Update on ZZ->Ilnunu Analysis and Sensitivity to Anomalous Couplings

Tom Barber, Richard Batley, Pat Ward University of Cambridge

Outline

- Update on ZZ->Ilnunu analysis using CSC11 datasets (Tom Barber)
 - V12 ZZ->Ilnunu with 1mm bug fixed is not yet available
 - V12 sample with 1mm bug has shifted Z mass peak for electrons
- Very preliminary investigation of limits on anomalous couplings from ZZ->llnunu
 - Very large backgrounds from Z+jets and ttbar
 - Sensitivity of limits to these backgrounds

Update on ZZ->Ilnunu Event Selection

- Last meeting: cuts used in fast simulation study (S.Hassani ATL-PHYS-2003-022) applied to full simulation (csc11)
 - 2 leptons with pT>20GeV in letal<2.5
 - IM(II) 91.2 GeVI < 10 GeV (opp charge)
 - MET_final_et > 50 GeV
 - No jet with pT>30 GeV in letal<3</p>
 - pT(II) > 150 GeV
- Expected signal smaller than fast sim study, background very much higher (B/S ~ 15)
- Look for new cuts to remove background

pT Matching

- In signal events missing ET is balanced by pT of observed Z
 Jet veto, necessary to remove Z+jets background, removes signal events with hard gluon
- Require Z(II) transverse momentum to match the missing ET in magnitude and direction

phi(MET) – phi(Z)

- Magnitude of MET match discriminates against background
- Angle less powerful

5

pT Matching

- Apply pT matching cuts: IMET-Zptl/Zpt < 0.1 170 < phi(MET)-phi(Z) < 190 deg (These rather tight – probably need loosening)
- Also veto events with 3rd lepton (reduce WZ)
- Reduce pT(II) cut from 150 GeV to 100 GeV
- Obtain signal/background ratio of 2.7
- Signal efficiency (for Z(II) > 100 GeV, 2 leptons in letal<2.5 with pT>20 GeV) ~ 23%
- Largest remaining background is WZ

Events Passing New Cuts

Channel	# selected	# for 100 fb-1
$ZZ \rightarrow IIvv$	1192	649
ttbar	0	< 439 (95%CL)
$Z \rightarrow ee$, high p_T	0	< 107 (95%CL)
$Z \rightarrow \mu \mu$, high p _T	0	< 67 (95%CL)
$W^-Z \rightarrow I^-\nu II$	34	68
$W^+Z \rightarrow I^+\nu II$	97	140

Sensitivity to Anomalous Couplings

- Production of on-shell ZZ probes ZZZ and ZZg anomalous couplings: f4Z, f5Z, f4g f5g (all = 0 in SM)
- f4 violate CP; helicity amplitudes do not interfere with SM; crosssections depend on f4**2 and sign cannot be determined
- f5 violate P; do interfere with SM

Sensitivity to Anomalous Couplings

• Couplings depend on energy. Usual to introduce a form factor to avoid violation of unitarity:

 $f(s') = f0 / (1 + s'/Lambda^{**}2)^{**}n$

- Studies below use n=3, Lambda = 2 TeV
- Also assume couplings are real and only one non-zero
- Study AC using LO Monte Carlo of Baur and Rainwater
- N.B. jet veto removes hard gluons, so LO not so bad

Comparison with Pythia

Check BR MC: compare with Pythia for SM

Signature of Anomalous Couplings

- Anomalous couplings produce increase in ZZ invariant mass, Z pT and lepton pT distributions
- For ZZ->llnunu can use high pT(Z) cross-section to obtain limit, or fit Z pT distribution

Limits from Cross-section Measurement

- First consider measurement of ZZ->Ilnunu cross-section for pT(I) > 20 GeV, leta(I)I < 2.5, Z(pT) > 100 GeV
- Calculate cross-section, hence expected events as function of f4Z
- Use chi-squared comparison between expected and 'observed' (=SM) numbers of events to determine 95% c.l. on coupling
- Calculate limit as function of ratio of background to SM signal
- First assume statistical errors only, then consider effect of a systematic error on the background

Statistical errors only Little dependence on background fraction

20% systematic error on background

Strong dependence on background: limits independent of luminosity for high background

Limits from Fits to pT Distribution

- Limits from a simple cross-section measurement depend on pT cut – harder pT cut can give better limit despite much lower statistics
- Therefore better to fit pT distribution
- Results below are for ZZ->Ilnunu with pT(I)>20 GeV, leta(I)I
 <2.5
- Use BR program to generate pT distributions for several values of couplings (only one non-zero at a time)
- In each pT bin fit cross-section to quadratic in coupling to obtain distribution at arbitrary value

Cross-section v f4Z in pT bins

4th June 2007

Limits from Fits to pT Distribution

- Create 'fake data' sample:
 - Calculate expected SM events in each pT bin
 - Add background constant fraction of SM
 - Apply Gaussian smearing
- Construct error matrix
 - Statistical errors plus systematic error on background assumed fully correlated
- Fit fake data sample
 - One parameter fit to f4Z**2 or f5Z
 - 95 % c.l. from X**2 X**2min = 3.84

Limits from Fits to pT Distribution

- Generate 1000 fake data samples for each value of background fraction and each value of background systematic
- Mean X**2/dof = 1
- Mean f4**2 = 0
 As expected

Results for 100 fb-1, eff = 1.0 from Different Fit Ranges (statistical errors only)

- Lower pT cut has ~no effect on limits
- Important to go to as high pT as possible

Results for 100 fb-1, eff = 0.3 from Fit in Range 100 GeV < pT < 1000 GeV

 With uniform background, systematic error has little effect

Effect of Different Background Assumptions

Assuming 100 fb-1, eff = 30%
 (systematic error 0 - 30%)

Background Form	95% c.l. on f4Z
No background	0.0035
Uniform 30%	0.0037 – 0.0038
Rising from 30% to 80%	0.0040 - 0.0041
25% + 0.1 event/GeV	0.0052 – 0.0059

Summary and Plans

- Cut on pT match gives good background rejection
 - Need to optimise cuts
 - Investigate remaining background e.g. missing lepton in WZ?
 - Investigate estimation of background from data / Atlfast
 - Redo study with 12.0.6 when signal sample available
- First look at sensitivity to anomalous couplings:
 - Uniform background not a problem if it is well-known
 - More realistic background will give some degradation in limits
 - Optimal binning of pT distribution will depend on luminosity
 - Need to think how to predict expected pT distribution for serious analysis (reweighting, fast MC etc.)
- Finally: John Chapman has started feasibility study of ZZ->Iltautau channel

Missing Pt Background

- Check correlations by making 2D histograms of angle and magnitude match for signal and background.
- Lines at:
- IMET-Zptl/Zpt < 0.1</p>
- 170 < phi(MET)-phi(Z) < 190
- Very effective at Z+jets removal.
- WZ has peak in same region, but wider distribution.

Full Simulation Yields:

Channel	Run	Nevents	Neffective	sigma/fb	Nelectrons	100fb-1	Nmuons	100fb-1	Total	100f-1	(90% cl)
ZZnunull	5981	48700	48700	265	599	325.95	593	322.68	1192	648.62	648.6
ZZnunull	5932	118018	79238	265	306	102.34	619	207.02	925	309.35	309.4
ZZIIII	5931	25367	15221	66.8	13	5.71	10	4.39	23	10.09	10.1
Z(tautau)+jets	5187	28000	28000	22150	0	0	0	0	0	0	181.9
Z(tautau)	5146	12114	12114	74500	0	0	0	0	0	0	1414.5
Z(nunu)+jets	5183	47300	47300	715000	0	0	0	0	0	0	3476.7
Z(mumu)+jets	5186	95500	95500	21340	0	0	0	0	0	0	51.4
Z(mumu)	5151	83557	69451	1.66E+006	0	0	0	0	0	0	4574.8
Z(ee)+jets	5185	58700	58700	21000	0	0	0	0	0	0	82.3
Z(ee)	5152	69558	58290	1.61E+006	0	0	0	0	0	0	5317.0
WWv12	5921	58006	39512	1300	0	0	0	0	0	0	5.2
WWtaunutaunu	5927	45850	31138	1300	0	0	0	0	0	0	6.5
WWmunumunu	5924	10950	7454	1300	0	0	1	17.44	1	17.44	17.4
WWenuenu	5921	43102	29360	1300	1	4.43	0	0	1	4.43	4.4
Wtop	5500	71250	71250	26700	0	0	0	0	0	0	86.2
WpZ	5941	41770	29550	427	55	79.48	42	60.69	97	140.17	140.2
WmZ	5971	19154	13400	267	17	33.87	17	33.87	34	67.75	67.7
ttbar	5200	428879	313435	461000	0	0	0	0	0	0	247.2
	1		1	1	1	1	1	Total:	156	239.87	15683.7

S/B = 2.7, signal efficiency 2.45%

4th June 2007