#### **Neutron Background to Atmospheric Neutrino Analyses**

Pat Ward University of Cambridge

- Neutrons produced from interactions of cosmic muons in rock are potential background in atmospheric neutrino event samples
   Particularly if muon not seen in detector
- Attempts to estimate rate of neutrons incident on MINOS FD from Soudan 2 data or MC calculations performed by other experiments gave rates from 200 30000 n/year with  $E_{\rm n}>$ 300 MeV
- Therefore used simple GEANT4 simulation to estimate neutron rate

# **GEANT4 Simulation**



## **GEANT4 Simulation**

- Cosmic muon flux as in atmospheric  $\nu$  background studies
- Take muons incident on box 5m from detector, and extrapolate back so they traverse (at least) 5m rock
- Physics processes as in example N04 (usual em, hadronic int., decays etc.) with addition of muon nuclear interactions
- Track muon until reaches detector, decays or leaves 'world'. If there has been a muon nuclear interaction, continue tracking and save all particles entering detector volume; otherwise kill event
- Save ONLY events with at least one neutron entering detector; for these, output all particles which enter detector
- Separate step: feed these particles into GMINOS detector simulation and reconstruct

#### **Muon Interaction Vertex**

• High energy neutrons reaching detector almost all produced within last  $\sim$ 2 m of rock



#### **Muon-neutron Separation**

- Separation between 2000 muon and neutron at 1500 detector entry typically 1000 metres, decreasing with 500 energy
- For  $E_{\rm n}$  > 100 MeV (300 MeV), approx. 18% (13%) of neutrons enter detector more than 5 m from muon



# **Results**

- Results based on 330M muons ( $\equiv$  4.7 years)
- Approx 0.9% give ≥ 1 neutron incident on detector volume In these, mean number of particles hitting detector = 14.4±0.2, but some events have 10000 or more (mostly low energy photons)
- Number of neutrons per muon with  $E_{\rm n}$  >20 MeV = 29822/30M = 0.001
- How does this compare with other simulations? Comparison difficult as I only save events with neutron incident on detector
- hep-ex/0403009 (Canfranc) quote mean number of neutrons per muon with  $E_{\rm n}$  >20 MeV = 0.007
- But number of neutrons  $\sim E_{\mu}^{0.75} \Rightarrow$  expect Soudan/Canfranc  $\sim$  0.5
- Only  $\sim$ 30% of generated muons point to my detector volume  $\rightarrow$  multiply my rate by  $\sim$  3
- Hence rates roughly consistent
   Pat Ward
   13th June 2005

# **Neutron Energy Spectrum**



#### Neutron Energy Spectrum

### **Neutron Rates at Far Detector from GEANT4 Simulation**

|                     | $E_{ m n}>$ 100 MeV |                     |  |
|---------------------|---------------------|---------------------|--|
|                     | Events/y $[10^3]$   | Neutrons/y $[10^3]$ |  |
| Accompanied by muon | $9.68 {\pm} 0.05$   | 13.75±0.06          |  |
| Without muon        | 8.10±0.04           | $10.01 \pm 0.05$    |  |
| Total               | 17.79±0.06          | 23.76±0.07          |  |
|                     | $E_{ m n}>$ 300 MeV |                     |  |
|                     | Events/y $[10^3]$   | Neutrons/y $[10^3]$ |  |
| Accompanied by muon | $3.52 \pm 0.03$     | 4.46±0.03           |  |
| Without muon        | 1.83±0.02           | $2.05 \pm 0.02$     |  |
| Total               | $5.54 \pm 0.04$     | $6.51 \pm 0.04$     |  |

#### Hadronic Interaction Models

- Approx. 64% of neutrons with  $E_{\rm n}$  > 100 MeV incident on detector are from secondary interactions
  - $\Rightarrow$  Results sensitive to modelling of hadronic interactions
- Main simulation (results on previous slide) used (energy-dependent) parameterized models for inelastic hadronic processes (
   LHEP physics list)
- Replace with different physics lists:
  - QGSP: theory-driven quark-gluon string model
  - QGSP\_BERT: as QGSP but Bertini cascade for pions and nucleons below 3 GeV
  - QGSP\_BIC: as QGSP but Bertini cascade for nucleons below 3 GeV

Ratio of neutron fluxes to default simulation:

|           | $E_{ m n}>$ 100 MeV |           | $E_{ m n}>$ 300 MeV |            |
|-----------|---------------------|-----------|---------------------|------------|
|           | Events/y            | Neutron/y | Events/y            | Neutrons/y |
| QGSP      | 0.86±0.02           | 0.87±0.02 | 0.81±0.03           | 0.85±0.03  |
| QGSP_BERT | 1.31±0.02           | 1.39±0.02 | 1.28±0.04           | 1.33±0.04  |
| QGSP_BIC  | 1.20±0.02           | 1.22±0.02 | 1.24±0.04           | 1.26±0.04  |

- See variations up to 30–40%
- There are also uncertainies in the muon-nuclear interaction model, rock composition/density etc.

Estimated rates probably reliable to  ${\sim}50\%$ 

# **Neutrons in Soudan 2**

- Is GEANT4 estimate consistent with neutron rate observed in Soudan 2?
- In February, estimate from Soudan 2 data gave 200 n/y at MINOS WITH VISIBLE ENERGY  $E_{\rm vis}$  > 300 MeV
- But how does visible energy relate to neutron energy?
- Try to make estimate of rate with VISIBLE energy above 300 MeV
- Using GMINOS simulation of events output from G4 program, sum energy of secondary particles above Soudan 2 thresholds (e/ $\gamma$  100 MeV/c,  $\pi$  150 MeV/c, p 500 MeV/c)
- Most events have many particles, so consider 'visible energy' originating from highest energy neutron
- Number of events/year with  $E_{\rm vis} >$  300 MeV = 1741

# **Neutrons in Soudan 2**

- But many of these events also have visible muon and/or another neutron and would have been rejected as  $\nu$  events by scanning at Soudan 2
- If also demand muon misses detector and no 'visible energy' from other particles, number of events/year reduced to 320
- Within factor of 2 of my estimation from Soudan 2 data ( $\sim$ 200 events/year)

### **Detector Simulation**

- Events with a neutron >100 MeV processed through GMINOS
   83803 events from 330M muons
- Reconstructed with AtNu reconstruction (Andy Blake)  $\Rightarrow$  no event passes early stages of  $\nu_{\mu}$  CC event selection

# Typical Event...

312 GeV  $\mu^-$  interacts  ${\sim}30$  cm from rock-hall interface producing high multiplicity shower: 423 particles incident on detector



# Another Typical Event...

82 GeV  $\mu^-$  interacts few cm from rock-hall interface; 13 partcles hit detector



# Summary

- Used simple GEANT4 job to study neutron background to atmospheric neutrino analyses from cosmic muon interactions in rock
- Results indicate rates of about 6500 (2000) neutrons per year with  $E_{\rm n}>$ 300 MeV including (excluding) those with muon incident on detector
- These rates are consistent, within factor 2, of rough estimate using Soudan 2 data.
- Output of GEANT4 simulation input to GMINOS and reconstructed  $\Rightarrow$  No event passes early stages of  $\nu_{\mu}$  CC selection
- Results written up:

NuMI-NOTE-SIM,ATM\_NU-1085