has one up index and one down and it transforms as δli → U ikδ

k
jU
†j
l . But

UU † = 1 =⇒ δli → δli and so we call δli an invariant tensor of SU(N). Note, furthermore,
that there is a second invariant tensor, namely εijk... (or εijk...) , the totally antisymmetric
tensor with N indices. Its invariance follows from the relation det U = 1.

These two invariant tensors allow us to find all the irreps SU(N) from (tensor) products
of fundamental and antifundamental representations. The key observation is that tensors
which are symmetric or antisymmetric in their indices remain symmetric or antisymmetric
under the group action (exercise), so cannot transform into one another. So to reduce a
generic product rep into irreps, one can start by symmetrizing or antisymmetrizing the
indices. This doesn’t complete the process, because one can also contract indices using
either of the invariant tensors, which also produces objects which only transform among
themselves (exercise).

Let’s see how it works for some simple examples, reproducing some results which were
probably previously introduced to you as dogma. Start with SU(2), which is locally equiv-
alent to SO(3) and whose representation theory is known to you as ‘The theory of angular
momentum in quantum mechanics’. The fundamental rep is a 2-vector (a.k.a. spin-half);
call it αj . Via the invariant tensor εij this can also be thought of as an object with a
downstairs index, viz. εijαj , meaning that the doublet and anti-doublet are equivalent rep-
resentations (the εij also gives rise to the peculiar minus signs that appear, usually without
explanation, in introductory QM courses). So all tensors can be thought of as having indices
upstairs, and it remains only to symmetrize (or antisymmetrize). Take the product of two
doublets for example. We decompose αiβj = 1

2(α(iβj) + α[iβj]), where we have explicitly
(anti)symmetrized the indices. The symmetric object is a triplet irrep (it has (11), (22),
and (12) components), while the antisymmetric object is a singlet (having only a [12] com-
ponent). We write this decomposition as 2× 2 = 3 + 1 and you will recognize it from your
studies of the Helium (two-electron) atom.

The representation theory of SU(3) is not much harder. The fundamental is a triplet
and the anti-triplet is inequivalent.67 The product of two triplets contains a symmetric
sextuplet and an antisymmetric part containing three states. We can use the invariant

67It is inequivalent, because we cannot convert one to the other using εij , which has been replaced by
εijk.

– 66 –



tensor εijk to write the latter as εijkα[iβj], meaning that it is equivalent to an object with
one index downstairs, viz. an anti-triplet. Thus the decomposition is 3 × 3 = 6 + 3. On
the other hand, we cannot symmetrize the product of a 3 and a 3, because the indices
are of different type. The only thing we can do is to separate out a singlet obtained
by contracting the two indices with the invariant tensor δij . Thus the decomposition is

αiβj =
(
αiβj − 1

3α
kβkδ

i
j

)
+ 1

3α
kβkδ

i
j , or 3 × 3 = 8 + 1. The 8 is the adjoint rep. Again,

you have probably seen this all before under the guise of ‘the eightfold way’.
For SU(5), things are much the same. The only reps we shall need are the smallest ones,

namely the (anti)fundamental 5(5) and the 10 which is obtained from the antisymmetric
product of two 5s.

Now let’s get back to grand unified theories. We’ll try to do the dumbest thing imag-
inable which is to try to fit some of the SM particles into the fundamental five-dimensional
representation of SU(5). I hope you can see that this breaks up into a piece (the first three
entries of the vector) that transform like the fundamental (triplet) rep of SU(3) and the
singlet of SU(2) and a piece (the last two entries of the vector) which does the opposite.
For this to work the last two entries would have to correspond to lL (since this is the only
SM multiplet which is a singlet of SU(3) and a doublet of SU(2)), in which case the hy-

percharge must be fixed to be Y = −
√

5
3T . Then the hypercharge of the first three entries

is +1
3 . This is just what we need for dcL, except that d

c
L is a colour anti-triplet rather than

a triplet. But we can fix it up by instead identifying Y = +
√

5
3T and then identifying

(dcL, lL) with the anti-fundamental rep of SU(5).68

What about the other SM fermions? The next smallest rep of SU(5) is ten dimen-
sional. It can be formed by taking the product of two fundamentals and then keep-
ing only the antisymmetric part of the product. But since we now know that under
SU(5) → SU(3) × SU(2) × U(1), 5 → (3, 1,−1

3) + (1, 2,+1
2), you can immediately de-

duce69 that 10→ (3, 2,+1
6) + (3, 1,−2

3) + (1, 1,+1). These are precisely qL, ucL, and e
c
L.

That things fit in this way is nothing short of miraculous. Let’s now justify our state-
ment about the couplings meeting at the high scale. The SU(5) covariant derivative is

Dµ = ∂µ + igGUTAµ ⊃ igGUT

(
W 3
µT

3 + i

√
3

5
Y Bµ

)
, (8.4)

so unification predicts that tan θW = g
g′ =

√
3
5 =⇒ sin2 θW = 3

8 . This is the relation
which is observed to hold good (very nearly) at the unification scale.

There is another GUT which is based on the group SO(10). This is perhaps even more
remarkable, in that the fifteen states of a single SM generation fit into a 16 dimensional rep
(it is in fact a spinor) of SO(10). You might be thinking that this doesn’t look so good,
but — wait for it — the sixteenth state is a SM gauge singlet and plays the rôle of a right
handed neutrino. It almost looks too good to be true.

68This discussion hinges on the group theoretical fact that a representation and its complex conjugate
are inequivalent, in general.

69At least you can if you know a bit of group theory, for example that the antisymmetric product of two
2s of SU(2) is a singlet and similarly that the antisymmetric product of two 3s of SU(3) is a 3.
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9 Afterword

Particle physics has had a tremendous winning streak. In a century or so, we have come
an enormously long way. These lecture notes are, in a sense, a condensation of that.

Despite the glorious successes of the past, it is fair to say that the golden age of
particle physics is happening right now. Not only have we just discovered the Higgs boson
(and are busily checking that it conforms to the predictions of the SM), but we have strong
indications that there should be physics beyond the SM and the LHC and other experiments
are comprehensively searching for it. So far, nothing has been found, but now the LHC is
being upgraded to run at even higher energies.

Who knows what lies around the corner? If your interest is piqued by what I have
discussed, then I wholeheartedly encourage you to begin a proper study of particle physics
in general, and gauge field theory, in particular. Maybe it will be you who makes the next
big breakthrough . . .
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