Atmospheric $u_{\rm e}$ Search II

Pat Ward University of Cambridge

- Reminder: was attempting to identify atmospheric $\nu_{\rm e}$ CC events Use for normalization of flux for ν_{μ} analysis
- Found cosmic MC underestimates background by factor ${\sim}5$
- Expected/observed numbers of events for 2.52kty:

	$ u_{ m e}{ m CC}$	$ u_{\mu}{ t CC}$	NC	MC cosmics	Data
Before shield cuts	12.6	4.7	4.0	17±10	112
After shield cuts					27

Atmospheric $u_{\rm e}$

- Know that simulation of muon nuclear interactions is poor in Geant3
- How about EM interactions at high energies?
- Compare Geant3 and Geant4 using CALDET simulation
 As DRW studies: energy deposited in each strip for each particle type
- Geant3: use usual GMINOS settings (DRAY 1, LOSS 1) with 100keV cuts
- Geant4: use equivalent processes; cuts 0.3mm
 ⇒ same energy deposited by muon
 Results for 1M 100 GeV μ⁻
 N.B. data sample ≡ 11.4M cosmics
 Only keep those with deposited energy 10³

>300 MeV

G3: 47720; G4: 44892

Total Energy Deposited

- Total energy deposited tends to be lower in Geant4 G3: $\langle E \rangle = 653 \pm 3$ MeV G4: $\langle E \rangle = 632 \pm 3$ MeV
- Geant4 has fewer events at very high energy (> 3 GeV), and distribution cuts off at somewhat lower value
- Have not yet understood this

Energy Deposited by Different Particles

Shower Events

- Try to find events with showers; consider events with $E_{\rm tot} > 1 \,{\rm GeV}$
- Count energy in strips
 WITHOUT muon hits only
- High energy tail still bigger in Geant3

Shower Events

- Using strips without muon hits, form 'moment of inertia' tensor, normalized to total 'shower' energy, and find eigenvalues and eigenvectors (as in ν_e selection)
- To remove track-like events, $u_{\rm e}$ analysis requires largest eigenvalue < 0.1

Shower-like Events

 Select those with largest eigenvalue < 0.1
 G3: 4966

G4: 4412

- Geant3 still tends to have more at high energies
- No sign (yet?) that Geant4
 would simulate excess
 events seen in data
- Next step: More events?? Higher energy?? Better ideas??

