On the Topic of Jets

Jesse Thaler

14117

Self-Invited Seminar, DAMTP Cambridge — May 1, 2018

Jets from the Standard Model

++ = Mass from QCD Radiation

173 GeV++

Bottom Line: Jet Classification is "Solved" Trustable training samples? Well-defined categories?

Controlled systematics?

++ = Mass from QCD Radiation

0++

micro-j

 ≈ 65

Extract jet categories from data...

...solely* from the assumption they exist

Outline

A Basis for Jet Substructure

"Solving" the problem of jet classification

Learning Without Labels

Trustable training samples from data

Introducing Jet Topics

Well-defined categories by construction

A Basis for Jet Substructure

Learning Without Labels

Introducing Jet Topics

10 Years of Jet Substructure!

The Rise of Machine Learning for Jets

[e.g. Komiske, Metodiev, Schwartz, 2016; Nachman, Machine Learning for Jets Workshop, 2017]

A Cartoon of Machine Learning

$$\ell_{\text{MSE}} = \left\langle (h(\vec{x}) - 1)^2 \right\rangle_{\text{signal}} + \left\langle (h(\vec{x}) - 0)^2 \right\rangle_{\text{background}}$$
Signal
Background
Minimize Loss Function
(assuming infinite training sets)
$$h(\vec{x}) = \frac{p_{\text{sig}}(\vec{x})}{p_{\text{sig}}(\vec{x}) + p_{\text{bkgd}}(\vec{x})}$$

Optimal Classifier (Neyman–Pearson)

Classifier

A Cartoon of Machine Learning

A Cartoon of Infrared/Collinear Safety

IRC Safe Observable: Insensitive to IR or C emissions

[e.g. Larkoski, Neill, JDT, 1401.2158; Frye, Larkoski, JDT, Zhou, 1704.06266]

Jesse Thaler — On the Topic of Jets

A Cartoon of Infrared/Collinear Safety

[e.g. Larkoski, Neill, JDT, 1401.2158; Frye, Larkoski, JDT, Zhou, 1704.06266]

A Systematic Expansion

Expand* any IRC safe observable in small energy limit

$$S = \sum_{i} E_i f_1^{\mathcal{S}}(\hat{n}_i) + \sum_{ij} E_i E_j f_2^{\mathcal{S}}(\hat{n}_i, \hat{n}_j)$$
$$+ \sum_{ijk} E_i E_j E_k f_3^{\mathcal{S}}(\hat{n}_i, \hat{n}_j, \hat{n}_k) + \dots$$

Form enforced by: Particle Infrared Relabeling Safety Collinear Safety

Further expand* each angular function in pairwise angles

$$z_i = \frac{E_i}{E_{\text{jet}}} \qquad \cos \theta_{ij} = \hat{n}_i \cdot \hat{n}_j$$

[Komiske, Metodiev, JDT, 1712.07124; see also Tkachov, hep-ph/9601308]

Introducing the Energy Flow Polynomials

A Linear Basis for Jet Substructure (!)

Down the Rabbit Hole

Linear Regression or Neural Network?

[Komiske, Metodiev, JDT, 1712.07124; Komiske, Metodiev, Schwartz, 1612.01551]

Jesse Thaler — On the Topic of Jets

Linear Regression or Neural Network?

Bottom Line: Jet Classification is "Solved"

Assuming trustable training samples, well-defined categories, etc.

[Komiske, Metodiev, JDT, 1712.07124; Komiske, Metodiev, Schwartz, 1612.01551]

A Basis for Jet Substructure

Learning Without Labels

Introducing Jet Topics

Trustable Training Samples?

Large variations (esp. gluon jets, hard to tune from LEP)

[Gras, Hoeche, Kar, Larkoski, Lönnblad, Plätzer, Siódmok, Skands, Soyez, JDT, 1704.03878; based on Soyez, JDT, Freytsis, Gras, Kar, Lönnblad, Plätzer, Siodmok, Skands, Soper, 1605.04692]

Quark vs. Gluon from Data?

Plenty of (mixed) jets to study!

(Though plenty of uncertainties on quark/gluon fractions...)

[Gras, Hoeche, Kar, Larkoski, Lönnblad, Plätzer, Siódmok, Skands, Soyez, JDT, 1704.03878; see also Gallicchio, Schwartz, 1104.1175]

Key Challenge: Mixed Samples are Mixtures

$$p_{\text{mixed}}(\vec{x}) = f_q \, p_{\text{quark}}(\vec{x}) + (1 - f_q) \, p_{\text{gluon}}(\vec{x})$$

[Metodiev, Nachman, JDT, 1708.02949; see also Cranmer, Pavez, Louppe, 1506.02169; Blanchard, Flaska, Handy, Pozzi, Scott, 2016; Dery, Nachman, Rubbo, Schwartzman, 1702.00414; Cohen, Freytsis, Ostdiek, 1706.09451]

Key Challenge: Mixed Samples are Mixtures

[Metodiev, Nachman, JDT, 1708.02949; see also Cranmer, Pavez, Louppe, 1506.02169;

Blanchard, Flaska, Handy, Pozzi, Scott, 2016; Dery, Nachman, Rubbo, Schwartzman, 1702.00414; Cohen, Freytsis, Ostdiek, 1706.09451]

Key Assumption: Mixed Samples are Mixtures

$$p_{\text{mixed}}(\vec{x}) = f_q \, p_{\text{quark}}(\vec{x}) + (1 - f_q) \, p_{\text{gluon}}(\vec{x})$$

Sensible? No! Well, ok...

Sample Dependence

"Quark jet" in dijets vs. Z+jets are different because of color correlations with rest of event

Approximate Sample Independence

Differences are power suppressed with small radius jets Differences can be mitigated using jet grooming

Key Assumption: Mixed Samples are Mixtures

$$p_{\text{mixed}}(\vec{x}) = f_q \, p_{\text{quark}}(\vec{x}) + (1 - f_q) \, p_{\text{gluon}}(\vec{x})$$

Bottom Line: Jet Classification is "Solved" with trustable mixed training samples from data Assuming sample independence, well-defined categories, etc.

Approximate Sample Independence

Differences are power suppressed with small radius jets Differences can be mitigated using jet grooming

[see Banfi, Dasgupta, Khelifa-Kerfa, Marzani, 1004.3483; Frye, Larkoski, Schwartz, Yan, 1603.06375, 1603.09338]

A Basis for Jet Substructure

Learning Without Labels

Introducing Jet Topics

Well-Defined Categories?

Quark (color triplet) vs. Gluon (color octet)? But jet constituents are color-singlet hadrons!

[Gras, Hoeche, Kar, Larkoski, Lönnblad, Plätzer, Siódmok, Skands, Soyez, JDT, 1704.03878; based on Soyez, JDT, Freytsis, Gras, Kar, Lönnblad, Plätzer, Siodmok, Skands, Soper, 1605.04692]

Assume "Quark" and "Gluon" Exist

i.e. Sample Independence

$$p_{\text{mixed A}}(\vec{x}) = f_q^A p_{\text{quark}}(\vec{x}) + (1 - f_q^A) p_{\text{gluon}}(\vec{x})$$
$$p_{\text{mixed B}}(\vec{x}) = f_q^B p_{\text{quark}}(\vec{x}) + (1 - f_q^B) p_{\text{gluon}}(\vec{x})$$

If you can extract these...

 $f_q^A \quad f_q^B \quad p_{\text{quark}}(\vec{x}) \quad p_{\text{gluon}}(\vec{x})$

...then you have effectively defined "quark/gluon"

Too good to be true? Or already solved?

Generation (Easy)

Demixing (Impossible?)

Topic Modeling

[Blei, 2012]

Topic Modeling

[Blei, 2012]

Related to CMB Foreground Separation

[Planck Outreach]

The Demix Algorithm

Simplifying to two mixtures of two topics

Just subtract the mixed distributions!

$$p_{\mathrm{T1}}(\vec{x}) = \frac{p_A(\vec{x}) - p_B(\vec{x}) \kappa_{A|B}}{1 - \kappa_{A|B}} \sum_{\text{Reducibility}} \frac{1}{\mathrm{Factors}} p_{\mathrm{T2}}(\vec{x}) = \frac{p_B(\vec{x}) - p_A(\vec{x}) \kappa_{B|A}}{1 - \kappa_{B|A}}$$

Requires Anchor Bins / "Mutual Irreducibility"

Region of 100% purity for each topic (even if tiny efficiency) Probabilities are positive, so make K as large as possible

Jet Topics

Extract jet categories from data...

[Metodiev, JDT, 1802.00008]

"Parton"-Labeled Cross Sections?

Implications for PDF extraction? Key challenge: Defining jet topics at fixed order

"Parton"-Labeled Cross Sections?

Implications for PDF extraction? Key challenge: Defining jet topics at fixed order

[Metodiev, JDT, 1802.00008]

Mutual Irreducibility from QCD?

Count emissions using "soft drop multiplicity" (IRC safe)

One solution: *Define* "quark"/"gluon" by mutual irreducibility

Jet Mass is not Mutually Irreducible

Jet Mass is not Mutually Irreducible

[Metodiev, JDT, 1802.00008]

The Next Precision Frontier

Extract Strong Coupling Constant from Jet Substructure

[see Moult, Nachman, Soyez, JDT, Chatterjee, Dreyer, Vittoria Garzelli, Gras, Larkoski, Marzani, Siódmok, Papaefstathiou, Richardson, Samui, in 1803.07977]

Key Issue for Precision Extraction

Correlation between quark/gluon fraction and α_s

$$\Sigma(\lambda) \simeq \exp\left[-\frac{\alpha_s C_i}{\pi}\log^2(\lambda)\right]$$

Introduces residual dependence on PDFs

By construction, jet topics are fraction independent

With or without mutual irreducibility

[see Moult, Nachman, Soyez, JDT, Chatterjee, Dreyer, Vittoria Garzelli, Gras, Larkoski, Marzani, Siódmok, Papaefstathiou, Richardson, Samui, in 1803.07977]

Summary

A Basis for Jet Substructure

Energy flow polynomials for linear classification

Learning Without Labels

Data-driven classifiers from mixed samples

Introducing Jet Topics

Defining jet categories by mutual irreducibility

New first-principles studies of QCD facilitated by advances in statistics, mathematics, and computer science

Backup Slides

A QCD Renaissance Theory c. 2008–present

New Jet Algorithms

Loop/Leg/Log Explosion

Jet Substructure

[Anti-k_T: Cacciari, Salam, Soyez, 2008; see also Delsart, 2006] [N³LO: Anastasiou, Duhr, Dulat, Herzog, Mistlberger, 2015] [BDRS: Butterworth, Davison, Rubin, Salam, 2008; see also Seymour, 1991, 1994]

The Substructure Toolbox

W/Z-Tagging @ CMS [JME-14-002, CMS-PAS-EXO-15-002]

[using Larkoski, Marzani, Soyez, JDT, 1402.2657]

[using JDT, Van Tilburg, 1011.2268, 1108.2701]

[Mass Drop/Filtering, Trimming, Pruning, Soft Drop, Jet Reclustering...; for pileup: Area Subtraction, Jet Cleansing, SoftKiller, PUPPI, Constituent Subtraction, PUMML...]

Discrimination:

e.g. I-prong vs. N-prong

VS.

[pT Balance, T-splitter, Angularities, Planar Flow, N-subjettiness, Angular Structure Functions, Jet Charge, Jet Pull, Energy Correlation Functions, Dipolarity, pT^D, Zernike Coefficients, LHA, Fox-Wolfram Moments, JHU/CMSTopTagger, HEPTopTagger, Template Method, Shower Deconstruction, Subjet Counting, Wavelets, Q-Jets, Telescoping Jets, Deep Learning...]

2-prong Discrimination with Energy Correlators

$$N_{2} = \frac{\sum_{i < j < k} p_{Ti} p_{Tj} p_{Tk} \min\left\{ (R_{ij}R_{jk})^{2}, (R_{jk}R_{ki})^{2}, (R_{ki}R_{ij})^{2} \right\}}{\left(\sum_{i < j} p_{Ti} p_{Tj} R_{ij}^{2} \right)^{2} / \sum_{i} p_{Ti}}$$

[Moult, Necib, JDT, 1609.07483; based on Larkoski, Salam, JDT, 1305.0007]

Frequency of Symbols on the arXiv

arXiv 2.0: Determine categories just from documents? (Without training from hep-ph, hep-ex, etc.)