
Sensitivity of ZZ→IIvv to Anomalous Couplings

Pat Ward University of Cambridge

- Neutral Triple Gauge Couplings
- Fit Procedure
- Results
- Outlook

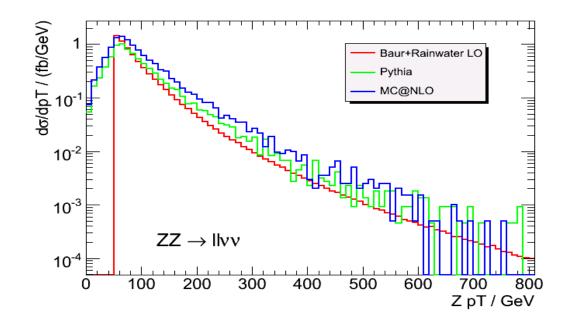
Neutral Triple Gauge Couplings

- ZZZ and ZZγ vertices forbidden in SM
- New particles in loops could give large contributions
- Production of on-shell ZZ probes ZZZ and ZZγ anomalous couplings:

$$f_4^Z$$
, f_5^Z , f_4^Y , f_5^Y

All = 0 in SM

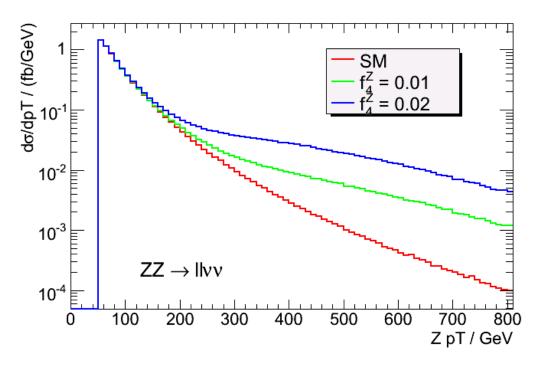
Anomalous Couplings


- f₄ violate CP; helicity amplitudes do not interfere with SM; cross-sections depend on f₄² and sign cannot be determined
- f₅ violate P; contribute to SM at one-loop level: O(10⁻⁴)
- Couplings increase with energy. Usual to introduce a form factor to avoid violation of unitarity:

$$f_i(s') = f_{0i} / (1 + s'/\Lambda^2)^n$$

- Studies below use n=3, $\Lambda = 2 \text{ TeV}$
- Also assume couplings are real and only one non-zero: use f₄^Z as example, expect results for others to be similar

Anomalous Coupling MC


- Use leading order MC of Baur + Rainwater
 Phys. Rev. D62 113011 (2000)
- pp→ZZ→ffff
 No parton shower, underlying event, detector simulation
- CTEQ6L PDFs

SM prediction

$$I = e, \mu$$

 $p_T(I) > 20 \text{ GeV}$
 $|\eta(I)| < 2.5$
 $p_T(vv) > 50 \text{ GeV}$

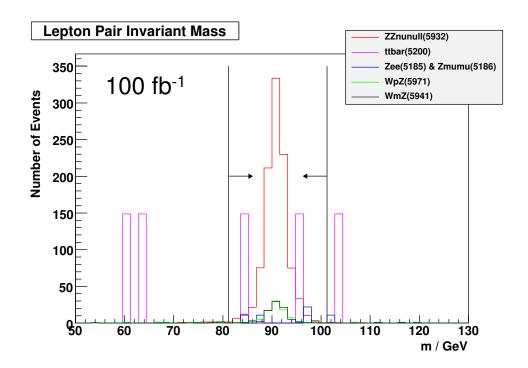
Signature of Anomalous Couplings

$$p_T(I) > 20 \text{ GeV}$$

 $|\eta(I)| < 2.5$
 $p_T(vv) > 50 \text{ GeV}$

- Anomalous couplings increase cross-section at high p_T
- Fit p_T distribution to obtain limits on NTGC

Fits to p_T Distribution

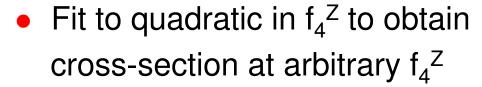

- Aim: estimate limits on anomalous couplings likely to be obtained from early ATLAS data from fit to Z(→II) p_T distribution in ZZ→IIvv channel:
 - Generate `fake data' samples
 - Binned max L fit to sum of signal + background
 - Determine mean 95% C.L.
- Use results from full MC (CSC samples) for event selection efficiency and background to obtain realistic limits
- Also assess effect of varying background and systematic errors

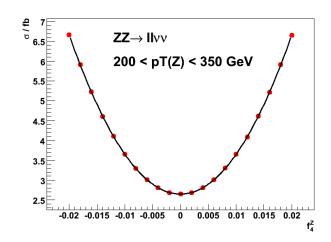
Full Simulation Results


Tom Barber

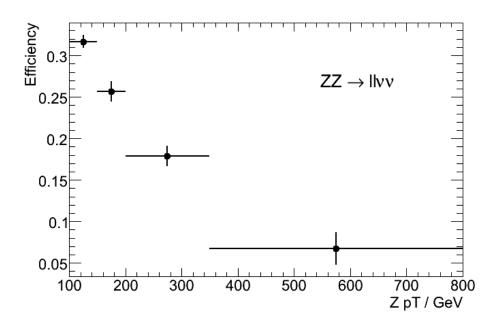
Diboson Meeting 13th August 2007

11.0.4 **12.0.6** $\varepsilon = 3.2\%$ ε = 2.6% S/B =2.25 S/B =1.96


Process	$ZZ \rightarrow ll \nu \bar{\nu}$	$ZZ \rightarrow 4l$	Z + jets	$t\bar{t}$	WZ	Wt	WW	$Z \rightarrow \tau \tau$
$p_T^l > 20 \text{ GeV}, \eta_l < 2.5$	13006	5430	1.31 10 ⁶	4.53 10 ⁵	27122	225	49110	2.17 105
Third lepton veto	10187	311	1.90 10 ⁵	42887	5287	75	37556	1.69 10 ⁵
$ m_{l\bar{l}} - 91.2 \text{ GeV} < 10 \text{ GeV}$	10016	265	1.74 10 ⁵	11020	4530	38	8377	4014
$p_T^{\text{miss}} > 50 \text{ GeV}$								
$ p_T^{\text{miss}} - p_T^Z /p_T^Z < 0.35$								
$\phi_{\text{miss}} - \phi_Z < 35^\circ$	3795	34	378	1787	942	0	1826	0
Jet Veto								
$(p_t^{jet} > 30 \text{ GeV and } \eta_{jet} < 3)$	3443	30	44	596	763	0	1668	0
$p_T(l^+l^-) > 100 \text{ GeV}$	1016	8	44	298	167	0	2	0
Statistical Error:	23	1	22	211	13	0	23	0


Calculation of Signal Distribution

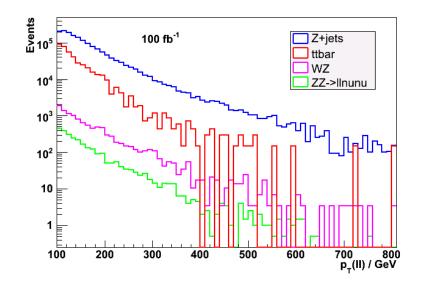
 Use BR MC to calculate LO cross-section at several values of f₄^Z


```
p_T(I) > 20 \text{ GeV}, |\eta(I)| < 2.5, p_T(vv) > 50 \text{ GeV}
```


- Correct for NLO effects using ratio MC@NLO / BR(SM)
- Expected number of events = cross-section x efficiency x luminosity

Signal Efficiency

Efficiency = events passing selection cuts divided by events generated with $p_T(I) > 20$ GeV, $|\eta(I)| < 2.5$, $p_T(vv) > 50$ GeV


- Efficiency from full MC using Tom's event selection
- Drops with p_T due to jet veto
- Fit results have some dependence on binning Reasonable variations change limits for 10 fb⁻¹ by 10 – 15%

Background Distribution

- Too few full MC events pass cuts to determine background shape
- Before cuts, background shape fairly similar to signal for p_T > 100 GeV
- Assume background / SM signal flat:

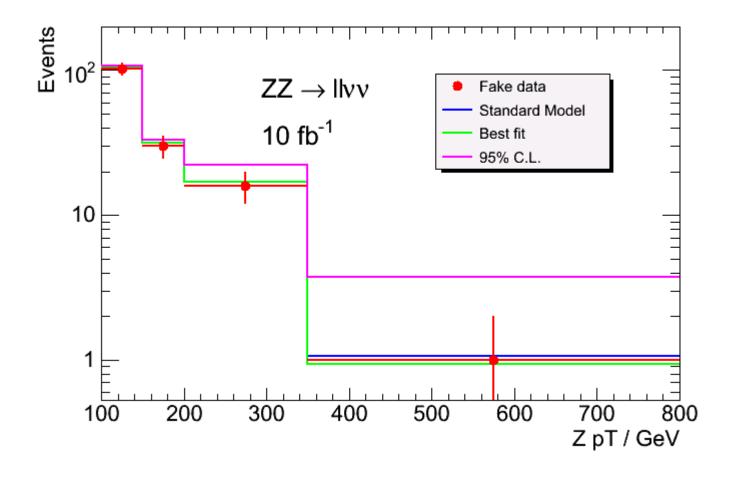
$$0.51 + -0.21$$

(error from MC stats)

 Background level has only small effect on limits

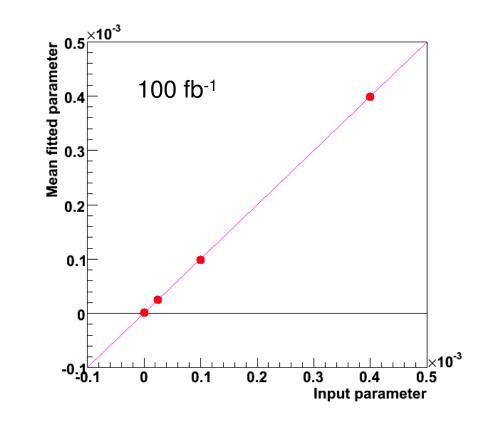
`Fake Data' Samples

- Construct from expected numbers of SM signal and background events
- Add Gaussian fluctuations for systematic errors:
 - Signal: 7.2% correlated (6.5% lumi, 3% lepton ID)
 plus MC stat error on efficiency in each bin
 - Background: 41% correlated (MC stats)
- Add Poisson fluctuation to total number of events

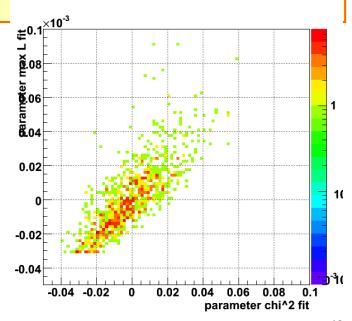

Fits to p_T Distribution

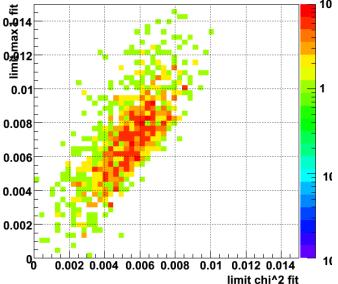
- One-parameter binned maximum likelihood fit to (f₄^Z)²
- Likelihood for each bin is Poisson convolved with Gaussians for nuisance parameters representing systematic errors:

 $L_{i} = \int df_{s} \int df_{b} \ G(f_{s}, \sigma_{s}) \ G(f_{b}, \sigma_{b}) \ P(n; f_{s}v_{s} + f_{b}v_{b})$ $n = number \ of \ `data' \ events$ $v_{s}, v_{b} = expected \ signal, \ background$ $\sigma_{s}, \sigma_{b} = fractional \ systematic \ errors$ $Depends \ on \ f_{4}^{Z}$


- Minimize $L = -In(\Pi_i L_i)$
- 95% C.L. from L L_{min} = 1.92
- Negative (f₄^Z)² allows for downward fluctuations
- Lower bound to prevent negative predictions

Example Fit


Test Fit


- Make `fake data' with various input values of (f₄^Z)² to test fit
- Mean fitted parameter in excellent agreement with input parameter
 (but distribution distorted by lower bound on parameter at low luminosities for small f₄^Z)

Test fit on 100 fb⁻¹

- Compare with X² fit using full correlation matrix (only suitable for high luminosity)
- Generate 1000 fake data samples for high luminosity and fit with both fits
- Good correlation between parameter values at minimum
- 95% C.L. limits tend to be higher for max likelihood fit – seems to result from treatment of systematic errors, but not understood

Results from Max L Fit

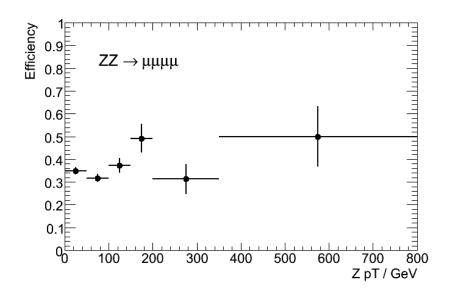
Lumi / fb ⁻¹	95% C.L.
1	0.023
10	0.011
30	0.0088

- Mean 95% C.L. on |f₄^Z| from 1000 fits
- Background level and systematic errors not important for early data
- No background: limits improve by 10%
- No sys errors: limits improve by 7%

With as little as 1 fb⁻¹ can improve LEP limits by order of magnitude

LEP: $|f_4^Z|$ < 0.3 no form factor

Fit Variations


 Assess effect of varying background level and systematics on limits for 10 fb⁻¹

Variation	95% C.L.	Change
Default	0.0110	_
Bg / SM sig. = 0.2	0.0104	5%
No background	0.0100	10%
Δ sys(bg) = 20%	0.0108	2%
$\Delta sys(bg) = 0$	0.0106	4%
Stat errors only	0.0102	7%

$ZZ\rightarrow \parallel \parallel$

- Work has started to include ZZ→IIII channel
- Branching ratio factor of 6 lower than vvII channel
- Efficiency much higher, background lower
- First indications are that sensitivity is similar to Ilvv channel

Chara Petridou, Ilektra Christidi (Thessaloniki)

Summary and Outlook

- Expect to achieve worthwhile limits with as little as 1 fb⁻¹ of data
- Much still to do for a `real' analysis:
 - Understand why max L fit gives higher limits
 - Unbinned likelihood fit for lowest luminosities?
 - How to determine background distribution from data?
 - Set up framework for 2-D couplings
- Include 4-lepton channel now in progress