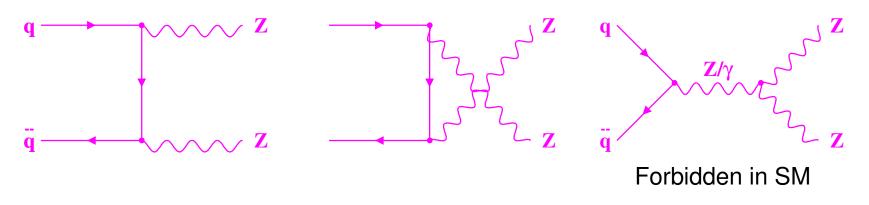
Sensitivity of ZZ→IIvv to Anomalous Couplings


Pat Ward

University of Cambridge

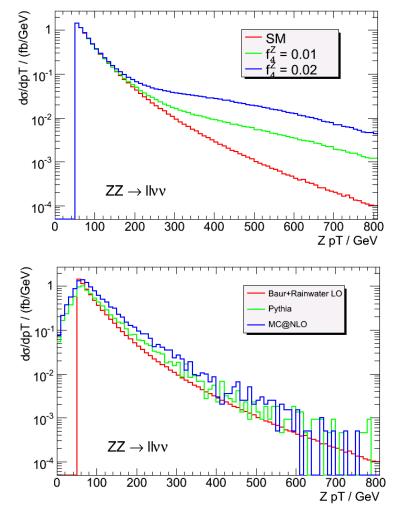
- Neutral Triple Gauge Couplings
- Fit Procedure
- Results
- Outlook

Neutral Triple Gauge Couplings

- ZZZ and ZZγ vertices forbidden in SM
- Production of on-shell ZZ probes ZZZ and ZZγ anomalous couplings:
 - $f_4^{Z}, f_5^{Z}, f_4^{Y}, f_5^{Y}$
- All = 0 in SM

Anomalous Couplings

- f₄ violate CP; helicity amplitudes do not interfere with SM; cross-sections depend on f₄² and sign cannot be determined
- f₅ violate P; do interfere with SM
- Couplings depend on energy. Usual to introduce a form factor to avoid violation of unitarity: $f(s') = f_0 / (1 + s'/\Lambda^2)^n$


• Studies below use n=3, $\Lambda = 2$ TeV

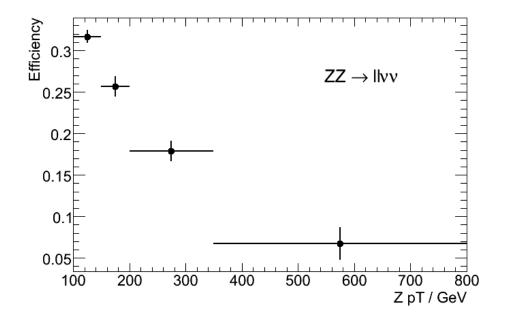
 Also assume couplings are real and only one non-zero – use f₄^z as example, expect others similar

Signature of Anomalous Couplings

- Anomalous couplings increase crosssection at high p_T
- Use leading order MC of Baur + Rainwater to study anomalous couplings
- Fit p_T distribution to obtain limits on NTGC

Fits to pT Distribution

- Estimate limits on anomalous couplings likely to be obtained from early ATLAS data from fit to p_T distribution in ZZ→IIvv channel:
 - Generate `fake data' samples
 - Fit to sum of signal + background
 - Determine mean 95% C.L.
- Use results from Tom's ZZ→IIvv event selection for efficiency and background to obtain realistic limits



Calculation of Signal Distribution

- Use BR MC to calculate LO cross-section at several values of f₄^Z p_T(I) > 20 GeV, |η(I)| < 2.5, p_T(vv) > 50 GeV
- Fit to quadratic in f₄^Z to obtain cross-section at arbitrary f₄^Z
- Correct for NLO effects using ratio MC@NLO / BR(SM)
- Expected number of events = cross-section x efficiency x luminosity

Signal Efficiency

Efficiency = events passing selection cuts divided by events generated with $p_T(I) > 20$ GeV, $|\eta(I)| < 2.5$, $p_T(vv) > 50$ GeV

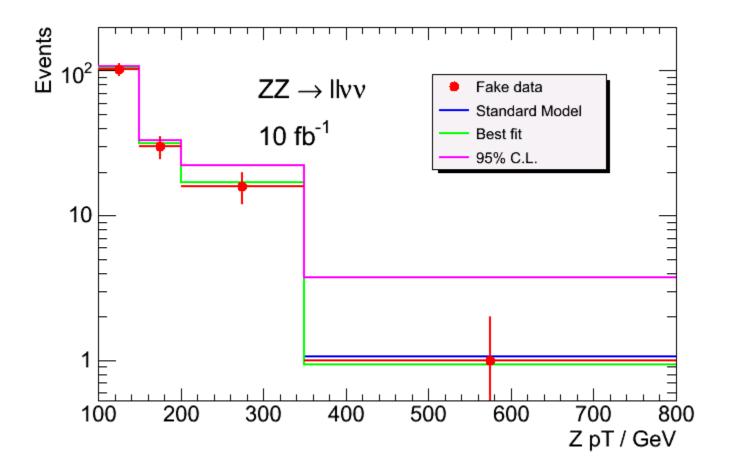
- Efficiency from full MC using Tom's event selection
- Drops with p_T due to jet veto
- Fit results have some dependence on binning

Background Distribution

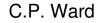
- Too few full MC events pass cuts to determine background shape
- Before cuts, background / signal fairly flat for p_T
 > 100 GeV
- Assume background / SM signal flat: background / SM signal = 0.51 +- 0.21 (error from MC stats)
- Background level has only small effect on limits

`Fake Data' Samples

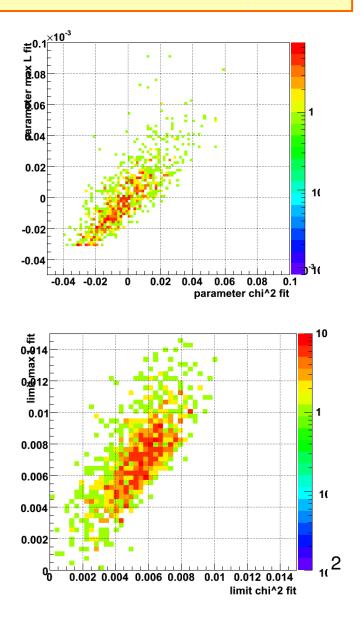
- Construct from expected numbers of SM signal and background events
- Add Gaussian fluctuations for systematic errors:
 - Signal: 7.2% correlated (6.5% lumi, 3% lepton ID) plus MC stat error on efficiency in each bin
 - Background: 41% correlated (MC stats)
- Add Poisson fluctuation to total number of events


Fits to p_T Distribution

• One-parameter fit to $(f_4^Z)^2$


- Negative $(f_4^Z)^2$ allows for downward fluctuations
- Lower limit to prevent negative predictions
- X[^] fit using full correlation matrix
 - 95 % c.l. from X² X²min = 3.84
 - Only suitable for high statistics
- Binned maximum likelihood fit including systematic errors by convolution with predictions
 - 95% c.l. from -ln(L) -ln(L)min = 1.92

Example Fit


6th September 2007

Test fits on 100 fb⁻¹

- Generate 1000 fake data samples for high lumi and fit with both fits
- Good correlation between parameter values at minimum
- 95% C.L. limits tend to be higher for max likelihood fit – seems to result from treatment of systematic errors, but not understood

C.P. Ward

Results from Max L Fit

Lumi / fb ⁻¹	95% C.L.
1	0.023
10	0.011
30	0.0088

With as little as 1 fb⁻¹ can improve LEP limits by order of magnitude

- Mean 95% C.L. on f₄^Z from 1000 fits
- Background level and systematic errors not important for early data
- No background: limits improve by 10%
- No sys errors: limits improve by 7%

Summary and Outlook

- Expect to achieve worthwhile limits with as little as 1 fb⁻¹ of data
- Much still to do for a `real' analysis:
 - Understand why max L fit gives higher limits
 - How to determine background distribution from data?
 - Include 4-lepton channel
 - Set up framework for 2-D couplings

