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Standard Model:  A successful theory

Theoretically sound description of 
fundamental interactions between 
elementary particles

‣ However, as a precision machine, it also explores the beautiful Standard Model with unprecedented precision, and 
allows us to confirm it … or to confute it 

‣ How well do we know the SM ?

Exploring the SM at the LHC

[Wikipedia]
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Standard Model:  A successful theory
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Figure 3: The expected and observed four-lepton invariant mass distribution for the selected Higgs boson candidates
with a constrained Z boson mass, shown for an integrated luminosity of 36.1 fb�1 and at

p
s = 13 TeV assuming the

SM Higgs boson signal with a mass mH = 125.09 GeV.

Table 6: The expected and observed numbers of signal and background events in the four-lepton decay channels
for an integrated luminosity of 36.1 fb�1 and at

p
s = 13 TeV, assuming the SM Higgs boson signal with a mass

mH = 125.09 GeV. The second column shows the expected number of signal events for the full mass range while the
subsequent columns correspond to the mass range of 118 < m4` < 129 GeV. In addition to the Z Z

⇤ background, the
contribution of other backgrounds is shown, comprising the data-driven estimate from Table 4 and the simulation-
based estimate of contributions from rare triboson and tt̄V processes. Statistical and systematic uncertainties are
added in quadrature.

Decay Signal Signal Z Z
⇤ Other Total Observed

channel (full mass range) background backgrounds expected
4µ 21.0 ± 1.7 19.7 ± 1.6 7.5 ± 0.6 1.00 ± 0.21 28.1 ± 1.7 32

2e2µ 15.0 ± 1.2 13.5 ± 1.0 5.4 ± 0.4 0.78 ± 0.17 19.7 ± 1.1 30
2µ2e 11.4 ± 1.1 10.4 ± 1.0 3.57 ± 0.35 1.09 ± 0.19 15.1 ± 1.0 18
4e 11.3 ± 1.1 9.9 ± 1.0 3.35 ± 0.32 1.01 ± 0.17 14.3 ± 1.0 15

Total 59 ± 5 54 ± 4 19.7 ± 1.5 3.9 ± 0.5 77 ± 4 95
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Standard Model:  A successful theory

Theoretically sound description of 
fundamental interactions between 
elementary particles

LHC discovered Higgs particle in 2012

BUT:  No ultimate theory of nature

➙ incomplete (gravity, dark matter, ...)

➙ theoretical issues (mass hierarchies, fine-tuning, ...)

Physics beyond the SM expected at the TeV scale
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The Higgs
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LHC Physics after Higgs discovery
LHC will remain major particle-physics experiment for ≳15 years

today

Long Shutdown 1 Long Shutdown 2 Long Shutdown 3

Higgs discovery
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LHC Physics after Higgs discovery
LHC will remain major particle-physics experiment for ≳15 years

Primary goals since 2012: 
study Higgs properties    ➙  compatible with SM Higgs Boson

discover New Physics   ➙  no direct evidence

Long Shutdown 1 Long Shutdown 2 Long Shutdown 3

Higgs discovery today
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LHC Physics after Higgs discovery
LHC will remain major particle-physics experiment for ≳15 years

Primary goals since 2012: 
study Higgs properties    ➙  compatible with SM Higgs Boson

discover New Physics   ➙  no direct evidence

Precision era of the LHC has begun
(chance to probe New Physics)

Long Shutdown 1 Long Shutdown 2 Long Shutdown 3

Higgs discovery today
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IN OUT

LHC collisions:  small SM deviations
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LHC collisions:  small SM deviations
proton-proton

collisions

quarks, gluons
(and photons) OUT
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LHC collisions:  small SM deviations
proton-proton

collisions
vector-boson

pair production

V

V

V = γ,W,Z

ℓ,ν

ℓ,ν

ℓ,ν

ℓ,ν

quarks, gluons
(and photons)
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LHC collisions:  small SM deviations
proton-proton

collisions
vector-boson

pair production

V

V

V = γ,W,Z

ℓ,ν

ℓ,ν

ℓ,ν

ℓ,ν

SM
+

New Physics
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proton-proton
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vector-boson
pair production
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V
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SM

kinematic distribution

NP

LHC collisions:  small SM deviations
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proton-proton
collisions

vector-boson
pair production

V

V

V = γ,W,Z

precise prediction
(and measurement)

ℓ,ν

ℓ,ν
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SM
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NP

LHC collisions:  small SM deviations
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proton-proton
collisions

vector-boson
pair production

V

V

V = γ,W,Z

precise prediction
(and measurement)

modeling in 
consistent framework ℓ,ν

ℓ,ν

ℓ,ν

ℓ,ν

SM

kinematic distribution

NP

LHC collisions:  small SM deviations
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Example: Higgs coupling to gluons

or ?& &
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Example: Higgs coupling to gluons
(a) (b)

Figure 3: Higgs transverse-momentum spectrum in the SM (black, solid) compared to separate
variations of the dimension-six operators for (a) 0GeV pT  400GeV and (b) 400GeV pT 
800GeV. The lower frame shows the ratio with respect to the SM prediction. The shaded band in
the ratio indicates the uncertainty due to scale variations. See text for more details.
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(a) (b)

Figure 4: Higgs transverse-momentum spectrum in the SM (black, solid) compared to simultaneous
variations of ct and cg for (a) 0GeV pT  400GeV and (b) 400GeV pT  800GeV. The lower
frame shows the ratio with respect to the SM prediction. The shaded band in the ratio indicates
the uncertainty due to scale variations. See text for more details.
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[Grazzini, Ilnicka, Spira, MW '16]
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Precision at the LHC

Experiment demands 𝓞(1%) theoretical precision

Full Run 2

Run 3

HL-LHC data

Data/Theory

Today

LHC data:

High
Luminosity

Marius Wiesemann    (MPI Munich) June 4th, 2019PRECMC

Production of vector bosons (γ,W, Z), Higgs
deep test of the fundamental laws of physics

high experimental precision already now
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Precision at the LHC

Experiment demands !(1%) theoretical precision

Full Run 2

Run 3

HL-LHC data
Data/Theory

10%

}

Today

Today

LHC data:

High-Lumi
LHC

Today
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This talk

17

1. VV production at the LHC

NNLO QCD  NLO EW  loop-induced gg NLO QCD

2. NNLO QCD + multi-differential resummation

pT of color singlets at N3LL

jet-veto veto resummation at NNLL

double-differential resummation

3. NNLO+PS matching

MiNLO+reweighting

NNLO+PS for WW production

Novel approach

⊕ ⊕
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LHC event

proton proton
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LHC event

Hard Process
(high precision, no event) 

proton proton
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Perturbation Theory

proton proton

Hard Process

LO  ~  𝓞(100%)

NLO  ~  𝓞(10%)

NNLO  ~  𝓞(1%)

Uncertainties:
(α ~ 0.118)

� ⇠ �LO · (1 + ↵| {z }
NLO

+↵2

| {z }
NNLO

+ . . .)

<latexit sha1_base64="uVjW8F6cGV2fbiLhwZASe3I7Fg0="></latexit><latexit sha1_base64="uVjW8F6cGV2fbiLhwZASe3I7Fg0="></latexit><latexit sha1_base64="uVjW8F6cGV2fbiLhwZASe3I7Fg0="></latexit><latexit sha1_base64="uVjW8F6cGV2fbiLhwZASe3I7Fg0="></latexit>
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Importance of QCD corrections

20

NNLO crucial for accurate description of data

Giulia Zanderighi, WW@NNLOPS

NLO & NNLO versus data

4

Current experimental precision requires to go beyond NLO

NLO

NNLO
(example WZ)

[Grazzini, Kallweit, Rathlev, MW '16]
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Importance of QCD corrections
(example WZ)

21

NNLO crucial for accurate description of data

Giulia Zanderighi, WW@NNLOPS

NLO & NNLO versus data

4

Current experimental precision requires to go beyond NLO

NLO

NNLO
MATRIX

[Grazzini,  Kallweit, MW '17]

process status comment

pp→Z/γ*(→ũũ/νν) validated analytically + FEWZ

pp→W(→ũν) validated with FEWZ, NNLOjet

pp→H validated analytically (by SusHi)

pp→γγ validated with 2γNNLO

pp→Zγ→ũũγ [Grazzini, Kallweit, Rathlev '15]

pp→Zγ→ννγ [Grazzini, Kallweit, Rathlev '15]

pp→Wγ→ũνγ [Grazzini, Kallweit, Rathlev '15]

pp→ZZ [Cascioli et al. '14]

pp→ZZ→ũũũũ [Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]

pp→ZZ→ũũũ'ũ' [Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]

pp→ZZ→ũũν'ν' [Kallweit, MW '18]

pp→ZZ/WW→ũũνν [Kallweit, MW '18]

pp→WW [Gehrmann et al. '14]

pp→WW→ũν ũ'ν'

pp→WZ [Grazzini, Kallweit, Rathlev, MW '16]

pp→WZ→ũνũũ [Grazzini, Kallweit, Rathlev, MW '17]

pp→WZ→ũ'ν'ũũ [Grazzini, Kallweit, Rathlev, MW '17]

pp→HH (     ) not in public release

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

single boson 
processes

photon 
processes

massive 
diboson 
processes

Public, automated 
NNLO framework

Large number of processes:

[Grazzini, Kallweit, Rathlev, MW '16]
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Figure 1. Sample LO diagrams for (a-b) 2l-SF-ZZ, (c-e) 2l-DF-WW, and (f-h) 3l-DF-WZ.
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production
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contributing here.
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quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
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varies significantly between the channels. Photon-induced contributions to the DF channel are
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+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant
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the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W
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� pair [9, 10]. In fact, for on-shell W+
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pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.
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Figure 3: Examples of N3LO contributions in the qg channel.

including also the qg initiated contributions.1 We note that at N3LO we only include diagrams
with closed fermion loops (see Figure 3 (a)); all other contributions that would enter a complete
N3LO calculation (see Figure 3 (b) for example) cannot be consistently accounted for at present.
Our approximation includes all contributions at O(↵2

S
) together with the complete NLO corrections

to the loop-induced gluon fusion channel at O(↵3

S
). As such, besides providing the maximum

perturbative information available at present for this process, our calculation can be used to obtain
a consistent estimate of perturbative uncertainties through the customary procedure of studying
scale variations.

Our calculation is carried out within the computational framework Matrix [52]. Matrix features a
fully general implementation of the qT -subtraction formalism [53] and allowed us to compute NNLO
QCD corrections to a large number of colour-singlet processes at hadron colliders [38, 43, 45, 46, 54–
59].2 The core of the Matrix framework is the Monte Carlo program Munich, which is capable
of computing both NLO QCD and NLO EW [62, 63] corrections to arbitrary SM processes [64].

As in previous Matrix calculations, in our computation of the NLO corrections to the gg ! 4`
process, all the required one-loop amplitudes are evaluated with OpenLoops

3 [69, 70]. At two-loop
level, we use the gg ! V V 0 helicity amplitudes of Ref. [37], and implement the corresponding
four-lepton final states, accounting for spin correlations and o↵-shell e↵ects. The NLO calculation
is performed by using the Catani–Seymour dipole-subtraction method [71, 72] and also with qT
subtraction [53], which provides an additional cross-check of our results.

1We note that there are also qq̄ initiated contributions to the loop-induced production mechanism at O(↵3
S),

which are separately finite. We found them to be completely negligible and ignore them in the following. Our
results include all numerically relevant partonic channels of the NLO corrections to the loop-induced gluon fusion
contribution.

2It was also used in the NNLL+NNLO computation of Ref. [60], and in the NNLOPS computation of Ref. [61].
3
OpenLoops relies on the fast and stable tensor reduction of Collier [65, 66], supported by a rescue system

based on quad-precision CutTools [67] with OneLOop [68] to deal with exceptional phase-space points.
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).
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is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘
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mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
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that enters at O(↵
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including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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have a quite significant impact, at the level of 10% or more, on the various diboson production
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
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including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
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both possible combinations of OSSF lepton pairs.
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includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1. Sample LO diagrams for (a-b) 2l-SF-ZZ, (c-e) 2l-DF-WW, and (f-h) 3l-DF-WZ.
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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and in the same-flavour case (` = `0) in the quark-induced (a-d) and photon-induced (e-h) channels.
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Figure 6. Sample of one-loop diagrams contributing to 2`2⌫ final states only in the same-flavour (wrt. the
charged leptons) case in the quark-induced (a-d) and photon-induced (e-h) channels.

in t-channel topologies with subsequent emission of a Z boson with Z ! ⌫⌫̄ is the only photon-
induced production mechanism at LO, as shown in the sample diagrams of Fig. 4. Consequently,
the invariant mass of the charged-lepton pair does not show a Breit–Wigner peak around MZ .

Similarly as for quark–antiquark annihilation, the �� ! e
+
e
�
⌫e⌫̄e channel is build from the

coherent sum of all diagrams entering �� ! e
+
µ
�
⌫e⌫̄µ and �� ! e

+
e
�
⌫µ/⌧ ⌫̄µ/⌧ .

2.3 Ingredients of QCD and EW corrections

At NLO QCD all O(↵s↵
4) contributions to pp ! 2`2⌫ are taken into account. In the qq̄ channel, the

only QCD loop corrections arise from virtual-gluon exchange, while the real corrections result from
real-gluon emission and crossed topologies describing (anti-)quark–gluon channels. The infrared
divergences separately arising in these two contributions are mediated by the standard dipole-
subtraction approach [35, 36]. We note that the �� channels do not receive QCD corrections at
NLO, due to the absence of any QCD partons in all tree-level diagrams.

At NLO EW we include the full set of O(↵5) contributions to pp ! 2`2⌫. At this order both
the qq̄ and �� channels receive corrections from virtual EW bosons and from closed fermion loops,
cf. Figs. 5–6. These corrections include Higgs resonances with decay into four fermions coupled
to weak bosons (in the qq̄ channel) or coupled to a heavy-fermion loop (in the �� channel). The
real corrections in the qq̄ channel can be split into real-photon emission channels and �q ! 2`2⌫q
channels1 with initial-state � ! qq̄ splittings. The �� channel also receives real corrections from

1Corresponding �q̄-induced channels are implicitly understood here and in the following.
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photon bremsstrahlung, and also from �q ! 2`2⌫q channels with initial-state q ! q� splittings,
cf. Figs. 7–8. While the separation into qq̄ and �� channels can still be preserved for virtual and
photon-bremsstrahlung contributions, such separation is no longer meaningful for the q�-initiated
channels due to their singularity structure: both above-mentioned splittings result in infrared-
divergent configurations, and these q� channels simultaneously cancel infrared poles arising in qq̄

and �� channels. This situation demands the inclusion of the full NLO EW corrections to the qq̄

and �� Born processes to guarantee infrared safety and consistency. To deal with the mediation of
these divergences between virtual and real corrections the QED extension of the dipole-subtraction
method [37–39] is applied (see Appendix A).

Instead of a separation of NLO contributions into qq̄ and �� channels, we quantify the impact
of photon-induced processes by considering contributions involving at least one photon PDF factor
and all other contributions that are also present under the assumption of vanishing photon PDFs. At
LO this distinction coincides with the splitting according to production modes, while at NLO EW
it combines �� and �q channels in spite of the fact that the latter involves qq̄-related contributions.

3 Technical ingredients and setup of the simulations

3.1 Tools

The calculations presented in this paper have been performed with the automated frameworks Mu-

nich+OpenLoops and Sherpa+OpenLoops. They automate the full chain of all operations—
from process definition to collider observables—that enter NLO QCD+EW simulations at parton
level. The recently achieved automation of EW corrections [24, 26] is based on the well established
QCD implementations and allows for NLO QCD+EW simulations for a vast range of SM processes,
up to high particle multiplicities, at current and future colliders.

In these frameworks virtual amplitudes are provided by the OpenLoops program [28], which
is based on the open-loops algorithm [27] – a fast numerical recursion for the evaluation of one-loop
scattering amplitudes. Combined with the Collier tensor reduction library [40], which imple-
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-

– 5 –

q

q̄

`
+

`
�

⌫`0

⌫̄`0

Z/�

q

Z

q

q̄

`
+

`
�

⌫`0

⌫̄`0
Z

`
�

Z/�

u

ū
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵
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), i.e. at the same order as it is part of the NNLO QCD corrections. The MW
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two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production

– 5 –

�

�

`
+

⌫l

`
0�

⌫̄`0

W
+

W

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

W
+

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

`
�

`

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

`

`
0

W

(a) (b) (c) (d)

Figure 3. Sample of photon-induced Born diagrams contributing to 2`2⌫ production in the different-
flavour case (` 6= `0) and in the same-flavour case (` = `0). Double-resonant (a,b), single-resonant (c) and
non-resonant (d) diagrams are shown.

�

�

`
+

`
�

⌫`0

⌫̄`0

`
�

`

Z

�

�

`
+

⌫`0

`
�

⌫̄`0

Z
`

`

(a) (b)

Figure 4. Sample of photon-induced Born diagrams contributing to 2`2⌫ final states only in the same
lepton-flavour case, both for `0 = ` or `0 6= `. Only single-resonant diagrams contribute.

two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production

– 5 –

α1
s

LO



Marius Wiesemann    (MPI Munich) February 27th, 2020Diboson production at the LHC: Precision phenomenology 24

α0
s

α2
s

α3
s

α2 α3

q

q̄

`
+

`
�

⌫`0

⌫̄`0

Z/�

q

Z

q

q̄

`
+

`
�

⌫`0

⌫̄`0
Z

`
�

Z/�

u

ū
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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ū

`
+

⌫`

`
0�

⌫̄`0

W
+

d

W
�

q

q̄

`
+

⌫`

`
0�

⌫̄`0

W
+

W
�

Z/�

(a) (b) (c) (d)

q

q̄

`
+

⌫`

`
0�

⌫̄`0

W
�

`
�

Z/�

u

d̄

`
+

`
�

⌫`0

`
0+

Z/�

u

W
+

u

d̄

`
+

`
�

⌫`0

`
0+

Z/�

W
+

W
+

u

d̄

`
+

`
�

⌫`0

`
0+

W
+

⌫`

W
+

(e) (f) (g) (h)

Figure 1. Sample LO diagrams for (a-b) 2l-SF-ZZ, (c-e) 2l-DF-WW, and (f-h) 3l-DF-WZ.

�

�

`
+

`
�

⌫`0

⌫̄`0

`
�

`

Z

�

�

`
+

⌫`

`
0�

⌫̄`0

`
�

`

W
�

�

�

`
+

⌫l

`
0�

⌫̄`0

W
+

W

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

W
+

W
�

(a) (b) (c) (d)

Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-

– 5 –

�

�

`
+

⌫l

`
0�

⌫̄`0

W
+

W

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

W
+

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

`
�

`

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

`

`
0

W

(a) (b) (c) (d)

Figure 3. Sample of photon-induced Born diagrams contributing to 2`2⌫ production in the different-
flavour case (` 6= `0) and in the same-flavour case (` = `0). Double-resonant (a,b), single-resonant (c) and
non-resonant (d) diagrams are shown.

�

�

`
+

`
�

⌫`0

⌫̄`0

`
�

`

Z

�

�

`
+

⌫`0

`
�

⌫̄`0

Z
`

`

(a) (b)

Figure 4. Sample of photon-induced Born diagrams contributing to 2`2⌫ final states only in the same
lepton-flavour case, both for `0 = ` or `0 6= `. Only single-resonant diagrams contribute.

two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production
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contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production

– 5 –

u

d̄

l0+

⌫l0

l�

l+

W+
d

Z/�

u

d̄

l0+

⌫l0

l�

l+

W+

Z/�

W+

u

d̄

l0+

⌫l0

l�

l+Z/�
⌫l0

W+

(a) (b) (c)

Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
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production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2
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):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵
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), i.e. at the same order as it is part of the NNLO QCD corrections. The MW
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), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵
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S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
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two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production
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in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
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pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄
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induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
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) as part of the NNLO QCD corrections, i.e. neglecting O(↵
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) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1. Sample LO diagrams for (a-b) 2l-SF-ZZ, (c-e) 2l-DF-WW, and (f-h) 3l-DF-WZ.
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1. Sample LO diagrams for (a-b) 2l-SF-ZZ, (c-e) 2l-DF-WW, and (f-h) 3l-DF-WZ.
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections
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and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵
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), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
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The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production
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SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.
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are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
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of the W
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topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W
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� pair [9, 10]. In fact, for on-shell W+
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pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
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lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production

– 5 –

q

q̄

`+

`�

`0�

`0+

Z/�
q

Z/�

q

q̄

`+

`�

`0�

`0+
Z/�

`�

Z/�

g

g

ℓ+

ℓ−

ℓ′+

ℓ′−

Z/γ
q

Z/γ

(a) (b) (c)

Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.

3

g

q

q
0

q

`0
+

`0
�
`�

`+

q

g

F
ig
u
re

2:
E
xa
m
p
le

of
N
N
L
O

in
te
rf
er
en
ce

b
et
w
ee
n
qu

ar
k
an

n
ih
il
at
io
n
an

d
lo
op

-i
n
d
u
ce
d
gl
u
on

fu
si
on

p
ro
d
u
ct
io
n
m
ec
h
an

is
m
s.

g

q

q
0

q

`0
+

`0
�
`�

`+
q
00

g

q

g

q

q
0

q

`0
+

`0
�
`�

`+

q

g

(a
)

(b
)

F
ig
u
re

3:
E
xa
m
p
le
s
of

N
3
L
O

co
nt
ri
b
u
ti
on

s
in

th
e
qg

ch
an

n
el
.

in
cl
u
d
in
g
al
so

th
e
qg

in
it
ia
te
d
co
nt
ri
b
u
ti
on

s.
1
W
e
n
ot
e
th
at

at
N

3
L
O

w
e
on

ly
in
cl
u
d
e
d
ia
gr
am

s

w
it
h
cl
os
ed

fe
rm

io
n
lo
op

s
(s
ee

F
ig
u
re

3
(a
))
;
al
l
ot
h
er

co
nt
ri
b
u
ti
on

s
th
at

w
ou

ld
en
te
r
a
co
m
p
le
te

N
3
L
O

ca
lc
u
la
ti
on

(s
ee

F
ig
u
re

3
(b
)
fo
r
ex
am

p
le
)
ca
n
n
ot

b
e
co
n
si
st
en
tl
y
ac
co
u
nt
ed

fo
r
at

p
re
se
nt
.

O
ur

ap
pr
ox
im

at
io
n
in
cl
ud

es
al
l
co
nt
ri
bu

ti
on

s
at

O
(↵

2 S
)
to
ge
th
er

w
it
h
th
e
co
m
pl
et
e
N
L
O

co
rr
ec
ti
on

s

to
th
e
lo
op

-i
n
d
u
ce
d
gl
u
on

fu
si
on

ch
an

n
el

at
O
(↵

3 S
).

A
s
su
ch
,
b
es
id
es

p
ro
vi
d
in
g
th
e
m
ax
im

u
m

p
er
tu
rb
at
iv
e
in
fo
rm

at
io
n
av
ai
la
bl
e
at

pr
es
en
t
fo
r
th
is
pr
oc
es
s,
ou

r
ca
lc
ul
at
io
n
ca
n
b
e
us
ed

to
ob

ta
in

a
co
n
si
st
en
t
es
ti
m
at
e
of

p
er
tu
rb
at
iv
e
u
n
ce
rt
ai
nt
ie
s
th
ro
u
gh

th
e
cu
st
om

ar
y
p
ro
ce
d
u
re

of
st
u
d
yi
n
g

sc
al
e
va
ri
at
io
n
s.

O
ur

ca
lc
ul
at
io
n
is
ca
rr
ie
d
ou

t
w
it
hi
n
th
e
co
m
pu

ta
ti
on

al
fr
am

ew
or
k
M
a
t
r
ix

[5
2]
.
M
a
t
r
ix

fe
at
ur
es

a

fu
lly

ge
ne
ra
l i
m
pl
em

en
ta
ti
on

of
th
e
q T
-s
ub

tr
ac
ti
on

fo
rm

al
is
m

[5
3]

an
d
al
lo
w
ed

us
to

co
m
pu

te
N
N
L
O

Q
C
D

co
rr
ec
ti
on

s
to

a
la
rg
e
nu

m
b
er

of
co
lo
ur
-s
in
gl
et

pr
oc
es
se
s
at

ha
dr
on

co
lli
de
rs

[3
8,

43
, 4

5,
46
, 5

4–

59
].
2
T
h
e
co
re

of
th
e
M
a
t
r
ix

fr
am

ew
or
k
is
th
e
M
on
te

C
ar
lo

p
ro
gr
am

M
u
n
ic
h
,
w
h
ic
h
is
ca
p
ab

le

of
co
m
p
u
ti
n
g
b
ot
h
N
L
O

Q
C
D

an
d
N
L
O

E
W

[6
2,

63
]
co
rr
ec
ti
on

s
to

ar
b
it
ra
ry

S
M

p
ro
ce
ss
es

[6
4]
.

A
s
in

p
re
vi
ou

s
M
a
t
r
ix

ca
lc
u
la
ti
on

s,
in

ou
r
co
m
p
u
ta
ti
on

of
th
e
N
L
O

co
rr
ec
ti
on

s
to

th
e
gg

!
4`

pr
oc
es
s,
al
l t
he

re
qu

ir
ed

on
e-
lo
op

am
pl
it
ud

es
ar
e
ev
al
ua

te
d
w
it
h
O
p
e
n
L
o
o
p
s
3
[6
9,

70
].
A
t
tw

o-
lo
op

le
ve
l,
w
e
u
se

th
e
gg

!
V
V

0
h
el
ic
it
y
am

p
li
tu
d
es

of
R
ef
.
[3
7]
,
an

d
im

p
le
m
en
t
th
e
co
rr
es
p
on

d
in
g

fo
ur
-l
ep
to
n
fin

al
st
at
es
,
ac
co
un

ti
ng

fo
r
sp
in

co
rr
el
at
io
ns

an
d
o↵

-s
he
ll
e↵
ec
ts
.
T
he

N
L
O

ca
lc
ul
at
io
n

is
p
er
fo
rm

ed
by

u
si
n
g
th
e
C
at
an

i–
S
ey
m
ou

r
d
ip
ol
e-
su
b
tr
ac
ti
on

m
et
h
od

[7
1,

72
]
an

d
al
so

w
it
h
q T

su
b
tr
ac
ti
on

[5
3]
,
w
h
ic
h
p
ro
vi
d
es

an
ad

d
it
io
n
al

cr
os
s-
ch
ec
k
of

ou
r
re
su
lt
s.

1
W
e
n
ot
e
th
at

th
er
e
ar
e
al
so

qq̄
in
it
ia
te
d
co
n
tr
ib
u
ti
on

s
to

th
e
lo
op

-i
n
d
u
ce
d
p
ro
d
u
ct
io
n
m
ec
h
an

is
m

at
O
(↵

3 S
),

w
h
ic
h
ar
e
se
p
ar
at
el
y
fi
n
it
e.

W
e
fo
u
n
d
th
em

to
b
e
co
m
p
le
te
ly

n
eg
li
gi
b
le

an
d
ig
n
or
e
th
em

in
th
e
fo
ll
ow

in
g.

O
u
r

re
su
lt
s
in
cl
u
d
e
al
l
nu

m
er
ic
al
ly

re
le
va
nt

p
ar
to
n
ic

ch
an

n
el
s
of

th
e
N
L
O

co
rr
ec
ti
on

s
to

th
e
lo
op

-i
n
d
u
ce
d
gl
u
on

fu
si
on

co
nt
ri
b
u
ti
on

.
2
It

w
as

al
so

u
se
d
in

th
e
N
N
L
L
+
N
N
L
O

co
m
p
u
ta
ti
on

of
R
ef
.
[6
0]
,
an

d
in

th
e
N
N
L
O
P
S
co
m
p
u
ta
ti
on

of
R
ef
.
[6
1]
.

3
O
p
e
n
L
o
o
p
s
re
li
es

on
th
e
fa
st

an
d
st
ab

le
te
n
so
r
re
d
u
ct
io
n
of

C
o
l
l
ie
r
[6
5,

66
],
su
p
p
or
te
d
by

a
re
sc
u
e
sy
st
em

b
as
ed

on
qu

ad
-p
re
ci
si
on

C
u
t
T
o
o
l
s
[6
7]

w
it
h
O
n
e
L
O
o
p
[6
8]

to
d
ea
l
w
it
h
ex
ce
p
ti
on

al
p
h
as
e-
sp
ac
e
p
oi
nt
s.

3

g

q
q0

q

`0
+

`0
�

`�

`+

q

g

Fig
ure

2:
Exa

mp
le of N

NL
O inte

rfer
enc

e bet
wee

n qua
rk

ann
ihil

atio
n and

loo
p-in

duc
ed

glu
on

fusi
on

pro
duc

tion
mec

han
ism

s.

g

q
q0

q

`0
+

`0
�

`�

`+

q0
0 g

q

g

q
q0

q

`0
+

`0
�

`�

`+

q

g

(a)

(b)

Fig
ure

3: E
xam

ples
of N

3 LO
con

trib
utio

ns i
n the

qg
cha

nne
l.

incl
udi

ng
also

the
qg

init
iate

d con
trib

utio
ns.

1 We n
ote

tha
t at

N
3 LO

we
onl

y incl
ude

dia
gra

ms

wit
h clos

ed
ferm

ion
loop

s (s
ee F

igu
re 3

(a))
; al

l ot
her

con
trib

utio
ns t

hat
wou

ld ent
er a

com
plet

e

N
3 LO

calc
ula

tion
(see

Fig
ure

3 (b
) fo

r ex
am

ple)
can

not
be

con
sist

ent
ly acc

oun
ted

for
at p

rese
nt.

Our
app

rox
ima

tion
incl

ude
s al

l co
ntri

but
ions

at O
(↵

2
S
) to

geth
er w

ith
the

com
plet

e N
LO

corr
ecti

ons

to the
loo

p-in
duc

ed
glu

on
fusi

on
cha

nne
l at

O(↵
3
S
). As

suc
h, b

esid
es p

rov
idin

g the
ma

xim
um

per
turb

ativ
e in

form
atio

n ava
ilab

le a
t pr

esen
t fo

r th
is p

roc
ess,

our
calc

ulat
ion

can
be u

sed
to o

bta
in

a co
nsis

ten
t es

tim
ate

of p
ertu

rba
tive

unc
erta

inti
es t

hro
ugh

the
cus

tom
ary

pro
ced

ure
of s

tud
yin

g

sca
le v

aria
tion

s.

Our
calc

ulat
ion

is c
arri

ed o
ut w

ithi
n th

e co
mp

uta
tion

al fr
ame

wor
kM

at
ri
x [52]

. M
at

ri
x feat

ure
s a

full
y ge

ner
al im

plem
ent

atio
n of

the
qT-

sub
trac

tion
form

alis
m [53]

and
allo

wed
us t

o co
mp

ute
NN

LO

QC
D corr

ecti
ons

to a
larg

e nu
mb

er o
f co

lour
-sin

glet
pro

cess
es a

t ha
dro

n co
llid

ers
[38,

43,
45,

46,
54–

59].
2 The

cor
e of

the
M
at

ri
x
fram

ewo
rk is t

he
Mont

e C
arlo

pro
gra

m M
un

ic
h, w

hich
is c

apa
ble

of c
om

put
ing

bot
h NL

O QC
D and

NL
O EW

[62,
63]

cor
rect

ion
s to

arb
itra

ry SM
pro

cess
es [

64].

As
in pre

viou
s M

at
ri
x
calc

ula
tion

s, in
our

com
put

atio
n of t

he
NL

O cor
rect

ion
s to

the
gg !

4`

pro
cess

, all
the

req
uire

d on
e-lo

op a
mp

litu
des

are
eva

luat
ed w

ith
Ope

nL
oo

ps
3 [69,

70].
At

two
-loo

p

leve
l, w

e u
se t

he
gg

!
V V

0 heli
city

am
plit

ude
s of

Ref
. [3

7],
and

imp
lem

ent
the

cor
resp

ond
ing

fou
r-le

pto
n fina

l st
ates

, ac
cou

ntin
g fo

r sp
in corr

elat
ions

and
o↵-

she
ll e↵

ects
. T

he N
LO

calc
ulat

ion

is p
erfo

rme
d by

usin
g th

e C
ata

ni–
Sey

mo
ur d

ipo
le-s

ubt
rac

tion
met

hod
[71,

72]
and

also
wit

h qT

sub
trac

tion
[53]

, w
hich

pro
vid

es a
n add

itio
nal

cro
ss-c

hec
k of o

ur r
esu

lts.

1We n
ote

tha
t th

ere
are

also
qq̄

init
iate

d con
trib

utio
ns

to the
loo

p-in
duc

ed
pro

duc
tion

mech
ani

sm
at O

(↵
3
S
),

wh
ich

are
sep

ara
tely

fini
te.

We fo
und

the
m to be

com
ple

tely
neg

ligi
ble

and
ign

ore
the

m in the
foll

owi
ng.

Ou
r

resu
lts

incl
ude

all
num

eric
ally

rele
van

t pa
rton

ic c
han

nels
of t

he
NL

O cor
rect

ion
s to

the
loo

p-in
duc

ed
glu

on
fusi

on

con
trib

utio
n.

2 It w
as a

lso
use

d in the
NN

LL+
NN

LO
com

put
atio

n of R
ef.

[60]
, an

d in the
NN

LO
PS

com
put

atio
n of R

ef.
[61]

.

3Ope
nL

oo
ps

reli
es o

n the
fast

and
stab

le t
ens

or r
edu

ctio
n of C

ol
lie

r
[65,

66],
sup

por
ted

by
a resc

ue
sys

tem

bas
ed

on
qua

d-p
reci

sion
Cu

tT
oo

ls
[67]

wit
h One

LO
op

[68]
to dea

l w
ith

exc
ept

ion
al p

has
e-sp

ace
poi

nts
.

3

u

d̄

l0+

⌫l0

l�

l+

W+
d

Z/�

u

d̄

l0+

⌫l0

l�

l+

W+

Z/�

W+

u

d̄

l0+

⌫l0

l�

l+Z/�
⌫l0

W+

(a) (b) (c)

Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1. Sample LO diagrams for (a-b) 2l-SF-ZZ, (c-e) 2l-DF-WW, and (f-h) 3l-DF-WZ.
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1. Sample LO diagrams for (a-b) 2l-SF-ZZ, (c-e) 2l-DF-WW, and (f-h) 3l-DF-WZ.
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵
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), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
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) correction to these processes. In the combination of NNLO QCD and NLO EW
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The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production

– 5 –

�

�

`
+

⌫l

`
0�

⌫̄`0

W
+

W

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

W
+

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

`
�

`

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

`

`
0

W

(a) (b) (c) (d)

Figure 3. Sample of photon-induced Born diagrams contributing to 2`2⌫ production in the different-
flavour case (` 6= `0) and in the same-flavour case (` = `0). Double-resonant (a,b), single-resonant (c) and
non-resonant (d) diagrams are shown.

�

�

`
+

`
�

⌫`0

⌫̄`0

`
�

`

Z

�

�

`
+

⌫`0

`
�

⌫̄`0

Z
`

`

(a) (b)

Figure 4. Sample of photon-induced Born diagrams contributing to 2`2⌫ final states only in the same
lepton-flavour case, both for `0 = ` or `0 6= `. Only single-resonant diagrams contribute.

two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
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Figure 3: Examples of N3LO contributions in the qg channel.

including also the qg initiated contributions.1 We note that at N3LO we only include diagrams
with closed fermion loops (see Figure 3 (a)); all other contributions that would enter a complete
N3LO calculation (see Figure 3 (b) for example) cannot be consistently accounted for at present.
Our approximation includes all contributions at O(↵2

S
) together with the complete NLO corrections

to the loop-induced gluon fusion channel at O(↵3

S
). As such, besides providing the maximum

perturbative information available at present for this process, our calculation can be used to obtain
a consistent estimate of perturbative uncertainties through the customary procedure of studying
scale variations.

Our calculation is carried out within the computational framework Matrix [52]. Matrix features a
fully general implementation of the qT -subtraction formalism [53] and allowed us to compute NNLO
QCD corrections to a large number of colour-singlet processes at hadron colliders [38, 43, 45, 46, 54–
59].2 The core of the Matrix framework is the Monte Carlo program Munich, which is capable
of computing both NLO QCD and NLO EW [62, 63] corrections to arbitrary SM processes [64].

As in previous Matrix calculations, in our computation of the NLO corrections to the gg ! 4`
process, all the required one-loop amplitudes are evaluated with OpenLoops

3 [69, 70]. At two-loop
level, we use the gg ! V V 0 helicity amplitudes of Ref. [37], and implement the corresponding
four-lepton final states, accounting for spin correlations and o↵-shell e↵ects. The NLO calculation
is performed by using the Catani–Seymour dipole-subtraction method [71, 72] and also with qT
subtraction [53], which provides an additional cross-check of our results.

1We note that there are also qq̄ initiated contributions to the loop-induced production mechanism at O(↵3
S),

which are separately finite. We found them to be completely negligible and ignore them in the following. Our
results include all numerically relevant partonic channels of the NLO corrections to the loop-induced gluon fusion
contribution.

2It was also used in the NNLL+NNLO computation of Ref. [60], and in the NNLOPS computation of Ref. [61].
3
OpenLoops relies on the fast and stable tensor reduction of Collier [65, 66], supported by a rescue system

based on quad-precision CutTools [67] with OneLOop [68] to deal with exceptional phase-space points.

3

q

q̄

`+

`�

`0�

`0+

Z/�
q

Z/�

q

q̄

`+

`�

`0�

`0+
Z/�

`�

Z/�

g

g

ℓ+

ℓ−

ℓ′+

ℓ′−

Z/γ
q

Z/γ

(a) (b) (c)

Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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Figure 1. Sample LO diagrams for (a-b) 2l-SF-ZZ, (c-e) 2l-DF-WW, and (f-h) 3l-DF-WZ.
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
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We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2
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= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘
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2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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2.3 Higher-order QCD corrections
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including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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approximation is applied. Our implementation can deal with any combination of leptonic flavours,
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though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
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(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2
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• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;
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3

g

q

q
0

q

`0
+

`0
�
`�

`+

q

g

F
ig
u
re

2:
E
xa
m
p
le

of
N
N
L
O

in
te
rf
er
en
ce

b
et
w
ee
n
qu

ar
k
an

n
ih
il
at
io
n
an

d
lo
op

-i
n
d
u
ce
d
gl
u
on

fu
si
on

p
ro
d
u
ct
io
n
m
ec
h
an

is
m
s.

g

q

q
0

q

`0
+

`0
�
`�

`+
q
00

g

q

g

q

q
0

q

`0
+

`0
�
`�

`+

q

g

(a
)

(b
)

F
ig
u
re

3:
E
xa
m
p
le
s
of

N
3
L
O

co
nt
ri
b
u
ti
on

s
in

th
e
qg

ch
an

n
el
.

in
cl
u
d
in
g
al
so

th
e
qg

in
it
ia
te
d
co
nt
ri
b
u
ti
on

s.
1
W
e
n
ot
e
th
at

at
N

3
L
O

w
e
on

ly
in
cl
u
d
e
d
ia
gr
am

s

w
it
h
cl
os
ed

fe
rm

io
n
lo
op

s
(s
ee

F
ig
u
re

3
(a
))
;
al
l
ot
h
er

co
nt
ri
b
u
ti
on

s
th
at

w
ou

ld
en
te
r
a
co
m
p
le
te

N
3
L
O

ca
lc
u
la
ti
on

(s
ee

F
ig
u
re

3
(b
)
fo
r
ex
am

p
le
)
ca
n
n
ot

b
e
co
n
si
st
en
tl
y
ac
co
u
nt
ed

fo
r
at

p
re
se
nt
.

O
ur

ap
pr
ox
im

at
io
n
in
cl
ud

es
al
l
co
nt
ri
bu

ti
on

s
at

O
(↵

2 S
)
to
ge
th
er

w
it
h
th
e
co
m
pl
et
e
N
L
O

co
rr
ec
ti
on

s

to
th
e
lo
op

-i
n
d
u
ce
d
gl
u
on

fu
si
on

ch
an

n
el

at
O
(↵

3 S
).

A
s
su
ch
,
b
es
id
es

p
ro
vi
d
in
g
th
e
m
ax
im

u
m

p
er
tu
rb
at
iv
e
in
fo
rm

at
io
n
av
ai
la
bl
e
at

pr
es
en
t
fo
r
th
is
pr
oc
es
s,
ou

r
ca
lc
ul
at
io
n
ca
n
b
e
us
ed

to
ob

ta
in

a
co
n
si
st
en
t
es
ti
m
at
e
of

p
er
tu
rb
at
iv
e
u
n
ce
rt
ai
nt
ie
s
th
ro
u
gh

th
e
cu
st
om

ar
y
p
ro
ce
d
u
re

of
st
u
d
yi
n
g

sc
al
e
va
ri
at
io
n
s.

O
ur

ca
lc
ul
at
io
n
is
ca
rr
ie
d
ou

t
w
it
hi
n
th
e
co
m
pu

ta
ti
on

al
fr
am

ew
or
k
M
a
t
r
ix

[5
2]
.
M
a
t
r
ix

fe
at
ur
es

a

fu
lly

ge
ne
ra
l i
m
pl
em

en
ta
ti
on

of
th
e
q T
-s
ub

tr
ac
ti
on

fo
rm

al
is
m

[5
3]

an
d
al
lo
w
ed

us
to

co
m
pu

te
N
N
L
O

Q
C
D

co
rr
ec
ti
on

s
to

a
la
rg
e
nu

m
b
er

of
co
lo
ur
-s
in
gl
et

pr
oc
es
se
s
at

ha
dr
on

co
lli
de
rs

[3
8,

43
, 4

5,
46
, 5

4–

59
].
2
T
h
e
co
re

of
th
e
M
a
t
r
ix

fr
am

ew
or
k
is
th
e
M
on
te

C
ar
lo

p
ro
gr
am

M
u
n
ic
h
,
w
h
ic
h
is
ca
p
ab

le

of
co
m
p
u
ti
n
g
b
ot
h
N
L
O

Q
C
D

an
d
N
L
O

E
W

[6
2,

63
]
co
rr
ec
ti
on

s
to

ar
b
it
ra
ry

S
M

p
ro
ce
ss
es

[6
4]
.

A
s
in

p
re
vi
ou

s
M
a
t
r
ix

ca
lc
u
la
ti
on

s,
in

ou
r
co
m
p
u
ta
ti
on

of
th
e
N
L
O

co
rr
ec
ti
on

s
to

th
e
gg

!
4`

pr
oc
es
s,
al
l t
he

re
qu

ir
ed

on
e-
lo
op

am
pl
it
ud

es
ar
e
ev
al
ua

te
d
w
it
h
O
p
e
n
L
o
o
p
s
3
[6
9,

70
].
A
t
tw

o-
lo
op

le
ve
l,
w
e
u
se

th
e
gg

!
V
V

0
h
el
ic
it
y
am

p
li
tu
d
es

of
R
ef
.
[3
7]
,
an

d
im

p
le
m
en
t
th
e
co
rr
es
p
on

d
in
g

fo
ur
-l
ep
to
n
fin

al
st
at
es
,
ac
co
un

ti
ng

fo
r
sp
in

co
rr
el
at
io
ns

an
d
o↵

-s
he
ll
e↵
ec
ts
.
T
he

N
L
O

ca
lc
ul
at
io
n

is
p
er
fo
rm

ed
by

u
si
n
g
th
e
C
at
an

i–
S
ey
m
ou

r
d
ip
ol
e-
su
b
tr
ac
ti
on

m
et
h
od

[7
1,

72
]
an

d
al
so

w
it
h
q T

su
b
tr
ac
ti
on

[5
3]
,
w
h
ic
h
p
ro
vi
d
es

an
ad

d
it
io
n
al

cr
os
s-
ch
ec
k
of

ou
r
re
su
lt
s.

1
W
e
n
ot
e
th
at

th
er
e
ar
e
al
so

qq̄
in
it
ia
te
d
co
n
tr
ib
u
ti
on

s
to

th
e
lo
op

-i
n
d
u
ce
d
p
ro
d
u
ct
io
n
m
ec
h
an

is
m

at
O
(↵

3 S
),

w
h
ic
h
ar
e
se
p
ar
at
el
y
fi
n
it
e.

W
e
fo
u
n
d
th
em

to
b
e
co
m
p
le
te
ly

n
eg
li
gi
b
le

an
d
ig
n
or
e
th
em

in
th
e
fo
ll
ow

in
g.

O
u
r

re
su
lt
s
in
cl
u
d
e
al
l
nu

m
er
ic
al
ly

re
le
va
nt

p
ar
to
n
ic

ch
an

n
el
s
of

th
e
N
L
O

co
rr
ec
ti
on

s
to

th
e
lo
op

-i
n
d
u
ce
d
gl
u
on

fu
si
on

co
nt
ri
b
u
ti
on

.
2
It

w
as

al
so

u
se
d
in

th
e
N
N
L
L
+
N
N
L
O

co
m
p
u
ta
ti
on

of
R
ef
.
[6
0]
,
an

d
in

th
e
N
N
L
O
P
S
co
m
p
u
ta
ti
on

of
R
ef
.
[6
1]
.

3
O
p
e
n
L
o
o
p
s
re
li
es

on
th
e
fa
st

an
d
st
ab

le
te
n
so
r
re
d
u
ct
io
n
of

C
o
l
l
ie
r
[6
5,

66
],
su
p
p
or
te
d
by

a
re
sc
u
e
sy
st
em

b
as
ed

on
qu

ad
-p
re
ci
si
on

C
u
t
T
o
o
l
s
[6
7]

w
it
h
O
n
e
L
O
o
p
[6
8]

to
d
ea
l
w
it
h
ex
ce
p
ti
on

al
p
h
as
e-
sp
ac
e
p
oi
nt
s.

3

g

q
q
0

q
`
0+

`
0�

`
�

`
+

q

g

Figure2:ExampleofNNLOinterferencebetweenquarkannihilationandloop-inducedgluon

fusionproductionmechanisms.

g

q
q
0

q
`
0+

`
0�

`
�

`
+

q
00g

q

g

q
q
0

q
`
0+

`
0�

`
�

`
+

q

g

(a)

(b)

Figure3:ExamplesofN
3LOcontributionsintheqgchannel.

includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1. Sample LO diagrams for (a-b) 2l-SF-ZZ, (c-e) 2l-DF-WW, and (f-h) 3l-DF-WZ.
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵
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), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
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2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production
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space regions away from such double-resonant topologies. Interference effects are studied in detail
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varies significantly between the channels. Photon-induced contributions to the DF channel are
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topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
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� pair [9, 10]. In fact, for on-shell W+
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pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
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Figure 3: Examples of N3LO contributions in the qg channel.

including also the qg initiated contributions.1 We note that at N3LO we only include diagrams
with closed fermion loops (see Figure 3 (a)); all other contributions that would enter a complete
N3LO calculation (see Figure 3 (b) for example) cannot be consistently accounted for at present.
Our approximation includes all contributions at O(↵2

S
) together with the complete NLO corrections

to the loop-induced gluon fusion channel at O(↵3

S
). As such, besides providing the maximum

perturbative information available at present for this process, our calculation can be used to obtain
a consistent estimate of perturbative uncertainties through the customary procedure of studying
scale variations.

Our calculation is carried out within the computational framework Matrix [52]. Matrix features a
fully general implementation of the qT -subtraction formalism [53] and allowed us to compute NNLO
QCD corrections to a large number of colour-singlet processes at hadron colliders [38, 43, 45, 46, 54–
59].2 The core of the Matrix framework is the Monte Carlo program Munich, which is capable
of computing both NLO QCD and NLO EW [62, 63] corrections to arbitrary SM processes [64].

As in previous Matrix calculations, in our computation of the NLO corrections to the gg ! 4`
process, all the required one-loop amplitudes are evaluated with OpenLoops

3 [69, 70]. At two-loop
level, we use the gg ! V V 0 helicity amplitudes of Ref. [37], and implement the corresponding
four-lepton final states, accounting for spin correlations and o↵-shell e↵ects. The NLO calculation
is performed by using the Catani–Seymour dipole-subtraction method [71, 72] and also with qT
subtraction [53], which provides an additional cross-check of our results.

1We note that there are also qq̄ initiated contributions to the loop-induced production mechanism at O(↵3
S),

which are separately finite. We found them to be completely negligible and ignore them in the following. Our
results include all numerically relevant partonic channels of the NLO corrections to the loop-induced gluon fusion
contribution.

2It was also used in the NNLL+NNLO computation of Ref. [60], and in the NNLOPS computation of Ref. [61].
3
OpenLoops relies on the fast and stable tensor reduction of Collier [65, 66], supported by a rescue system

based on quad-precision CutTools [67] with OneLOop [68] to deal with exceptional phase-space points.
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).
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are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
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is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘
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mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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have a quite significant impact, at the level of 10% or more, on the various diboson production
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while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
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including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1. Sample LO diagrams for (a-b) 2l-SF-ZZ, (c-e) 2l-DF-WW, and (f-h) 3l-DF-WZ.
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵
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) as part of the NNLO QCD corrections, i.e. neglecting O(↵
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) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
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two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production

– 5 –

�

�

`
+

⌫l

`
0�

⌫̄`0

W
+

W

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

W
+

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

`
�

`

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

`

`
0

W

(a) (b) (c) (d)

Figure 3. Sample of photon-induced Born diagrams contributing to 2`2⌫ production in the different-
flavour case (` 6= `0) and in the same-flavour case (` = `0). Double-resonant (a,b), single-resonant (c) and
non-resonant (d) diagrams are shown.

�

�

`
+

`
�

⌫`0

⌫̄`0

`
�

`

Z

�

�

`
+

⌫`0

`
�

⌫̄`0

Z
`

`

(a) (b)

Figure 4. Sample of photon-induced Born diagrams contributing to 2`2⌫ final states only in the same
lepton-flavour case, both for `0 = ` or `0 6= `. Only single-resonant diagrams contribute.

two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
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contributing here.
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in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W
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� and ZZ channels.
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varies significantly between the channels. Photon-induced contributions to the DF channel are
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diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
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Figure 3: Examples of N3LO contributions in the qg channel.

including also the qg initiated contributions.1 We note that at N3LO we only include diagrams
with closed fermion loops (see Figure 3 (a)); all other contributions that would enter a complete
N3LO calculation (see Figure 3 (b) for example) cannot be consistently accounted for at present.
Our approximation includes all contributions at O(↵2

S
) together with the complete NLO corrections

to the loop-induced gluon fusion channel at O(↵3

S
). As such, besides providing the maximum

perturbative information available at present for this process, our calculation can be used to obtain
a consistent estimate of perturbative uncertainties through the customary procedure of studying
scale variations.

Our calculation is carried out within the computational framework Matrix [52]. Matrix features a
fully general implementation of the qT -subtraction formalism [53] and allowed us to compute NNLO
QCD corrections to a large number of colour-singlet processes at hadron colliders [38, 43, 45, 46, 54–
59].2 The core of the Matrix framework is the Monte Carlo program Munich, which is capable
of computing both NLO QCD and NLO EW [62, 63] corrections to arbitrary SM processes [64].

As in previous Matrix calculations, in our computation of the NLO corrections to the gg ! 4`
process, all the required one-loop amplitudes are evaluated with OpenLoops

3 [69, 70]. At two-loop
level, we use the gg ! V V 0 helicity amplitudes of Ref. [37], and implement the corresponding
four-lepton final states, accounting for spin correlations and o↵-shell e↵ects. The NLO calculation
is performed by using the Catani–Seymour dipole-subtraction method [71, 72] and also with qT
subtraction [53], which provides an additional cross-check of our results.

1We note that there are also qq̄ initiated contributions to the loop-induced production mechanism at O(↵3
S),

which are separately finite. We found them to be completely negligible and ignore them in the following. Our
results include all numerically relevant partonic channels of the NLO corrections to the loop-induced gluon fusion
contribution.

2It was also used in the NNLL+NNLO computation of Ref. [60], and in the NNLOPS computation of Ref. [61].
3
OpenLoops relies on the fast and stable tensor reduction of Collier [65, 66], supported by a rescue system

based on quad-precision CutTools [67] with OneLOop [68] to deal with exceptional phase-space points.
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵
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s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵
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) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵
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) effects.
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The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
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including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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2.3 Higher-order QCD corrections
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;
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In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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in t-channel topologies with subsequent emission of a Z boson with Z ! ⌫⌫̄ is the only photon-
induced production mechanism at LO, as shown in the sample diagrams of Fig. 4. Consequently,
the invariant mass of the charged-lepton pair does not show a Breit–Wigner peak around MZ .

Similarly as for quark–antiquark annihilation, the �� ! e
+
e
�
⌫e⌫̄e channel is build from the

coherent sum of all diagrams entering �� ! e
+
µ
�
⌫e⌫̄µ and �� ! e

+
e
�
⌫µ/⌧ ⌫̄µ/⌧ .

2.3 Ingredients of QCD and EW corrections

At NLO QCD all O(↵s↵
4) contributions to pp ! 2`2⌫ are taken into account. In the qq̄ channel, the

only QCD loop corrections arise from virtual-gluon exchange, while the real corrections result from
real-gluon emission and crossed topologies describing (anti-)quark–gluon channels. The infrared
divergences separately arising in these two contributions are mediated by the standard dipole-
subtraction approach [35, 36]. We note that the �� channels do not receive QCD corrections at
NLO, due to the absence of any QCD partons in all tree-level diagrams.

At NLO EW we include the full set of O(↵5) contributions to pp ! 2`2⌫. At this order both
the qq̄ and �� channels receive corrections from virtual EW bosons and from closed fermion loops,
cf. Figs. 5–6. These corrections include Higgs resonances with decay into four fermions coupled
to weak bosons (in the qq̄ channel) or coupled to a heavy-fermion loop (in the �� channel). The
real corrections in the qq̄ channel can be split into real-photon emission channels and �q ! 2`2⌫q
channels1 with initial-state � ! qq̄ splittings. The �� channel also receives real corrections from

1Corresponding �q̄-induced channels are implicitly understood here and in the following.
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photon bremsstrahlung, and also from �q ! 2`2⌫q channels with initial-state q ! q� splittings,
cf. Figs. 7–8. While the separation into qq̄ and �� channels can still be preserved for virtual and
photon-bremsstrahlung contributions, such separation is no longer meaningful for the q�-initiated
channels due to their singularity structure: both above-mentioned splittings result in infrared-
divergent configurations, and these q� channels simultaneously cancel infrared poles arising in qq̄

and �� channels. This situation demands the inclusion of the full NLO EW corrections to the qq̄

and �� Born processes to guarantee infrared safety and consistency. To deal with the mediation of
these divergences between virtual and real corrections the QED extension of the dipole-subtraction
method [37–39] is applied (see Appendix A).

Instead of a separation of NLO contributions into qq̄ and �� channels, we quantify the impact
of photon-induced processes by considering contributions involving at least one photon PDF factor
and all other contributions that are also present under the assumption of vanishing photon PDFs. At
LO this distinction coincides with the splitting according to production modes, while at NLO EW
it combines �� and �q channels in spite of the fact that the latter involves qq̄-related contributions.

3 Technical ingredients and setup of the simulations

3.1 Tools

The calculations presented in this paper have been performed with the automated frameworks Mu-

nich+OpenLoops and Sherpa+OpenLoops. They automate the full chain of all operations—
from process definition to collider observables—that enter NLO QCD+EW simulations at parton
level. The recently achieved automation of EW corrections [24, 26] is based on the well established
QCD implementations and allows for NLO QCD+EW simulations for a vast range of SM processes,
up to high particle multiplicities, at current and future colliders.

In these frameworks virtual amplitudes are provided by the OpenLoops program [28], which
is based on the open-loops algorithm [27] – a fast numerical recursion for the evaluation of one-loop
scattering amplitudes. Combined with the Collier tensor reduction library [40], which imple-
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-

– 5 –

q

q̄

`
+

`
�

⌫`0

⌫̄`0

Z/�

q

Z

q

q̄

`
+

`
�

⌫`0

⌫̄`0
Z

`
�

Z/�

u

ū
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corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production
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Figure 3: Examples of N3LO contributions in the qg channel.

including also the qg initiated contributions.1 We note that at N3LO we only include diagrams
with closed fermion loops (see Figure 3 (a)); all other contributions that would enter a complete
N3LO calculation (see Figure 3 (b) for example) cannot be consistently accounted for at present.
Our approximation includes all contributions at O(↵2

S
) together with the complete NLO corrections

to the loop-induced gluon fusion channel at O(↵3

S
). As such, besides providing the maximum

perturbative information available at present for this process, our calculation can be used to obtain
a consistent estimate of perturbative uncertainties through the customary procedure of studying
scale variations.

Our calculation is carried out within the computational framework Matrix [52]. Matrix features a
fully general implementation of the qT -subtraction formalism [53] and allowed us to compute NNLO
QCD corrections to a large number of colour-singlet processes at hadron colliders [38, 43, 45, 46, 54–
59].2 The core of the Matrix framework is the Monte Carlo program Munich, which is capable
of computing both NLO QCD and NLO EW [62, 63] corrections to arbitrary SM processes [64].

As in previous Matrix calculations, in our computation of the NLO corrections to the gg ! 4`
process, all the required one-loop amplitudes are evaluated with OpenLoops

3 [69, 70]. At two-loop
level, we use the gg ! V V 0 helicity amplitudes of Ref. [37], and implement the corresponding
four-lepton final states, accounting for spin correlations and o↵-shell e↵ects. The NLO calculation
is performed by using the Catani–Seymour dipole-subtraction method [71, 72] and also with qT
subtraction [53], which provides an additional cross-check of our results.

1We note that there are also qq̄ initiated contributions to the loop-induced production mechanism at O(↵3
S),

which are separately finite. We found them to be completely negligible and ignore them in the following. Our
results include all numerically relevant partonic channels of the NLO corrections to the loop-induced gluon fusion
contribution.

2It was also used in the NNLL+NNLO computation of Ref. [60], and in the NNLOPS computation of Ref. [61].
3
OpenLoops relies on the fast and stable tensor reduction of Collier [65, 66], supported by a rescue system

based on quad-precision CutTools [67] with OneLOop [68] to deal with exceptional phase-space points.
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).
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mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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ū

`
+

⌫`

`
0�

⌫̄`0

W
+

d

W
�

q

q̄

`
+

⌫`

`
0�

⌫̄`0

W
+

W
�

Z/�

(a) (b) (c) (d)

q

q̄

`
+

⌫`

`
0�

⌫̄`0

W
�

`
�

Z/�

u

d̄

`
+

`
�

⌫`0

`
0+

Z/�

u

W
+

u

d̄

`
+

`
�

⌫`0

`
0+

Z/�

W
+

W
+

u

d̄

`
+

`
�

⌫`0

`
0+

W
+

⌫`

W
+

(e) (f) (g) (h)

Figure 1. Sample LO diagrams for (a-b) 2l-SF-ZZ, (c-e) 2l-DF-WW, and (f-h) 3l-DF-WZ.

�

�

`
+

`
�

⌫`0

⌫̄`0

`
�

`

Z

�

�

`
+

⌫`

`
0�

⌫̄`0

`
�

`

W
�

�

�

`
+

⌫l

`
0�

⌫̄`0

W
+

W

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

W
+

W
�

(a) (b) (c) (d)

Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-

– 5 –

u

d̄

l0+

⌫l0

l�

l+

W+
d

Z/�

u

d̄

l0+

⌫l0

l�

l+

W+

Z/�

W+

u

d̄

l0+

⌫l0

l�

l+Z/�
⌫l0

W+

(a) (b) (c)

Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
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production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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and di↵erent-flavour (DF) channel—and one corresponding neutrino.
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approximation is applied. Our implementation can deal with any combination of leptonic flavours,
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though.
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In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.
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includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1. Sample LO diagrams for (a-b) 2l-SF-ZZ, (c-e) 2l-DF-WW, and (f-h) 3l-DF-WZ.

�

�

`
+

`
�

⌫`0

⌫̄`0

`
�

`

Z

�

�

`
+

⌫`

`
0�

⌫̄`0

`
�

`

W
�

�

�

`
+

⌫l

`
0�

⌫̄`0

W
+

W

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

W
+

W
�

(a) (b) (c) (d)

Figure 2. Sample photon-induced LO diagrams for (a) 2l-SF-ZZ, and (b-d) 2l-DF-WW. There is no LO
photon-induced contribution for 3l-DF-WZ.

2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-

– 5 –

q

q̄

`
+

`
�

⌫`0

⌫̄`0

Z/�

q

Z

q

q̄

`
+

`
�

⌫`0

⌫̄`0
Z

`
�

Z/�

u

ū
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2.3 Higher-order QCD corrections

For vector-boson pair production processes QCD higher-order corrections have a sizeable impact.
The NLO QCD corrections increase inclusive cross sections by 40-50% for ZZ and WW production
and around 90% for WZ production [37, 62–69]. The latter large NLO effect for WZ production MW

MWoriginates from an approximate radiation zero appearing in the leading helicity amplitude for WZ

production at LO [20, 70], which is not present at higher orders. Also NNLO QCD corrections
have a quite significant impact, at the level of 10% or more, on the various diboson production
processes [19–21, 23–26, 71, 72].

Predictions at NLO QCD require the calculation of virtual and real-emission matrix elements,
while NNLO QCD corrections involve double-virtual, real-virtual, and double-real contributions.
Representative Feynman diagrams are displayed in figure 3 for the case of WZ production. Similar
diagrams contribute also to all other diboson processes, with the only exception of ZZ production,
where diagrams with triple vector-boson couplings are absent. In addition to the contributions
illustrated in figure 3, WW and ZZ production involve also a loop-induced gluon-fusion channel
that enters at O(↵

2
s
), i.e. at the same order as it is part of the NNLO QCD corrections. The MW

contribution of this gg ! V V channel to charge-neutral final states is quite sizeable. It has been
computed to one order higher in perturbation theory [30, 32, 73–76], which is assumed to be the
dominant O(↵

3

S
) correction to these processes. In the combination of NNLO QCD and NLO EW

corrections presented in this paper the gg ! V V channels will be are included at the lowest order MW
MWat O(↵

2

S
) as part of the NNLO QCD corrections, i.e. neglecting O(↵

3

S
) effects.

2.4 Higher-order EW corrections

The impact of NLO EW effects on inclusive cross sections is typically at the few-percent level
and thus important in the context of high-precision studies. In kinematic distributions, EW cor-
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Figure 5. Sample of one loop diagrams contributing to 2`2⌫ production in the different-flavour case (` 6= `0)
and in the same-flavour case (` = `0) in the quark-induced (a-d) and photon-induced (e-h) channels.
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Figure 6. Sample of one-loop diagrams contributing to 2`2⌫ final states only in the same-flavour (wrt. the
charged leptons) case in the quark-induced (a-d) and photon-induced (e-h) channels.

in t-channel topologies with subsequent emission of a Z boson with Z ! ⌫⌫̄ is the only photon-
induced production mechanism at LO, as shown in the sample diagrams of Fig. 4. Consequently,
the invariant mass of the charged-lepton pair does not show a Breit–Wigner peak around MZ .

Similarly as for quark–antiquark annihilation, the �� ! e
+
e
�
⌫e⌫̄e channel is build from the

coherent sum of all diagrams entering �� ! e
+
µ
�
⌫e⌫̄µ and �� ! e

+
e
�
⌫µ/⌧ ⌫̄µ/⌧ .

2.3 Ingredients of QCD and EW corrections

At NLO QCD all O(↵s↵
4) contributions to pp ! 2`2⌫ are taken into account. In the qq̄ channel, the

only QCD loop corrections arise from virtual-gluon exchange, while the real corrections result from
real-gluon emission and crossed topologies describing (anti-)quark–gluon channels. The infrared
divergences separately arising in these two contributions are mediated by the standard dipole-
subtraction approach [35, 36]. We note that the �� channels do not receive QCD corrections at
NLO, due to the absence of any QCD partons in all tree-level diagrams.

At NLO EW we include the full set of O(↵5) contributions to pp ! 2`2⌫. At this order both
the qq̄ and �� channels receive corrections from virtual EW bosons and from closed fermion loops,
cf. Figs. 5–6. These corrections include Higgs resonances with decay into four fermions coupled
to weak bosons (in the qq̄ channel) or coupled to a heavy-fermion loop (in the �� channel). The
real corrections in the qq̄ channel can be split into real-photon emission channels and �q ! 2`2⌫q
channels1 with initial-state � ! qq̄ splittings. The �� channel also receives real corrections from

1Corresponding �q̄-induced channels are implicitly understood here and in the following.
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photon bremsstrahlung, and also from �q ! 2`2⌫q channels with initial-state q ! q� splittings,
cf. Figs. 7–8. While the separation into qq̄ and �� channels can still be preserved for virtual and
photon-bremsstrahlung contributions, such separation is no longer meaningful for the q�-initiated
channels due to their singularity structure: both above-mentioned splittings result in infrared-
divergent configurations, and these q� channels simultaneously cancel infrared poles arising in qq̄

and �� channels. This situation demands the inclusion of the full NLO EW corrections to the qq̄

and �� Born processes to guarantee infrared safety and consistency. To deal with the mediation of
these divergences between virtual and real corrections the QED extension of the dipole-subtraction
method [37–39] is applied (see Appendix A).

Instead of a separation of NLO contributions into qq̄ and �� channels, we quantify the impact
of photon-induced processes by considering contributions involving at least one photon PDF factor
and all other contributions that are also present under the assumption of vanishing photon PDFs. At
LO this distinction coincides with the splitting according to production modes, while at NLO EW
it combines �� and �q channels in spite of the fact that the latter involves qq̄-related contributions.

3 Technical ingredients and setup of the simulations

3.1 Tools

The calculations presented in this paper have been performed with the automated frameworks Mu-

nich+OpenLoops and Sherpa+OpenLoops. They automate the full chain of all operations—
from process definition to collider observables—that enter NLO QCD+EW simulations at parton
level. The recently achieved automation of EW corrections [24, 26] is based on the well established
QCD implementations and allows for NLO QCD+EW simulations for a vast range of SM processes,
up to high particle multiplicities, at current and future colliders.

In these frameworks virtual amplitudes are provided by the OpenLoops program [28], which
is based on the open-loops algorithm [27] – a fast numerical recursion for the evaluation of one-loop
scattering amplitudes. Combined with the Collier tensor reduction library [40], which imple-
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.

3

! d�V ! d�R

! d�B

u

d̄

l0+

⌫l0

l�

l+

W+
d

Z/�

u

d̄

l0+

⌫l0

l�

l+

W+

Z/�

W+

u

d̄

l0+

⌫l0

l�

l+Z/�
⌫l0

W+

(a) (b) (c)

Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
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three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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d�S: subtraction term 
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):
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including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.

3

g

q
q0

q

`0
+

`0
�

`�

`+

q

g

Fig
ure

2:
Exa

mp
le of N

NL
O inte

rfer
enc

e bet
wee

n qua
rk

ann
ihil

atio
n and

loo
p-in

duc
ed

glu
on

fusi
on

pro
duc

tion
mec

han
ism

s.

g

q
q0

q

`0
+

`0
�

`�

`+

q0
0 g

q

g

q
q0

q

`0
+

`0
�

`�

`+

q

g

(a)

(b)

Fig
ure

3: E
xam

ples
of N

3 LO
con

trib
utio

ns i
n the

qg
cha

nne
l.

incl
udi

ng
also

the
qg

init
iate

d con
trib

utio
ns.

1 We n
ote

tha
t at

N
3 LO

we
onl

y incl
ude

dia
gra

ms

wit
h clos

ed
ferm

ion
loop

s (s
ee F

igu
re 3

(a))
; al

l ot
her

con
trib

utio
ns t

hat
wou

ld ent
er a

com
plet

e

N
3 LO

calc
ula

tion
(see

Fig
ure

3 (b
) fo

r ex
am

ple)
can

not
be

con
sist

ent
ly acc

oun
ted

for
at p

rese
nt.

Our
app

rox
ima

tion
incl

ude
s al

l co
ntri

but
ions

at O
(↵

2
S
) to

geth
er w

ith
the

com
plet

e N
LO

corr
ecti

ons

to the
loo

p-in
duc

ed
glu

on
fusi

on
cha

nne
l at

O(↵
3
S
). As

suc
h, b

esid
es p

rov
idin

g the
ma

xim
um

per
turb

ativ
e in

form
atio

n ava
ilab

le a
t pr

esen
t fo

r th
is p

roc
ess,

our
calc

ulat
ion

can
be u

sed
to o

bta
in

a co
nsis

ten
t es

tim
ate

of p
ertu

rba
tive

unc
erta

inti
es t

hro
ugh

the
cus

tom
ary

pro
ced

ure
of s

tud
yin

g

sca
le v

aria
tion

s.

Our
calc

ulat
ion

is c
arri

ed o
ut w

ithi
n th

e co
mp

uta
tion

al fr
ame

wor
kM

at
ri
x [52]

. M
at

ri
x feat

ure
s a

full
y ge

ner
al im

plem
ent

atio
n of

the
qT-

sub
trac

tion
form

alis
m [53]

and
allo

wed
us t

o co
mp

ute
NN

LO

QC
D corr

ecti
ons

to a
larg

e nu
mb

er o
f co

lour
-sin

glet
pro

cess
es a

t ha
dro

n co
llid

ers
[38,

43,
45,

46,
54–

59].
2 The

cor
e of

the
M
at

ri
x
fram

ewo
rk is t

he
Mont

e C
arlo

pro
gra

m M
un

ic
h, w

hich
is c

apa
ble

of c
om

put
ing

bot
h NL

O QC
D and

NL
O EW

[62,
63]

cor
rect

ion
s to

arb
itra

ry SM
pro

cess
es [

64].

As
in pre

viou
s M

at
ri
x
calc

ula
tion

s, in
our

com
put

atio
n of t

he
NL

O cor
rect

ion
s to

the
gg !

4`

pro
cess

, all
the

req
uire

d on
e-lo

op a
mp

litu
des

are
eva

luat
ed w

ith
Ope

nL
oo

ps
3 [69,

70].
At

two
-loo

p

leve
l, w

e u
se t

he
gg

!
V V

0 heli
city

am
plit

ude
s of

Ref
. [3

7],
and

imp
lem

ent
the

cor
resp

ond
ing

fou
r-le

pto
n fina

l st
ates

, ac
cou

ntin
g fo

r sp
in corr

elat
ions

and
o↵-

she
ll e↵

ects
. T

he N
LO

calc
ulat

ion

is p
erfo

rme
d by

usin
g th

e C
ata

ni–
Sey

mo
ur d

ipo
le-s

ubt
rac

tion
met

hod
[71,

72]
and

also
wit

h qT

sub
trac

tion
[53]

, w
hich

pro
vid

es a
n add

itio
nal

cro
ss-c

hec
k of o

ur r
esu

lts.

1We n
ote

tha
t th

ere
are

also
qq̄

init
iate

d con
trib

utio
ns

to the
loo

p-in
duc

ed
pro

duc
tion

mech
ani

sm
at O

(↵
3
S
),

wh
ich

are
sep

ara
tely

fini
te.

We fo
und

the
m to be

com
ple

tely
neg

ligi
ble

and
ign

ore
the

m in the
foll

owi
ng.

Ou
r

resu
lts

incl
ude

all
num

eric
ally

rele
van

t pa
rton

ic c
han

nels
of t

he
NL

O cor
rect

ion
s to

the
loo

p-in
duc

ed
glu

on
fusi

on

con
trib

utio
n.

2 It w
as a

lso
use

d in the
NN

LL+
NN

LO
com

put
atio

n of R
ef.

[60]
, an

d in the
NN

LO
PS

com
put

atio
n of R

ef.
[61]

.

3Ope
nL

oo
ps

reli
es o

n the
fast

and
stab

le t
ens

or r
edu

ctio
n of C

ol
lie

r
[65,

66],
sup

por
ted

by
a resc

ue
sys

tem

bas
ed

on
qua

d-p
reci

sion
Cu

tT
oo

ls
[67]

wit
h One

LO
op

[68]
to dea

l w
ith

exc
ept

ion
al p

has
e-sp

ace
poi

nts
.

3

g

q

q
0

q

`0
+

`0
�
`�

`+

q

g

F
ig
u
re

2:
E
xa
m
p
le

of
N
N
L
O

in
te
rf
er
en
ce

b
et
w
ee
n
qu

ar
k
an

n
ih
il
at
io
n
an

d
lo
op

-i
n
d
u
ce
d
gl
u
on

fu
si
on

p
ro
d
u
ct
io
n
m
ec
h
an

is
m
s.

g

q

q
0

q

`0
+

`0
�
`�

`+
q
00

g

q

g

q

q
0

q

`0
+

`0
�
`�

`+

q

g

(a
)

(b
)

F
ig
u
re

3:
E
xa
m
p
le
s
of

N
3
L
O

co
nt
ri
b
u
ti
on

s
in

th
e
qg

ch
an

n
el
.

in
cl
u
d
in
g
al
so

th
e
qg

in
it
ia
te
d
co
nt
ri
b
u
ti
on

s.
1
W
e
n
ot
e
th
at

at
N

3
L
O

w
e
on

ly
in
cl
u
d
e
d
ia
gr
am

s

w
it
h
cl
os
ed

fe
rm

io
n
lo
op

s
(s
ee

F
ig
u
re

3
(a
))
;
al
l
ot
h
er

co
nt
ri
b
u
ti
on

s
th
at

w
ou

ld
en
te
r
a
co
m
p
le
te

N
3
L
O

ca
lc
u
la
ti
on

(s
ee

F
ig
u
re

3
(b
)
fo
r
ex
am

p
le
)
ca
n
n
ot

b
e
co
n
si
st
en
tl
y
ac
co
u
nt
ed

fo
r
at

p
re
se
nt
.

O
ur

ap
pr
ox
im

at
io
n
in
cl
ud

es
al
l
co
nt
ri
bu

ti
on

s
at

O
(↵

2 S
)
to
ge
th
er

w
it
h
th
e
co
m
pl
et
e
N
L
O

co
rr
ec
ti
on

s

to
th
e
lo
op

-i
n
d
u
ce
d
gl
u
on

fu
si
on

ch
an

n
el

at
O
(↵

3 S
).

A
s
su
ch
,
b
es
id
es

p
ro
vi
d
in
g
th
e
m
ax
im

u
m

p
er
tu
rb
at
iv
e
in
fo
rm

at
io
n
av
ai
la
bl
e
at

pr
es
en
t
fo
r
th
is
pr
oc
es
s,
ou

r
ca
lc
ul
at
io
n
ca
n
b
e
us
ed

to
ob

ta
in

a
co
n
si
st
en
t
es
ti
m
at
e
of

p
er
tu
rb
at
iv
e
u
n
ce
rt
ai
nt
ie
s
th
ro
u
gh

th
e
cu
st
om

ar
y
p
ro
ce
d
u
re

of
st
u
d
yi
n
g

sc
al
e
va
ri
at
io
n
s.

O
ur

ca
lc
ul
at
io
n
is
ca
rr
ie
d
ou

t
w
it
hi
n
th
e
co
m
pu

ta
ti
on

al
fr
am

ew
or
k
M
a
t
r
ix

[5
2]
.
M
a
t
r
ix

fe
at
ur
es

a

fu
lly

ge
ne
ra
l i
m
pl
em

en
ta
ti
on

of
th
e
q T
-s
ub

tr
ac
ti
on

fo
rm

al
is
m

[5
3]

an
d
al
lo
w
ed

us
to

co
m
pu

te
N
N
L
O

Q
C
D

co
rr
ec
ti
on

s
to

a
la
rg
e
nu

m
b
er

of
co
lo
ur
-s
in
gl
et

pr
oc
es
se
s
at

ha
dr
on

co
lli
de
rs

[3
8,

43
, 4

5,
46
, 5

4–

59
].
2
T
h
e
co
re

of
th
e
M
a
t
r
ix

fr
am

ew
or
k
is
th
e
M
on
te

C
ar
lo

p
ro
gr
am

M
u
n
ic
h
,
w
h
ic
h
is
ca
p
ab

le

of
co
m
p
u
ti
n
g
b
ot
h
N
L
O

Q
C
D

an
d
N
L
O

E
W

[6
2,

63
]
co
rr
ec
ti
on

s
to

ar
b
it
ra
ry

S
M

p
ro
ce
ss
es

[6
4]
.

A
s
in

p
re
vi
ou

s
M
a
t
r
ix

ca
lc
u
la
ti
on

s,
in

ou
r
co
m
p
u
ta
ti
on

of
th
e
N
L
O

co
rr
ec
ti
on

s
to

th
e
gg

!
4`

pr
oc
es
s,
al
l t
he

re
qu

ir
ed

on
e-
lo
op

am
pl
it
ud

es
ar
e
ev
al
ua

te
d
w
it
h
O
p
e
n
L
o
o
p
s
3
[6
9,

70
].
A
t
tw

o-
lo
op

le
ve
l,
w
e
u
se

th
e
gg

!
V
V

0
h
el
ic
it
y
am

p
li
tu
d
es

of
R
ef
.
[3
7]
,
an

d
im

p
le
m
en
t
th
e
co
rr
es
p
on

d
in
g

fo
ur
-l
ep
to
n
fin

al
st
at
es
,
ac
co
un

ti
ng

fo
r
sp
in

co
rr
el
at
io
ns

an
d
o↵

-s
he
ll
e↵
ec
ts
.
T
he

N
L
O

ca
lc
ul
at
io
n

is
p
er
fo
rm

ed
by

u
si
n
g
th
e
C
at
an

i–
S
ey
m
ou

r
d
ip
ol
e-
su
b
tr
ac
ti
on

m
et
h
od

[7
1,

72
]
an

d
al
so

w
it
h
q T

su
b
tr
ac
ti
on

[5
3]
,
w
h
ic
h
p
ro
vi
d
es

an
ad

d
it
io
n
al

cr
os
s-
ch
ec
k
of

ou
r
re
su
lt
s.

1
W
e
n
ot
e
th
at

th
er
e
ar
e
al
so

qq̄
in
it
ia
te
d
co
n
tr
ib
u
ti
on

s
to

th
e
lo
op

-i
n
d
u
ce
d
p
ro
d
u
ct
io
n
m
ec
h
an

is
m

at
O
(↵

3 S
),

w
h
ic
h
ar
e
se
p
ar
at
el
y
fi
n
it
e.

W
e
fo
u
n
d
th
em

to
b
e
co
m
p
le
te
ly

n
eg
li
gi
b
le

an
d
ig
n
or
e
th
em

in
th
e
fo
ll
ow

in
g.

O
u
r

re
su
lt
s
in
cl
u
d
e
al
l
nu

m
er
ic
al
ly

re
le
va
nt

p
ar
to
n
ic

ch
an

n
el
s
of

th
e
N
L
O

co
rr
ec
ti
on

s
to

th
e
lo
op

-i
n
d
u
ce
d
gl
u
on

fu
si
on

co
nt
ri
b
u
ti
on

.
2
It

w
as

al
so

u
se
d
in

th
e
N
N
L
L
+
N
N
L
O

co
m
p
u
ta
ti
on

of
R
ef
.
[6
0]
,
an

d
in

th
e
N
N
L
O
P
S
co
m
p
u
ta
ti
on

of
R
ef
.
[6
1]
.

3
O
p
e
n
L
o
o
p
s
re
li
es

on
th
e
fa
st

an
d
st
ab

le
te
n
so
r
re
d
u
ct
io
n
of

C
o
l
l
ie
r
[6
5,

66
],
su
p
p
or
te
d
by

a
re
sc
u
e
sy
st
em

b
as
ed

on
qu

ad
-p
re
ci
si
on

C
u
t
T
o
o
l
s
[6
7]

w
it
h
O
n
e
L
O
o
p
[6
8]

to
d
ea
l
w
it
h
ex
ce
p
ti
on

al
p
h
as
e-
sp
ac
e
p
oi
nt
s.

3u

d̄

l0+

⌫l0

l�

l+

W+
d

Z/�

u

d̄

l0+

⌫l0

l�

l+

W+

Z/�

W+

u

d̄

l0+

⌫l0

l�

l+Z/�
⌫l0

W+

(a) (b) (c)

Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
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including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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qT subtraction
[Catani, Grazzini '07]
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NNLO through X+jet at NLO + Slicing
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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rcut→0 extrapolation in MATRIX
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automatically computed in every single MATRIX NNLO run

[Grazzini,  Kallweit,  MW '17]
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rcut→0 extrapolation in MATRIX
[Grazzini,  Kallweit,  MW '17]
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[ATLAS-CONF-2019-034]
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Figure 8: Measured fiducial cross-sections (black data points) for the observables (from left to right and top to
bottom) E

�
T, |⌘� |, m(``�) and p

``�
T for the pp ! Z(!`+`�)� process. The measured cross-sections are compared

with SM expectations obtained from the M����� parton-level generator, corrected to particle level. The error bars
on the data points show the statistical uncertainty on the measured values. The grey shaded regions show the total
uncertainty on the unfolded data, excluding the uncertainty on the integrated luminosity. The purple and green
hatched regions show the total uncertainty on the M����� predictions. The lower section of each plot shows the ratio
of the SM expectation to the measured cross-section.

calculations at parton level, with parton-to-particle corrections applied, again as described in Section 7.
In all cases, the SM expectations include the electroweak Z� j j contribution evaluated at LO using
M��G���� 2.3.3. The relative contribution from Z� j j electroweak production grows with increasing
E
�
T and p

``�
T , reaching about 8% of the S����� LO prediction for the highest bins of E

�
T and p

``�
T , and is

largest at high m(``�), reaching about 3-4% of the S����� LO prediction.

The predictions from S����� at LO underestimate the measured rate by 20-30%, but give a generally good
description of the shape of the observed kinematic distributions, except in the region of intermediate p

``�
T .

The M��G���� prediction reproduces the shape of the data well but slightly underestimates the overall
normalisation. The M����� generator prediction agrees rather well with the data at NNLO, while the NLO
prediction underestimates the cross-section, particularly at high p

``�
T . In the region of m(``�) < 130 GeV

both M����� calculations underestimate the cross-section. In general, the description of the shape of each
distribution (as well as the overall rate) is improved at NNLO compared to NLO.

For the p
``�
T distribution, a fixed-order calculation (in this case M�����) is not expected to describe the

19

Recent Example: Zγ with 139 fb-1
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Figure 8: Measured fiducial cross-sections (black data points) for the observables (from left to right and top to
bottom) E

�
T, |⌘� |, m(``�) and p

``�
T for the pp ! Z(!`+`�)� process. The measured cross-sections are compared

with SM expectations obtained from the M����� parton-level generator, corrected to particle level. The error bars
on the data points show the statistical uncertainty on the measured values. The grey shaded regions show the total
uncertainty on the unfolded data, excluding the uncertainty on the integrated luminosity. The purple and green
hatched regions show the total uncertainty on the M����� predictions. The lower section of each plot shows the ratio
of the SM expectation to the measured cross-section.

calculations at parton level, with parton-to-particle corrections applied, again as described in Section 7.
In all cases, the SM expectations include the electroweak Z� j j contribution evaluated at LO using
M��G���� 2.3.3. The relative contribution from Z� j j electroweak production grows with increasing
E
�
T and p

``�
T , reaching about 8% of the S����� LO prediction for the highest bins of E

�
T and p

``�
T , and is

largest at high m(``�), reaching about 3-4% of the S����� LO prediction.

The predictions from S����� at LO underestimate the measured rate by 20-30%, but give a generally good
description of the shape of the observed kinematic distributions, except in the region of intermediate p

``�
T .

The M��G���� prediction reproduces the shape of the data well but slightly underestimates the overall
normalisation. The M����� generator prediction agrees rather well with the data at NNLO, while the NLO
prediction underestimates the cross-section, particularly at high p

``�
T . In the region of m(``�) < 130 GeV

both M����� calculations underestimate the cross-section. In general, the description of the shape of each
distribution (as well as the overall rate) is improved at NNLO compared to NLO.

For the p
``�
T distribution, a fixed-order calculation (in this case M�����) is not expected to describe the
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Figure 8: Measured fiducial cross-sections (black data points) for the observables (from left to right and top to
bottom) E

�
T, |⌘� |, m(``�) and p

``�
T for the pp ! Z(!`+`�)� process. The measured cross-sections are compared

with SM expectations obtained from the M����� parton-level generator, corrected to particle level. The error bars
on the data points show the statistical uncertainty on the measured values. The grey shaded regions show the total
uncertainty on the unfolded data, excluding the uncertainty on the integrated luminosity. The purple and green
hatched regions show the total uncertainty on the M����� predictions. The lower section of each plot shows the ratio
of the SM expectation to the measured cross-section.

calculations at parton level, with parton-to-particle corrections applied, again as described in Section 7.
In all cases, the SM expectations include the electroweak Z� j j contribution evaluated at LO using
M��G���� 2.3.3. The relative contribution from Z� j j electroweak production grows with increasing
E
�
T and p

``�
T , reaching about 8% of the S����� LO prediction for the highest bins of E

�
T and p

``�
T , and is

largest at high m(``�), reaching about 3-4% of the S����� LO prediction.

The predictions from S����� at LO underestimate the measured rate by 20-30%, but give a generally good
description of the shape of the observed kinematic distributions, except in the region of intermediate p

``�
T .

The M��G���� prediction reproduces the shape of the data well but slightly underestimates the overall
normalisation. The M����� generator prediction agrees rather well with the data at NNLO, while the NLO
prediction underestimates the cross-section, particularly at high p

``�
T . In the region of m(``�) < 130 GeV

both M����� calculations underestimate the cross-section. In general, the description of the shape of each
distribution (as well as the overall rate) is improved at NNLO compared to NLO.

For the p
``�
T distribution, a fixed-order calculation (in this case M�����) is not expected to describe the
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  ZZ  ➙  [Grazzini, Kallweit, MW, Yook '18]

WW ➙  [Grazzini, Kallweit, MW, Yook '20]

NLO EWnNNLO QCD

Importance of going beyond NNLO QCD

ZZ, WW, WZ 
➙ [Grazzini, Kallweit, Lindert, Pozzorini, MW '19]
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Importance of going beyond NNLO QCD

NLO QCD gg 
effect

NLO EWnNNLO QCD

WW

  ZZ  ➙  [Grazzini, Kallweit, MW, Yook '18]

WW ➙  [Grazzini, Kallweit, MW, Yook '20]
ZZ, WW, WZ 

➙ [Grazzini, Kallweit, Lindert, Pozzorini, MW '19]
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Figure 5: Transverse-momentum spectrum of the W boson with jet veto (left) and without (right).

the vectorial sum of the neutrino momenta. The pattern of the corrections with and without jet
veto is rather similar to the two distributions considered before. We thus only discuss one peculiar
additional feature, namely the kink for around pT,miss ⇠ mW , which is visible in all the predictions. JY

We also note that the size of the uncertainty bands for pT,miss > mW clearly increases. Such e↵ect
is due to the fact that at LO the two neutrinos are back-to-back with the leptons, and therefore
values of pT,miss larger than mW are strongly disfavoured as they require at least one of the W
bosons to become go o↵-shell. This can be seen also from the quickly decreasing LO result for JY

pT,miss > mW in the case in which no jet veto is applied. At NLO the neutrinos can recoil against
the additional jet, and this region receives a large correction. Hence, the accuracy is e↵ectively
reduced by one order here, which explains also the enlarged uncertainty bands. The impact of the
NLO corrections in the quark annihilation channel without jet veto is indeed huge, with K-factors
of O(10) in the high-pT,miss region.

We finally perform a comparison of our nNNLO predictions to the ATLAS data of Ref. [32] in
Figure 7. On top of the pure QCD predictions, we also show the best available fixed-order result
nNNLOEW (green, long-dashed), which was introduced in Table 2 and includes also the EW e↵ects
calculated in Ref. [45]. In general, the NLO corrections to the loop-induced contribution slightly
improve the agreement with the data, especially when the nNNLO prediction has a di↵erent
shape compared to NNLO, i.e. for the distributions in the transverse momentum of the leading
lepton (pT,`1 , upper left plot), the invariant mass of the lepton pair (mWW , upper central plot)
and the transverse momentum of the dilepton system (pT,``, upper right plot), as well as for
the distribution in the azimuthal angle between the leptons (��``, lower central plot). The
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Figure 5: Transverse-momentum spectrum of the W boson with jet veto (left) and without (right).

the vectorial sum of the neutrino momenta. The pattern of the corrections with and without jet
veto is rather similar to the two distributions considered before. We thus only discuss one peculiar
additional feature, namely the kink for around pT,miss ⇠ mW , which is visible in all the predictions. JY

We also note that the size of the uncertainty bands for pT,miss > mW clearly increases. Such e↵ect
is due to the fact that at LO the two neutrinos are back-to-back with the leptons, and therefore
values of pT,miss larger than mW are strongly disfavoured as they require at least one of the W
bosons to become go o↵-shell. This can be seen also from the quickly decreasing LO result for JY

pT,miss > mW in the case in which no jet veto is applied. At NLO the neutrinos can recoil against
the additional jet, and this region receives a large correction. Hence, the accuracy is e↵ectively
reduced by one order here, which explains also the enlarged uncertainty bands. The impact of the
NLO corrections in the quark annihilation channel without jet veto is indeed huge, with K-factors
of O(10) in the high-pT,miss region.

We finally perform a comparison of our nNNLO predictions to the ATLAS data of Ref. [32] in
Figure 7. On top of the pure QCD predictions, we also show the best available fixed-order result
nNNLOEW (green, long-dashed), which was introduced in Table 2 and includes also the EW e↵ects
calculated in Ref. [45]. In general, the NLO corrections to the loop-induced contribution slightly
improve the agreement with the data, especially when the nNNLO prediction has a di↵erent
shape compared to NNLO, i.e. for the distributions in the transverse momentum of the leading
lepton (pT,`1 , upper left plot), the invariant mass of the lepton pair (mWW , upper central plot)
and the transverse momentum of the dilepton system (pT,``, upper right plot), as well as for
the distribution in the azimuthal angle between the leptons (��``, lower central plot). The
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WW: nNNLO x NLO EW
[Grazzini, Kallweit, MW, Yook '20], [Grazzini, Kallweit, Linder, Pozzorini '19]
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Figure 7: Di↵erential distributions in the fiducial phase space selections of Table 1 compared to
ATLAS 13TeV data [32]; top left: leading-lepton transverse-momentum distribution; top center:
lepton-pair invariant-mass distribution; top right: lepton-pair transverse-momentum distribution;
bottom left: lepton-pair rapidity distribution; bottom center: azimuthal distance between leptons;
bottom right: distribution in the variable | cos ✓⇤| = | tanh(�⌘``/2)|.
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WW: nNNLO x NLO EW
[Grazzini, Kallweit, MW, Yook '20], [Grazzini, Kallweit, Linder, Pozzorini '19]
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Figure 7: Di↵erential distributions in the fiducial phase space selections of Table 1 compared to
ATLAS 13TeV data [32]; top left: leading-lepton transverse-momentum distribution; top center:
lepton-pair invariant-mass distribution; top right: lepton-pair transverse-momentum distribution;
bottom left: lepton-pair rapidity distribution; bottom center: azimuthal distance between leptons;
bottom right: distribution in the variable | cos ✓⇤| = | tanh(�⌘``/2)|.
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pT resummationpT resummation
I production of colorless particles (system F , invariant mass M)
I problem: pT distribution of F diverges at pT æ 0

��

������

�����

������

�����

�� ��� ��� ��� �	� ����
���������

��	�������
�

�����
������

M. Wiesemann (University of Zürich) pT resummation through NNLO+NNLL June 15, 2015 2 / 24



Marius Wiesemann    (MPI Munich) February 27th, 2020Diboson production at the LHC: Precision phenomenology 52

pT resummationpT resummation
I production of colorless particles (system F , invariant mass M)
I problem: pT distribution of F diverges at pT æ 0
I reason: large logs ln p2
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MATRIX+RadISH framework
[Kallweit, Re, Rottoli, MW 'to appear]

General interface between MATRIX and RadISH codes:

    all processes available in MATRIX (any color-singlet process possible where 2-loop known)

    high-accuracy multi-differential resummation of various transverse observables

    matching to NNLO QCD integrated cross section

MATRIX [Grazzini, Kallweit, MW '17]

    NNLO QCD, phase space, perturbative ingredients (amplitudes, coefficients, ...)

RadISH [Monni, Re, and Torrielli '16], [Bizon, Monni, Re, Rottoli, Torrielli '18], [Monni, Rottoli, Torrielli '19]

     resummation formalism in direct space (not in b-space)

     numerical approach (like a semi-inclusive parton shower)

    single-differential resummation [Monni, Re, and Torrielli '16], [Bizon, Monni, Re, Rottoli, Torrielli '18]

    and double-differential resummation [Monni, Rottoli, Torrielli '19]
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Figure 5. Transverse momentum spectrum of the W+W� pair in the fiducial-noJV phase space
at NLL+NLO (blue, dotted), NNLO (green, dashed), and N3LL+NNLO (red, solid) accuracy. Left
panel: spectrum up to 50 GeV. Right panel: spectrum up to 400 GeV.

Figure 6. Left: Transverse momentum spectrum of the W+W� pair in the fiducial-noJV phase
space at NNLL+NNLO (blue, dotted) and N3LL+NNLO (red, solid) accuracy. Right: comparison
between additive (blue, dotted) and multiplicative (red, solid) matching schemes at N3LL+NLO
for the transverse momentum spectrum of the W+W� pair in the fiducial-noJV phase space. The
bottom panel shows the relative uncertainty band.

the resummation are still very large and dominate in the matched result. Fig 5R tells that
at 50 GeV the resummation alone is below the matched. Figure 4 tells that the NNLO is
below the matched. Therefore the very narrow uncertainty at 50 GeV migt be still related
to the matching rather than resummation, so I wouldn’t emphasize it. I’d even show the
plot only up to 30 GeV...]ER

A further test of the perturbative stability of the prediction in the small-pWW
T region

can be obtained by comparing the N3LL+NNLO results with the two different matching

– 25 –

[Kallweit, Re, Rottoli, MW 'to appear]

pT-WW at N3LL+NNLO 
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Figure 3. Predictions at NNLO (green, dashed) and NNLL+NNLO (red, solid) for the cross
section in the fiducial region (left panel) and the jet-veto efficiency (right panel) as a function of
the jet veto. For the jet-veto efficiencies, we also compare the NNLO and the NNLL+NNLO with
the NLL+NLO (blue, dotted) result. In the left panel we also show the ATLAS measured fiducial
cross-section as a function of the jet-veto [74], from which we have subtracted the gg LO cross
section for a meaningful comparison (see text for details).

Since our predictions do not include the LO gg correction, we have subtracted from the
experimental results the loop-induced gg contribution to facilitate a comparison. We ob-
serve that the NNLO result and the NNLL+NNLO result are in remarkable agreement for
pJ,vetoT & 20 GeV, and that differences are at 2 � 3% down to 10 GeV. Below this value,
the fixed order results become unreliable and the central prediction becomes negative. The
uncertainty of the matched result widens below 10 GeV, where instead the fixed order
prediction underestimate the missing higher order uncertainty in the region dominated by
large logarithms. By comparing the results with the NLL+NLO curve it is manifest that
the higher order corrections are not negligible and necessary to reduce the scale uncertainty.
The comparison with the experimental data show a reasonable good agreement between the
theoretical predictions and the measured cross sections within the relatively large uncer-
tainties of the latter. The central value of the measured cross section tends to progressively
overshoot the theoretical predictions at larger values of the jet veto, which may indicate
the importance of missing higher order corrections beyond NNLO for pJ,vetoT & 50 GeV.

The comparison of the jet-veto efficiencies shows similar results. At 35 GeV, which is
the jet veto value used to define the fiducial region, the efficiency is 65%, and agreement
between the NNLO and the NNLL+NNLO result is at the few permille level. The scale
uncertainty is below the 10% level for pvetoT . 10 GeV for the NNLL+NNLO result, and
decreases at larger values of the veto, settling at the 2% level above 60 GeV.14 By comparing
the results with the NLL+NLO result, we observe that the inclusion of the higher order

14We calculate the scale uncertainty for the efficiencies by considering fully correlated scale variations
between the numerator and denominator of Eq. (4.4).

– 22 –

WW:  Jet veto at NNLL+NNLO 
[Kallweit, Re, Rottoli, MW 'to appear]

PRELIMINARY



Marius Wiesemann    (MPI Munich) February 27th, 2020Diboson production at the LHC: Precision phenomenology 57

pT-WW with jet veto at NNLL+NNLO 
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Figure 7. Left: Transverse momentum spectrum of the W+W� pair in the fiducial-JV phase
space at NLL+NLO (blue, dotted), NNLO (green, dashed), and NNLL+NNLO (red, solid) accuracy.
Right: Transverse momentum spectrum of the W+W� pair in the NNLOPSfiducial-JV phase space
at NNLO (green, dashed), and NNLL+NNLO (red, solid) accuracy, compared with the NNLOPS
result of ref. [115] (blue, dotted). See text for details.

schemes defined in Eq. (2.19) and (2.20). At this accuracy, the two predictions contain
the same ingredients, and can therefore be compared on equal footing. We show this
comparison in the right plot of Fig. 6. We observe an excellent agreement between the
two prescriptions, which indicates that our predictions do not depend significantly on the
choice of the matching scheme. Only in the very small pT region (pWW

T < 2 GeV) we
observe a small difference between the multiplicative result and the additive result, due
to the reduced sensitivity of the former to the exact cancellation between fixed order and
expansion. This can be appreciated by noticing that the multiplicative matching is in
agreement with the pure N3LL result, whereas the additive result is slightly different. In
this region, the cancellation becomes numerically challenging and require dedicated runs as
those performed in Sect. 2.4.

Having assessed the impact of the resummation in the absence of a veto on the jet
activity, we now move to discuss how resummation affects the fixed order predictions in the
zero-jet bin in the presence of a jet veto. We therefore match the result for the joint NNLL
resummation of pWW

T and pJT with the NLO differential distribution for the W+W� + j

production. In the left panel of Fig. 7 we compare the NNLO result for the transverse
momentum spectrum of the WW pair with the NNLL+NNLO and the NLL+NLO curves in
the fiducial-JV region. We use a multiplicative matching defined analogously as the single-
differential case (2.20), such that the integral of the NNLL+NNLO (NLL+NLO) pWW

T

differential distribution yields the NNLL+NNLO (NLL+NLO) jet vetoed cross section.
We observe that the fixed order is significantly different from the NNLL+NNLO re-

summed result both in the low-pT region below 20 GeV, and in the proximity of the Sudakov
shoulder [148] at 35 GeV. The theoretical uncertainty of the NNLL+NNLO prediction is at
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Figure 8: Measured fiducial cross-sections (black data points) for the observables (from left to right and top to
bottom) E

�
T, |⌘� |, m(``�) and p

``�
T for the pp ! Z(!`+`�)� process. The measured cross-sections are compared

with SM expectations obtained from the M����� parton-level generator, corrected to particle level. The error bars
on the data points show the statistical uncertainty on the measured values. The grey shaded regions show the total
uncertainty on the unfolded data, excluding the uncertainty on the integrated luminosity. The purple and green
hatched regions show the total uncertainty on the M����� predictions. The lower section of each plot shows the ratio
of the SM expectation to the measured cross-section.

calculations at parton level, with parton-to-particle corrections applied, again as described in Section 7.
In all cases, the SM expectations include the electroweak Z� j j contribution evaluated at LO using
M��G���� 2.3.3. The relative contribution from Z� j j electroweak production grows with increasing
E
�
T and p

``�
T , reaching about 8% of the S����� LO prediction for the highest bins of E

�
T and p

``�
T , and is

largest at high m(``�), reaching about 3-4% of the S����� LO prediction.

The predictions from S����� at LO underestimate the measured rate by 20-30%, but give a generally good
description of the shape of the observed kinematic distributions, except in the region of intermediate p

``�
T .

The M��G���� prediction reproduces the shape of the data well but slightly underestimates the overall
normalisation. The M����� generator prediction agrees rather well with the data at NNLO, while the NLO
prediction underestimates the cross-section, particularly at high p

``�
T . In the region of m(``�) < 130 GeV

both M����� calculations underestimate the cross-section. In general, the description of the shape of each
distribution (as well as the overall rate) is improved at NNLO compared to NLO.

For the p
``�
T distribution, a fixed-order calculation (in this case M�����) is not expected to describe the
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Figure 5: Distributions of (top) m(``�) and (bottom) p
``�
T for the (left) µ+µ�� and (right) e

+
e
�� signal regions. The

number of candidates observed in data (black data points) is compared to the sum of the signal predicted using the
S����� LO MC signal sample (including a normalisation factor of 1.25) and the estimated background contributions.
The lower section of each plot shows the ratio of the observed distribution to the sum of the predicted signal and
estimated background. The error bars on the observed distribution and on the ratio of the observed and expected
distributions show the statistical uncertainty due to the number of observed events. The hatched bands represent
the sum in quadrature of the uncertainty on the background estimation, the statistical uncertainty on the MC signal
prediction, and the experimental systematic uncertainty, excluding the uncertainty on the integrated luminosity.

pseudorapidity selection (|⌘ | < 2.47) on electrons and muons; and it includes the transition region in |⌘ |
for photons and electrons. The inclusion of the photon transition region in the fiducial region simplifies
comparisons with calculations, and represents a small interpolation (⇠ 6%) in a smooth distribution.

In addition, the photon, and the leptons forming the lepton pair, must not come from hadron or ⌧ decays.
The lepton energies are corrected by adding contributions from photons within �R < 0.1 of each lepton,
a procedure known as “dressing”. Photon isolation at particle level is imposed by requiring the scalar
sum of the transverse energy of all stable particles (except neutrinos and muons) within a cone of size
�R = 0.2 around the photon, E

cone0.2
T , to be less than 7% of E

�
T. This upper limit corresponds to the value

of the ratio E
cone0.2
T /E

�
T for which there is an equal probability for simulated signal events to pass or fail the

FixedCutLoose photon isolation requirements, as described in Section 4.1. No requirements are imposed at
particle level on the electron or muon isolation.
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Figure 8: Measured fiducial cross-sections (black data points) for the observables (from left to right and top to
bottom) E

�
T, |⌘� |, m(``�) and p

``�
T for the pp ! Z(!`+`�)� process. The measured cross-sections are compared

with SM expectations obtained from the M����� parton-level generator, corrected to particle level. The error bars
on the data points show the statistical uncertainty on the measured values. The grey shaded regions show the total
uncertainty on the unfolded data, excluding the uncertainty on the integrated luminosity. The purple and green
hatched regions show the total uncertainty on the M����� predictions. The lower section of each plot shows the ratio
of the SM expectation to the measured cross-section.

calculations at parton level, with parton-to-particle corrections applied, again as described in Section 7.
In all cases, the SM expectations include the electroweak Z� j j contribution evaluated at LO using
M��G���� 2.3.3. The relative contribution from Z� j j electroweak production grows with increasing
E
�
T and p

``�
T , reaching about 8% of the S����� LO prediction for the highest bins of E

�
T and p

``�
T , and is

largest at high m(``�), reaching about 3-4% of the S����� LO prediction.

The predictions from S����� at LO underestimate the measured rate by 20-30%, but give a generally good
description of the shape of the observed kinematic distributions, except in the region of intermediate p

``�
T .

The M��G���� prediction reproduces the shape of the data well but slightly underestimates the overall
normalisation. The M����� generator prediction agrees rather well with the data at NNLO, while the NLO
prediction underestimates the cross-section, particularly at high p

``�
T . In the region of m(``�) < 130 GeV

both M����� calculations underestimate the cross-section. In general, the description of the shape of each
distribution (as well as the overall rate) is improved at NNLO compared to NLO.

For the p
``�
T distribution, a fixed-order calculation (in this case M�����) is not expected to describe the
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Figure 5: Distributions of (top) m(``�) and (bottom) p
``�
T for the (left) µ+µ�� and (right) e

+
e
�� signal regions. The

number of candidates observed in data (black data points) is compared to the sum of the signal predicted using the
S����� LO MC signal sample (including a normalisation factor of 1.25) and the estimated background contributions.
The lower section of each plot shows the ratio of the observed distribution to the sum of the predicted signal and
estimated background. The error bars on the observed distribution and on the ratio of the observed and expected
distributions show the statistical uncertainty due to the number of observed events. The hatched bands represent
the sum in quadrature of the uncertainty on the background estimation, the statistical uncertainty on the MC signal
prediction, and the experimental systematic uncertainty, excluding the uncertainty on the integrated luminosity.

pseudorapidity selection (|⌘ | < 2.47) on electrons and muons; and it includes the transition region in |⌘ |
for photons and electrons. The inclusion of the photon transition region in the fiducial region simplifies
comparisons with calculations, and represents a small interpolation (⇠ 6%) in a smooth distribution.

In addition, the photon, and the leptons forming the lepton pair, must not come from hadron or ⌧ decays.
The lepton energies are corrected by adding contributions from photons within �R < 0.1 of each lepton,
a procedure known as “dressing”. Photon isolation at particle level is imposed by requiring the scalar
sum of the transverse energy of all stable particles (except neutrinos and muons) within a cone of size
�R = 0.2 around the photon, E

cone0.2
T , to be less than 7% of E

�
T. This upper limit corresponds to the value

of the ratio E
cone0.2
T /E

�
T for which there is an equal probability for simulated signal events to pass or fail the

FixedCutLoose photon isolation requirements, as described in Section 4.1. No requirements are imposed at
particle level on the electron or muon isolation.
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Figure 8: Measured fiducial cross-sections (black data points) for the observables (from left to right and top to
bottom) E

�
T, |⌘� |, m(``�) and p

``�
T for the pp ! Z(!`+`�)� process. The measured cross-sections are compared

with SM expectations obtained from the M����� parton-level generator, corrected to particle level. The error bars
on the data points show the statistical uncertainty on the measured values. The grey shaded regions show the total
uncertainty on the unfolded data, excluding the uncertainty on the integrated luminosity. The purple and green
hatched regions show the total uncertainty on the M����� predictions. The lower section of each plot shows the ratio
of the SM expectation to the measured cross-section.

calculations at parton level, with parton-to-particle corrections applied, again as described in Section 7.
In all cases, the SM expectations include the electroweak Z� j j contribution evaluated at LO using
M��G���� 2.3.3. The relative contribution from Z� j j electroweak production grows with increasing
E
�
T and p

``�
T , reaching about 8% of the S����� LO prediction for the highest bins of E

�
T and p

``�
T , and is

largest at high m(``�), reaching about 3-4% of the S����� LO prediction.

The predictions from S����� at LO underestimate the measured rate by 20-30%, but give a generally good
description of the shape of the observed kinematic distributions, except in the region of intermediate p

``�
T .

The M��G���� prediction reproduces the shape of the data well but slightly underestimates the overall
normalisation. The M����� generator prediction agrees rather well with the data at NNLO, while the NLO
prediction underestimates the cross-section, particularly at high p

``�
T . In the region of m(``�) < 130 GeV

both M����� calculations underestimate the cross-section. In general, the description of the shape of each
distribution (as well as the overall rate) is improved at NNLO compared to NLO.

For the p
``�
T distribution, a fixed-order calculation (in this case M�����) is not expected to describe the
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Figure 5: Distributions of (top) m(``�) and (bottom) p
``�
T for the (left) µ+µ�� and (right) e

+
e
�� signal regions. The

number of candidates observed in data (black data points) is compared to the sum of the signal predicted using the
S����� LO MC signal sample (including a normalisation factor of 1.25) and the estimated background contributions.
The lower section of each plot shows the ratio of the observed distribution to the sum of the predicted signal and
estimated background. The error bars on the observed distribution and on the ratio of the observed and expected
distributions show the statistical uncertainty due to the number of observed events. The hatched bands represent
the sum in quadrature of the uncertainty on the background estimation, the statistical uncertainty on the MC signal
prediction, and the experimental systematic uncertainty, excluding the uncertainty on the integrated luminosity.

pseudorapidity selection (|⌘ | < 2.47) on electrons and muons; and it includes the transition region in |⌘ |
for photons and electrons. The inclusion of the photon transition region in the fiducial region simplifies
comparisons with calculations, and represents a small interpolation (⇠ 6%) in a smooth distribution.

In addition, the photon, and the leptons forming the lepton pair, must not come from hadron or ⌧ decays.
The lepton energies are corrected by adding contributions from photons within �R < 0.1 of each lepton,
a procedure known as “dressing”. Photon isolation at particle level is imposed by requiring the scalar
sum of the transverse energy of all stable particles (except neutrinos and muons) within a cone of size
�R = 0.2 around the photon, E

cone0.2
T , to be less than 7% of E

�
T. This upper limit corresponds to the value

of the ratio E
cone0.2
T /E

�
T for which there is an equal probability for simulated signal events to pass or fail the

FixedCutLoose photon isolation requirements, as described in Section 4.1. No requirements are imposed at
particle level on the electron or muon isolation.
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Figure 8: Measured fiducial cross-sections (black data points) for the observables (from left to right and top to
bottom) E

�
T, |⌘� |, m(``�) and p

``�
T for the pp ! Z(!`+`�)� process. The measured cross-sections are compared

with SM expectations obtained from the M����� parton-level generator, corrected to particle level. The error bars
on the data points show the statistical uncertainty on the measured values. The grey shaded regions show the total
uncertainty on the unfolded data, excluding the uncertainty on the integrated luminosity. The purple and green
hatched regions show the total uncertainty on the M����� predictions. The lower section of each plot shows the ratio
of the SM expectation to the measured cross-section.

calculations at parton level, with parton-to-particle corrections applied, again as described in Section 7.
In all cases, the SM expectations include the electroweak Z� j j contribution evaluated at LO using
M��G���� 2.3.3. The relative contribution from Z� j j electroweak production grows with increasing
E
�
T and p

``�
T , reaching about 8% of the S����� LO prediction for the highest bins of E

�
T and p

``�
T , and is

largest at high m(``�), reaching about 3-4% of the S����� LO prediction.

The predictions from S����� at LO underestimate the measured rate by 20-30%, but give a generally good
description of the shape of the observed kinematic distributions, except in the region of intermediate p

``�
T .

The M��G���� prediction reproduces the shape of the data well but slightly underestimates the overall
normalisation. The M����� generator prediction agrees rather well with the data at NNLO, while the NLO
prediction underestimates the cross-section, particularly at high p

``�
T . In the region of m(``�) < 130 GeV

both M����� calculations underestimate the cross-section. In general, the description of the shape of each
distribution (as well as the overall rate) is improved at NNLO compared to NLO.

For the p
``�
T distribution, a fixed-order calculation (in this case M�����) is not expected to describe the
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Why NNLO+PS?
1. comparison at event level 

(some analysis: no unfolding)
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Figure 5: Distributions of (top) m(``�) and (bottom) p
``�
T for the (left) µ+µ�� and (right) e

+
e
�� signal regions. The

number of candidates observed in data (black data points) is compared to the sum of the signal predicted using the
S����� LO MC signal sample (including a normalisation factor of 1.25) and the estimated background contributions.
The lower section of each plot shows the ratio of the observed distribution to the sum of the predicted signal and
estimated background. The error bars on the observed distribution and on the ratio of the observed and expected
distributions show the statistical uncertainty due to the number of observed events. The hatched bands represent
the sum in quadrature of the uncertainty on the background estimation, the statistical uncertainty on the MC signal
prediction, and the experimental systematic uncertainty, excluding the uncertainty on the integrated luminosity.

pseudorapidity selection (|⌘ | < 2.47) on electrons and muons; and it includes the transition region in |⌘ |
for photons and electrons. The inclusion of the photon transition region in the fiducial region simplifies
comparisons with calculations, and represents a small interpolation (⇠ 6%) in a smooth distribution.

In addition, the photon, and the leptons forming the lepton pair, must not come from hadron or ⌧ decays.
The lepton energies are corrected by adding contributions from photons within �R < 0.1 of each lepton,
a procedure known as “dressing”. Photon isolation at particle level is imposed by requiring the scalar
sum of the transverse energy of all stable particles (except neutrinos and muons) within a cone of size
�R = 0.2 around the photon, E

cone0.2
T , to be less than 7% of E

�
T. This upper limit corresponds to the value

of the ratio E
cone0.2
T /E

�
T for which there is an equal probability for simulated signal events to pass or fail the

FixedCutLoose photon isolation requirements, as described in Section 4.1. No requirements are imposed at
particle level on the electron or muon isolation.
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Figure 8: Measured fiducial cross-sections (black data points) for the observables (from left to right and top to
bottom) E

�
T, |⌘� |, m(``�) and p

``�
T for the pp ! Z(!`+`�)� process. The measured cross-sections are compared

with SM expectations obtained from the M����� parton-level generator, corrected to particle level. The error bars
on the data points show the statistical uncertainty on the measured values. The grey shaded regions show the total
uncertainty on the unfolded data, excluding the uncertainty on the integrated luminosity. The purple and green
hatched regions show the total uncertainty on the M����� predictions. The lower section of each plot shows the ratio
of the SM expectation to the measured cross-section.

calculations at parton level, with parton-to-particle corrections applied, again as described in Section 7.
In all cases, the SM expectations include the electroweak Z� j j contribution evaluated at LO using
M��G���� 2.3.3. The relative contribution from Z� j j electroweak production grows with increasing
E
�
T and p

``�
T , reaching about 8% of the S����� LO prediction for the highest bins of E

�
T and p

``�
T , and is

largest at high m(``�), reaching about 3-4% of the S����� LO prediction.

The predictions from S����� at LO underestimate the measured rate by 20-30%, but give a generally good
description of the shape of the observed kinematic distributions, except in the region of intermediate p

``�
T .

The M��G���� prediction reproduces the shape of the data well but slightly underestimates the overall
normalisation. The M����� generator prediction agrees rather well with the data at NNLO, while the NLO
prediction underestimates the cross-section, particularly at high p

``�
T . In the region of m(``�) < 130 GeV

both M����� calculations underestimate the cross-section. In general, the description of the shape of each
distribution (as well as the overall rate) is improved at NNLO compared to NLO.

For the p
``�
T distribution, a fixed-order calculation (in this case M�����) is not expected to describe the
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Why NNLO+PS?
1. comparison at event level 

(some analysis: no unfolding)

2. MC used for unfolding
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Figure 5: Distributions of (top) m(``�) and (bottom) p
``�
T for the (left) µ+µ�� and (right) e

+
e
�� signal regions. The

number of candidates observed in data (black data points) is compared to the sum of the signal predicted using the
S����� LO MC signal sample (including a normalisation factor of 1.25) and the estimated background contributions.
The lower section of each plot shows the ratio of the observed distribution to the sum of the predicted signal and
estimated background. The error bars on the observed distribution and on the ratio of the observed and expected
distributions show the statistical uncertainty due to the number of observed events. The hatched bands represent
the sum in quadrature of the uncertainty on the background estimation, the statistical uncertainty on the MC signal
prediction, and the experimental systematic uncertainty, excluding the uncertainty on the integrated luminosity.

pseudorapidity selection (|⌘ | < 2.47) on electrons and muons; and it includes the transition region in |⌘ |
for photons and electrons. The inclusion of the photon transition region in the fiducial region simplifies
comparisons with calculations, and represents a small interpolation (⇠ 6%) in a smooth distribution.

In addition, the photon, and the leptons forming the lepton pair, must not come from hadron or ⌧ decays.
The lepton energies are corrected by adding contributions from photons within �R < 0.1 of each lepton,
a procedure known as “dressing”. Photon isolation at particle level is imposed by requiring the scalar
sum of the transverse energy of all stable particles (except neutrinos and muons) within a cone of size
�R = 0.2 around the photon, E

cone0.2
T , to be less than 7% of E

�
T. This upper limit corresponds to the value

of the ratio E
cone0.2
T /E

�
T for which there is an equal probability for simulated signal events to pass or fail the

FixedCutLoose photon isolation requirements, as described in Section 4.1. No requirements are imposed at
particle level on the electron or muon isolation.
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Figure 8: Measured fiducial cross-sections (black data points) for the observables (from left to right and top to
bottom) E

�
T, |⌘� |, m(``�) and p

``�
T for the pp ! Z(!`+`�)� process. The measured cross-sections are compared

with SM expectations obtained from the M����� parton-level generator, corrected to particle level. The error bars
on the data points show the statistical uncertainty on the measured values. The grey shaded regions show the total
uncertainty on the unfolded data, excluding the uncertainty on the integrated luminosity. The purple and green
hatched regions show the total uncertainty on the M����� predictions. The lower section of each plot shows the ratio
of the SM expectation to the measured cross-section.

calculations at parton level, with parton-to-particle corrections applied, again as described in Section 7.
In all cases, the SM expectations include the electroweak Z� j j contribution evaluated at LO using
M��G���� 2.3.3. The relative contribution from Z� j j electroweak production grows with increasing
E
�
T and p

``�
T , reaching about 8% of the S����� LO prediction for the highest bins of E

�
T and p

``�
T , and is

largest at high m(``�), reaching about 3-4% of the S����� LO prediction.

The predictions from S����� at LO underestimate the measured rate by 20-30%, but give a generally good
description of the shape of the observed kinematic distributions, except in the region of intermediate p

``�
T .

The M��G���� prediction reproduces the shape of the data well but slightly underestimates the overall
normalisation. The M����� generator prediction agrees rather well with the data at NNLO, while the NLO
prediction underestimates the cross-section, particularly at high p

``�
T . In the region of m(``�) < 130 GeV

both M����� calculations underestimate the cross-section. In general, the description of the shape of each
distribution (as well as the overall rate) is improved at NNLO compared to NLO.

For the p
``�
T distribution, a fixed-order calculation (in this case M�����) is not expected to describe the
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Why NNLO+PS?
1. comparison at event level 

(some analysis: no unfolding)

2. MC used for unfolding

3. some observables require 
shower resummation
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UNNLOPS [Höche, Prestel '14]

      pp ➙ H    [Höche, Prestel '14]

     pp ➙ ℓℓ (Z)    [Höche, Prestel '14]

NNLO+PS approaches
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1. merge       pp ➞ WW        and        pp ➞ WW+jet    (both at NLO+PS)

MiNLO+reweighting

Giulia Zanderighi, WW@NNLOPS

Reweighing: NNLOPS
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Reweighing the weight of XJ-MiNLO events with 

Gives by construction NNLO accuracy for all inclusive observables and 
does not spoil the accuracy of XJ-MiNLO ⟹ X@NNLOPS  

X X+jet X+2jets X+nj (n>2)
XJ (NLO) — NLO LO —
XJ-MiNLO NLO NLO LO PS
X@NNLO NNLO NLO LO —

X@NNLOPS NNLO NLO LO PS
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1. merge       pp ➞ WW        and        pp ➞ WW+jet    (both at NLO+PS)

MiNLO+reweighting

Giulia Zanderighi, WW@NNLOPS

Reweighing: NNLOPS

11

Reweighing the weight of XJ-MiNLO events with 

Gives by construction NNLO accuracy for all inclusive observables and 
does not spoil the accuracy of XJ-MiNLO ⟹ X@NNLOPS  

X X+jet X+2jets X+nj (n>2)
XJ (NLO) — NLO LO —
XJ-MiNLO NLO NLO LO PS
X@NNLO NNLO NLO LO —

X@NNLOPS NNLO NLO LO PS

NLO (F+jet):

MiNLO:

certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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Reweighing the weight of XJ-MiNLO events with 

Gives by construction NNLO accuracy for all inclusive observables and 
does not spoil the accuracy of XJ-MiNLO ⟹ X@NNLOPS  

X X+jet X+2jets X+nj (n>2)
XJ (NLO) — NLO LO —
XJ-MiNLO NLO NLO LO PS
X@NNLO NNLO NLO LO —

X@NNLOPS NNLO NLO LO PS

NLO (F+jet):

MiNLO:

certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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 and  evaluated at  
 resummation scheme choice
  includes virtual amplitude

     to reach NLO accuracy

μR μF pT
→
→ B(2)
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1. merge       pp ➞ WW        and        pp ➞ WW+jet    (both at NLO+PS)

MiNLO+reweighting

Giulia Zanderighi, WW@NNLOPS

Reweighing: NNLOPS

11

Reweighing the weight of XJ-MiNLO events with 

Gives by construction NNLO accuracy for all inclusive observables and 
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1. merge       pp ➞ WW        and        pp ➞ WW+jet    (both at NLO+PS)

2. reweight to NNLO in born phase space

Giulia Zanderighi, WW@NNLOPS

Reweighing: NNLOPS
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Figure 10. Same as Fig. 7, but for various distributions in the fiducial phase space measured in the
8 TeV analysis by ATLAS [6]: (a) transverse momentum of the leading lepton pT,`1 (b) transverse
momentum pT,``, (c) invariant mass m`�`+ and (d) rapidity of the dilepton pair, (d) azimuthal
lepton separation ��``, and (e) |cos(✓?)| defined in Eq. (3.5).

The two distribution which require some additional discussion in Fig. 10 are pT,`` and

��``. We note at this point that in the fiducial phase space the LHE-level NNLOPS result

before shower, which is shown only in the ratio frame, has a di↵erent normalization (by

about�5%) than after shower. This is due to the jet-veto requirements and does not appear

in the inclusive nor the fiducial-noJV phase space. It can be understood by realizing that

the LHE-level results are unphysical in regions sensitive to soft-gluon radiation where large

logarithmic contributions are resummed by the shower. In other phase-space regions LHE-

level results coincide with the respective fixed-order result. Since among the fiducial cuts

only the jet-veto requirements are subject to e↵ects from soft gluons, large di↵erences

between LHE-level and showered results appear in the fiducial-JV setup primarily.

The pT,`` distribution in Fig. 10 (b) shows some interesting features: at 20GeV the

NNLO curve develops some perturbative instability. The integrable logarithmic singularity

[153] is caused by the fiducial pmiss

T
> 20 GeV cut, which at LO implies that the cross section
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[Re, MW, Zanderighi '18]

pT of dilepton system

→ NNLOPS cures perturbative instabilities (pT    cut)
→ NNLOPS induces additional shape effects
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Figure 6. Comparison of MiNLO (black, dotted), NNLO (red, dashed) and NNLOPS (blue, solid)
predictions in the fiducial phase space as a function of pvetoT,j1

for (a) the cross section and (b) the
jet-veto e�ciency.

the jet-veto e�ciency predicted by MiNLO is about 4% below the NNLOPS one for typical

jet-veto cuts applied by the experiments (20GeV. pveto
T,j1

. 30GeV).

The agreement between NNLO and NNLOPS results is remarkable. Even down to

pveto
T,j1

= 15GeV their di↵erence is within ⇠ 2%. Similar results were found in Ref. [83]

with resummation e↵ects at high logarithmic accuracy of about ⇠ 2–3% beyond NNLO for

pveto
T,j1

= 30GeV. This shows that jet-veto logarithms at typical jet-veto cuts applied by the

experiments are not particularly large and still well described by a NNLO computation.

Clearly, below pveto
T,j1

= 15GeV NNLO loses all predictive power and even turns negative at

some point. The scale-uncertainty band completely underestimates the true uncertainty

of the NNLO prediction due to missing higher-order corrections in this region. It is nice

to see how matching to the parton shower cures the unphysical behaviour of the NNLO

result, so that NNLOPS yields accurate predictions in the entire range of jet-veto cuts.

Furthermore, the scale uncertainty band of the NNLOPS curve widens at small pveto
T,j1

,

reflecting the fact that higher-order logarithmic terms become important in this region

and degrade the accuracy of the perturbative prediction.

3.4 Di↵erential distributions in the fiducial phase space

We now turn to discussing di↵erential cross sections. The figures in this section have the

same layout as before. Additionally, we show the central NNLOPS result at LHE level,

i.e. before the shower is applied, in the ratio frame. We start by considering observables

which are sensitive to soft-gluon emissions. In phase-space regions where the cross section

– 22 –

Jet veto

miss→ NNLOPS physical down to pT = 0



➙ 9D Born phase space:

➙ approximation: mW flat & CS angles [Collins, Soper '77] to convert to 81 3D moments

➙ discrete binning limits
    applicability in less 
    populated regions

➙ reweighting still numerically intensive

➙ thorough validation required

The problem with reweighting

Giulia Zanderighi, WW@NNLOPS

Setup

14

The remaining three variables and their binning chosen to be

Cuts inspired by ATLAS 13 TeV study (1702.04519): NNLO uses the central scale

All uncertainty bands are the envelop 
of 7-scales. In the NNLOPS scales in 
MiNLO and NNLO are varied in a 
correlated way 

gg-channel not included in our study, as 
it can it is know at one-loop and can be 
added incoherently 

where the function h(pT) has the property that it is one at pT = 0 and vanishes at infinity.

This function is used in Eq. (2.3) to split the cross section into

d�A = d� · h(pT) , d�B = d� · (1� h(pT)) . (2.4)

Here we use the following smoothing function:

h(pT) =
(2MW )2

(2MW )2 + p 2

T

. (2.5)

It is trivial to see that the exact value of the NNLO di↵erential cross-section in the Born-

level phase space is preserved using this reweighting factor:

✓
d�

d�B

◆NNLOPS

=

✓
d�

d�B

◆NNLO

. (2.6)

We have not yet specified what pT exactly stands for. Between the two natural choices,

the transverse momentum of the colourless system or of the leading jet, we refrain from

using the former, and have chosen the transverse momentum of the leading jet instead.

This choice is motivated by the fact that only the latter is a direct indicator of whether

QCD radiation is present in a given event or not. This ensures that h(pT ) goes to one

only for Born-like configurations, while it tends to zero in the presence of hard radiation,

with W(�B, pT) going to one accordingly. To define jets in h(pT ) we employ the inclusive

kT -algorithm with R = 0.4 [129, 130] as implemented in FastJet [131].

2.3 Practical implementation

We now turn to discussing practical details on the implementation of the reweighting

procedure for W+W� production sketched in the previous section. First we have to find a

parametrization of the Born phase space. To this end, we select a set of nine independent

observables, with nine being the degrees of freedom of the 4-particle (e�⌫̄e µ+⌫µ) phase

space we have at LO, after removing an overall azimuthal angle. This defines our basis for

the multidimensional reweighting. We choose the variables � = {pT,W� , yWW , �yW+W� ,

cos ✓CS
W+ , �CS

W+ , cos ✓CSW� , �CS
W� ,mW+ ,mW�}, which correspond to the transverse momentum

of W� (that is equal and in the opposite direction to the one of W+ at LO), the rapidity

of the W+W� pair, the rapidity di↵erence between the two W bosons (�yW+W� = yW+ �

yW�), the Collins-Soper (CS) angles for W+ and W� as introduced in Ref. [96], and the

invariant masses of the two W bosons, respectively. The di↵erential cross section in the

Born phase space is then defined as

d�

d�B

=
d9�

dpT,W�dyWWd�yW+W�dcos ✓CS
W+d�CS

W+dcos ✓CSW�d�CS
W�dmW+dmW�

. (2.7)

Given the high complexity of both the NNLO and the MiNLO computation for W+W�

production the computation of a nine-dimensional cross section is virtually impossible with

current technology. However, we can make use of two facts: first of all, we can drop the

invariant W -boson masses by realizing that their di↵erential K factor is practically flat over
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d�

d�B

=
d7�

dpT,W�dyWWd�yW+W�dcos ✓CS
W+d�CS

W+dcos ✓CSW�d�CS
W�

(2.9)

=
3

16⇡

8X

i=0

Ai fi(✓
CS
W� ,�CS

W�) =
3

16⇡

8X

i=0

Bi fi(✓
CS
W+ ,�CS

W+),

where the first expansion (with Ai) corresponds to the parametrization of the W� decay

in terms of two CS angles and the second one (with Bi) is the same, but for the W+ decay.

The functions fi(✓,�) are given by

f0(✓,�) =
�
1� 3 cos2 ✓

�
/2 ,

f3(✓,�) = sin ✓ cos� ,

f6(✓,�) = sin 2✓ sin� ,

f1(✓,�) = sin 2✓ cos� ,

f4(✓,�) = cos ✓ ,

f7(✓,�) = sin2 ✓ sin 2� ,

f2(✓,�) = (sin2 ✓ cos 2�)/2 ,

f5(✓,�) = sin ✓ sin� ,

f8(✓,�) = 1 + cos2 ✓ .
(2.10)

For i 2 {0, ..., 7} they have the property that their integral vanishes when integrating over

dcos ✓ d�. The coe�cients Ai and Bi are defined as moments of the di↵erential cross section

integrated over the respective CS angles:

Ai =

Z
d�

d�B

gi(✓
CS
W� ,�CS

W�) dcos ✓CSW�d�CS
W� ,

Bi =

Z
d�

d�B

gi(✓
CS
W+ ,�CS

W+) dcos ✓CSW+d�CS
W+ .

(2.11)

The functions gi(✓,�) are defined as

g0(✓,�) = 4� 10 cos2 ✓ ,

g3(✓,�) = 4 sin ✓ cos� ,

g6(✓,�) = sin 2✓ sin� ,

g1(✓,�) = sin 2✓ cos� ,

g4(✓,�) = 4 cos ✓ ,

g7(✓,�) = 5 sin2 ✓ sin 2� ,

g2(✓,�) = 10 sin2 ✓ cos 2� ,

g5(✓,�) = 4 sin ✓ sin�5 ,

g8(✓,�) = 1 .

(2.12)

Note that A8 and B8 are actually no moments, but correspond to the di↵erential cross

section itself integrated over the respective CS angles.

With the notation that we have introduced to write Eq. (2.9) in such a compact form,

it is straightforward to deduce the combined formula including both decays by inserting

the expression of Eq. (2.9) for the W� decay into the Bi coe�cient of the W+ decay in

Eq. (2.11), or vice versa. Hence, our generalization to the decay of both vector bosons for

the expansion of the cross section in all four CS angles can be cast into the following form:

d�

d�B

=
9

256⇡2

8X

i=0

8X

j=0

ABij fi(✓
CS
W� ,�CS

W�) fj(✓
CS
W+ ,�CS

W+) , (2.13)

with coe�cients

ABij =

Z
d�

d�B

gi(✓
CS
W� ,�CS

W�) gj(✓
CS
W+ ,�CS

W+) dcos ✓CSW�d�CS
W�dcos ✓CSW+d�CS

W+ . (2.14)
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in terms of two CS angles and the second one (with Bi) is the same, but for the W+ decay.

The functions fi(✓,�) are given by

f0(✓,�) =
�
1� 3 cos2 ✓

�
/2 ,

f3(✓,�) = sin ✓ cos� ,

f6(✓,�) = sin 2✓ sin� ,

f1(✓,�) = sin 2✓ cos� ,

f4(✓,�) = cos ✓ ,

f7(✓,�) = sin2 ✓ sin 2� ,

f2(✓,�) = (sin2 ✓ cos 2�)/2 ,

f5(✓,�) = sin ✓ sin� ,

f8(✓,�) = 1 + cos2 ✓ .
(2.10)

For i 2 {0, ..., 7} they have the property that their integral vanishes when integrating over

dcos ✓ d�. The coe�cients Ai and Bi are defined as moments of the di↵erential cross section

integrated over the respective CS angles:

Ai =

Z
d�

d�B

gi(✓
CS
W� ,�CS

W�) dcos ✓CSW�d�CS
W� ,

Bi =

Z
d�

d�B

gi(✓
CS
W+ ,�CS

W+) dcos ✓CSW+d�CS
W+ .

(2.11)

The functions gi(✓,�) are defined as

g0(✓,�) = 4� 10 cos2 ✓ ,

g3(✓,�) = 4 sin ✓ cos� ,

g6(✓,�) = sin 2✓ sin� ,

g1(✓,�) = sin 2✓ cos� ,

g4(✓,�) = 4 cos ✓ ,

g7(✓,�) = 5 sin2 ✓ sin 2� ,

g2(✓,�) = 10 sin2 ✓ cos 2� ,

g5(✓,�) = 4 sin ✓ sin�5 ,

g8(✓,�) = 1 .

(2.12)

Note that A8 and B8 are actually no moments, but correspond to the di↵erential cross

section itself integrated over the respective CS angles.

With the notation that we have introduced to write Eq. (2.9) in such a compact form,

it is straightforward to deduce the combined formula including both decays by inserting

the expression of Eq. (2.9) for the W� decay into the Bi coe�cient of the W+ decay in

Eq. (2.11), or vice versa. Hence, our generalization to the decay of both vector bosons for

the expansion of the cross section in all four CS angles can be cast into the following form:

d�

d�B

=
9

256⇡2

8X

i=0

8X

j=0

ABij fi(✓
CS
W� ,�CS

W�) fj(✓
CS
W+ ,�CS

W+) , (2.13)

with coe�cients

ABij =

Z
d�

d�B

gi(✓
CS
W� ,�CS

W�) gj(✓
CS
W+ ,�CS

W+) dcos ✓CSW�d�CS
W�dcos ✓CSW+d�CS

W+ . (2.14)
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Giulia Zanderighi, WW@NNLOPS

Born phase space  

13

1.First, note that the NNLO/NLO K-factors are (as expected) completely 
flat in mW+ and mW-, hence drop these variables from the reweighing   
(validity of this approximation to be validated a posteriori)  

Final complexity: 81 triple-differential distributions at NNLO and WWJ-MiNLO. 
Numerically intensive but doable  

2.Parametrise both W-boson decays using Collins-Soper angles (9-
coefficients per decay rather than two continues variables) 

Issue in NNLOPS 
event production 
of experiments
already for DY
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(a) (b) (c)

Figure 2. Comparison at LHE level of our NNLOPS results (solid, blue) with the nominal NNLO
predictions (red, dashed) for the three distributions used in the reweighting, with the binning of
Eq. (2.8): (a) pT,W� , (b) yWW and (c) �yW+W� ; MiNLO results at the LHE level (black, dotted)
are shown for reference; see text for details.

results.

We next consider the CS angles of the W+ decay. The corresponding results for the

W� decay are practically identical which is why we refrain from discussing them separately.

Fig. 3 shows that the distributions in ✓CS
W+ and �CS

W+ are in perfect agreement between

NNLOPS and NNLO, which demonstrates the validity of our procedure to describe the W

decays via CS angles. In fact, we have checked explicitly at NNLO level that Eq. (2.13)

reproduces the correct cross section when being di↵erential in any two of the four CS angles

at the same time.

Let us add at this point that we have also tried to only use the three-dimensional

reweighting in d�
W

+
⇤ W

�
⇤

without using the CS angles by replacing

d�

d�B

⌘
d�

d�
W

+
⇤ W

�
⇤

=
d3�

dpT,W�dyWWd�yW+W�
(2.16)

in Eq. (2.2). As expected, this reduces some statistical fluctuations. In fact, we found

that excluding the CS angles the NNLO distributions are still very well reproduced by the

NNLOPS sample. Of all one-dimensional distributions we considered, only ✓CS
W+ and ✓CS

W�

show a mildly di↵erent shape (at the few-percent level) in this case. We therefore provide

the reweighting without CS angles as an option in our code, while keeping the application

of the full expression in Eq. (2.13) the default in the code and throughout this paper. One

must bear in mind that as soon as double di↵erential distributions in angular observables

of the leptons are considered the validity of the application of the reweighting without CS

angles may be limited.

The only observables in our definition of the Born phase space, see Eq. (2.7), which

remain to be validated are the invariant masses of the two W bosons. We first recall

that for reasons of complexity we excluded them from the Born-level variables in the

– 13 –
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(a) (b)

Figure 3. Same as Fig. 2, but for the CS angles of the W+ decay: (a) ✓CSW+ and (b) �CS
W+ .

(a) (b)

Figure 4. Same as Fig. 2, but for the invariant mass of the W+ boson mW+ in two di↵erent
regions: (a) around the W -mass peak, mW+ 2 [50, 100]GeV, and (b) including o↵-shell regions,
mW+ 2 [0, 1000]GeV.
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Figure 3. Same as Fig. 2, but for the CS angles of the W+ decay: (a) ✓CSW+ and (b) �CS
W+ .
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Figure 4. Same as Fig. 2, but for the invariant mass of the W+ boson mW+ in two di↵erent
regions: (a) around the W -mass peak, mW+ 2 [50, 100]GeV, and (b) including o↵-shell regions,
mW+ 2 [0, 1000]GeV.
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(d) (e) (f)

Figure 5. Same as Fig. 2, but for observables which have not been used in Eq. (2.7) to define a
basis of the Born-level phase space: (a) invariant mass of the W+W� pair mWW , (b) transverse
momentum pT,W+ and (c) rapidity yW+ of W+, (d) transverse mass of the W+W� pair mT,WW

defined Eq. (2.17), (e) missing transverse momentum pmiss
T and (f) lepton separation ��``.

reweighting procedure by assuming them to feature flat higher-order corrections. Indeed,

Fig. 4 (a) confirms this to be an appropriate assumption in the peak-region of the spectrum,

where the bulk of events is situated and the agreement of the NNLO with the NNLOPS

distributions is close to perfect. Even in the phase-space areas where the two W bosons

become far o↵-shell the NNLOPS result deviates by less than 5% from the NNLO curve,

see Fig. 4 (b). This discrepancy is at the level of the statistical uncertainty in these regions.

We note that we only show the mW+ distribution in that figure, because the mW� results

are practically identical.

We conclude this section by studying distributions which have not been used in the

parametrization of our phase-space definition in Eq. (2.7). This is important in order to

convince oneself that, beyond the observables used for the reweighting, our procedure repro-

duces correctly the NNLO cross section for other distributions. Fig. 5 shows corresponding

plots for the invariant mass of the W+W� pair, the transverse momentum and the rapidity
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Figure 5. Same as Fig. 2, but for observables which have not been used in Eq. (2.7) to define a
basis of the Born-level phase space: (a) invariant mass of the W+W� pair mWW , (b) transverse
momentum pT,W+ and (c) rapidity yW+ of W+, (d) transverse mass of the W+W� pair mT,WW

defined Eq. (2.17), (e) missing transverse momentum pmiss
T and (f) lepton separation ��``.

reweighting procedure by assuming them to feature flat higher-order corrections. Indeed,

Fig. 4 (a) confirms this to be an appropriate assumption in the peak-region of the spectrum,

where the bulk of events is situated and the agreement of the NNLO with the NNLOPS

distributions is close to perfect. Even in the phase-space areas where the two W bosons

become far o↵-shell the NNLOPS result deviates by less than 5% from the NNLO curve,

see Fig. 4 (b). This discrepancy is at the level of the statistical uncertainty in these regions.

We note that we only show the mW+ distribution in that figure, because the mW� results

are practically identical.

We conclude this section by studying distributions which have not been used in the

parametrization of our phase-space definition in Eq. (2.7). This is important in order to

convince oneself that, beyond the observables used for the reweighting, our procedure repro-

duces correctly the NNLO cross section for other distributions. Fig. 5 shows corresponding

plots for the invariant mass of the W+W� pair, the transverse momentum and the rapidity
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a

– 6 –

where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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MiNLO:



Marius Wiesemann    (MPI Munich) February 27th, 2020Diboson production at the LHC: Precision phenomenology 78

New approach:  MiNNLOPS
[Monni, Nason, Re, MW, Zanderighi '19]

NLO (F+jet):

MiNLO:

analytic all-order formula:

• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)

– 4 –

certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,

– 7 –

certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets

– 5 –



Marius Wiesemann    (MPI Munich) February 27th, 2020Diboson production at the LHC: Precision phenomenology 79

New approach:  MiNNLOPS
[Monni, Nason, Re, MW, Zanderighi '19]

NLO (F+jet):

MiNLO:

analytic all-order formula:

• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads
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and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
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We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as
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where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely
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=
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. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads
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We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3
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(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term
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✓
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✓
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
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads
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, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
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dpT
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dpT

, (2.5)

and
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=
2
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Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)
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
d�

sing

d�BdpT
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�

✓
↵s(pT)
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sing
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where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)
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◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.14)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
of eq. 2.9 contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (2.9) between the infrared scale ⇤ and Q is given by [1]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.15)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (2.9). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (2.9) we obtain the MiNLO0 formula [1], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.16)

Notice that eq. (2.11) corresponds precisely to eq. (??) for an observable

O(�) = �(�B(�)� �F ) �(pt(�)� pt). (2.17)

It is now natural to extend its precision up to NNLO (i.e. O(↵2
s(Q)) accuracy in the total

cross section). One observes that this requires the inclusion of all terms up to O(↵3
s(pT))

in the curly brackets of eq. (2.9)
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[D(pT)]
(3)
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�
, (2.18)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (2.5).

The regular terms not explicitly reported in eq. (2.12) arise from the O(↵3
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of the term Rf (pT)/ exp[�S(pT)] in eq. (2.9), which vanish in the limit pT ! 0. The
absence of a 1/pT singularity, ensures that such terms give a N3LO contribution to the total
cross section, and therefore they can be ignored. We explicitly verified that their inclusion
yields a negligible numerical effect. Eq. (2.12) constitutes our master formula to build the
MiNNLOPS generator. This simply amounts to add to the MiNLO0 formula the new term
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2

pT
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(2)
+
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✓
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+
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NLO (F+jet):

MiNLO:

analytic all-order formula:

80

• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln
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q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as
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We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as
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where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.14)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
of eq. 2.9 contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (2.9) between the infrared scale ⇤ and Q is given by [1]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.15)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (2.9). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (2.9) we obtain the MiNLO0 formula [1], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.16)

Notice that eq. (2.11) corresponds precisely to eq. (??) for an observable

O(�) = �(�B(�)� �F ) �(pt(�)� pt). (2.17)

It is now natural to extend its precision up to NNLO (i.e. O(↵2
s(Q)) accuracy in the total

cross section). One observes that this requires the inclusion of all terms up to O(↵3
s(pT))

in the curly brackets of eq. (2.9)

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.18)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (2.5).

The regular terms not explicitly reported in eq. (2.12) arise from the O(↵3
s(pT)) expansion

of the term Rf (pT)/ exp[�S(pT)] in eq. (2.9), which vanish in the limit pT ! 0. The
absence of a 1/pT singularity, ensures that such terms give a N3LO contribution to the total
cross section, and therefore they can be ignored. We explicitly verified that their inclusion
yields a negligible numerical effect. Eq. (2.12) constitutes our master formula to build the
MiNNLOPS generator. This simply amounts to add to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.19)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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NLO (F+jet):

MiNLO:

analytic all-order formula:

80

• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)
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dpT
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
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dpT
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+


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pT

✓
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ln
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p2T
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◆
[L(pT)]

(2)
+

2

pT

✓
A(2)
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p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
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This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads
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. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows
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2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
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+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)
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dpT
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
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
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(2.21)
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✓
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+
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✓
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
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.14)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
of eq. 2.9 contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (2.9) between the infrared scale ⇤ and Q is given by [1]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.15)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (2.9). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (2.9) we obtain the MiNLO0 formula [1], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.16)

Notice that eq. (2.11) corresponds precisely to eq. (??) for an observable

O(�) = �(�B(�)� �F ) �(pt(�)� pt). (2.17)

It is now natural to extend its precision up to NNLO (i.e. O(↵2
s(Q)) accuracy in the total

cross section). One observes that this requires the inclusion of all terms up to O(↵3
s(pT))

in the curly brackets of eq. (2.9)

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.18)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (2.5).

The regular terms not explicitly reported in eq. (2.12) arise from the O(↵3
s(pT)) expansion

of the term Rf (pT)/ exp[�S(pT)] in eq. (2.9), which vanish in the limit pT ! 0. The
absence of a 1/pT singularity, ensures that such terms give a N3LO contribution to the total
cross section, and therefore they can be ignored. We explicitly verified that their inclusion
yields a negligible numerical effect. Eq. (2.12) constitutes our master formula to build the
MiNNLOPS generator. This simply amounts to add to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.19)

=
2

pT

✓
A(1)
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Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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NLO (F+jet):

MiNLO:

analytic all-order formula:

80

• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)

– 4 –

where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]
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d�FdpT

�(1)✓
1 +
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[S(pT)]

(1)
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+
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↵s(pT)
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◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
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dpT
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dpT

, (2.12)
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◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as
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where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely
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. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain
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= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m
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This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads
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We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.14)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
of eq. 2.9 contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (2.9) between the infrared scale ⇤ and Q is given by [1]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.15)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (2.9). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (2.9) we obtain the MiNLO0 formula [1], that reads
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2⇡
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�(2)�
. (2.16)

Notice that eq. (2.11) corresponds precisely to eq. (??) for an observable

O(�) = �(�B(�)� �F ) �(pt(�)� pt). (2.17)

It is now natural to extend its precision up to NNLO (i.e. O(↵2
s(Q)) accuracy in the total

cross section). One observes that this requires the inclusion of all terms up to O(↵3
s(pT))

in the curly brackets of eq. (2.9)
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[D(pT)]
(3)

+ regular terms

�
, (2.18)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (2.5).

The regular terms not explicitly reported in eq. (2.12) arise from the O(↵3
s(pT)) expansion

of the term Rf (pT)/ exp[�S(pT)] in eq. (2.9), which vanish in the limit pT ! 0. The
absence of a 1/pT singularity, ensures that such terms give a N3LO contribution to the total
cross section, and therefore they can be ignored. We explicitly verified that their inclusion
yields a negligible numerical effect. Eq. (2.12) constitutes our master formula to build the
MiNNLOPS generator. This simply amounts to add to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


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dpT

�(1)
[L(pT)]

(2)
�


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(2.19)
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✓
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✓
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,
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fully differentially by closely following the POWHEG procedure as previously discussed.
We obtain

d�sing

d�FdpT

= e�S̃(pT)

"
S̃0
(pT) 1 +

↵s(pT)

⇡
P̂ + 2�(↵s(pT))

d ln C̃

d↵s

#
⌦ L̃

(C)
(pT) +O(↵3

s(Q))

=

d

h
e�S̃(pT)L̃(C)

(pT)

i

dpT

+O(↵3
s) , (4.30)

where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃

(C) with the full luminosity
factor as

L̃
(C)

(kT,1) ! L(kT,1) =
X

c,c0

d|MF
|
2
cc0

d�F

X

i,j

⇢⇣
C̃ [a]
ci ⌦ f [a]

i

⌘
H̃(kT,1)

⇣
C̃ [b]
c0j ⌦ f [b]

j

⌘

+

⇣
G[a]

ci ⌦ f [a]
i

⌘
H̃(kT,1)

⇣
G[b]

c0j ⌦ f [b]
j

⌘�
. (4.31)

Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to

d�

d�FdpT

=

d

h
e�S̃(pT)L(pT)

i

dpT

+Rf (pT) +O(↵3
s) , (4.32)

where we used eq. (2.14), namely

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
. (4.33)

The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain

d�

d�FJ

=exp[�S̃(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FJ

�(1)✓
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↵s(pT)
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✓
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2⇡

◆3

[D(pT)]
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(�FJ)

�

⇥

⇢
�pwg(⇤) +

Z
d�rad�pwg(pT,rad)

R(�FJ,�rad)

B(�FJ)

�
+O(↵3

s) , (4.34)
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where in the second line we recast the result in a more compact form. We can at last restore
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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where we used eq. (2.14), namely
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. (4.33)

The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃

(C) with the full luminosity
factor as
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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where we used eq. (2.14), namely
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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MiNNLOPS master formula
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where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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where in the second line we recast the result in a more compact form. We can at last restore
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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terms up to O(↵3
s(pT)) in the curly brackets of eq. (2.16), and we obtain
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where [D(pT)]
(3) is the third-order term in the expansion of the D(pT) function (2.12).

The regular terms that we omitted in eq. (2.20) arise from the O(↵3
s(pT)) expansion of the

term Rf (pT)/ exp[�S̃(pT)] in eq. (2.16), which vanish in the limit pT ! 0. The absence
of a 1/pT singularity ensures that such terms give a N3LO contribution to the total cross
section, and therefore can be ignored. We explicitly verified that their inclusion yields a
subleading numerical effect. Equation (2.20) constitutes the reference formula to build the
MiNNLOPS generator. This simply amounts to adding to the MiNLO0 formula the new
term
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where all coefficients are defined in appendices B and C.

3 Implementation of the [D(pT)](3) term in the MiNLO
0
framework

The MiNLO0 method based on eq. (2.18) has been implemented within the POWHEG-
BOX framework [25] and it has been thoroughly tested. In order to achieve NNLO accuracy,
we therefore include the new terms discussed in the previous section as a correction to the
existing implementation.

We recall that all terms in the MiNLO0 formula (2.18) are directly related to the phase
space of the production of the colour singlet F together with either one (�FJ) or two jets
(�FJJ). Conversely, in the MiNNLOPS master formula (2.20), the new term [D(pT)]

(3)

arises from a resummed calculation in the pT ! 0 limit where the information about the
rapidity of the radiation has been integrated out inclusively. As such it depends on the
phase space �F of the colour singlet with no additional radiation, and carries an explicit
dependence on the pT of the system. This dependence, however, does not correspond
to a well-defined phase-space point for the full event kinematics (neither �FJ nor �FJJ),
since the presence of a pT requires at least one parton recoiling against F, but we have no
information on the kinematics of such a parton. This has no consequence on the accuracy of
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NNLO

NNLO+PS

MiNLO

MiNNLOPS results
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Figure 2. Distribution in the transverse momentum (left) and rapidity (right) of the Higgs boson
for MiNNLOPS (blue, solid), MiNLO0 (black, dotted), and NNLO (red, dashed).

induces a larger scale dependence. On the other hand, we include additional scale-dependent
terms (as pointed out before) that originate from the analytic Sudakov form factor in the
MiNNLOPS procedure, which are absent in a fixed-order calculation, see appendix D.
This induces a more conservative estimate for the theory uncertainties of the MiNNLOPS

predictions.
In the case of the DY results in table 1, we observe that conclusions similar to the case

of Higgs production can be drawn, albeit with significantly smaller corrections: The effect
of the MiNNLOPS procedure is to increase the MiNLO0 cross section by about 5%. Again
the scale uncertainties are vastly reduced, in the case of DY by almost a factor of 10. The
MiNNLOPS result is only 1.7% below the NNLO prediction and they are in good agreement
within their respective scale uncertainties, which are extremely small. Roughly speaking,
scale uncertainties are 2% for MiNNLOPS, which is a bit larger than the 1% uncertainties at
NNLO. Given the above discussion about the formal differences between MiNNLOPS and
NNLO fixed-order computations, these results are very compelling and provide a numerical
proof of the accuracy of the total inclusive cross section of the MiNNLOPS procedure. We
will now turn to validating the MiNNLOPS results also for differential observables.

5.3 Distributions for Higgs-boson production

We first consider the case of Higgs-boson production. The figures of this section are or-
ganized as follows: the main frame shows the results from MiNNLOPS (blue,solid) and
MiNLO0 (black, dotted) after parton showering, as well as NNLO predictions (red, dashed),
and all results are reported in units of cross section per bin (namely, the sum of the values of
the bins is equal to the total cross section, possibly within cuts). In an inset we display the
bin-by-bin ratio of all the histograms which appear in the main frame to the MiNNLOPS

– 23 –
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[Monni, Nason, Re, MW, Zanderighi '19]
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NO reweighting (NNLO corrections directly evaluated during event generation)

analytic Sudakov suppresses low-pT region (integrable down to arbitrary low pT)

 ➙ efficient event generation (only ~50% slower than MiNLO)

NO merging scale (lower cut-off to switch from F+1-jet to F+0-jet NNLO)

leading logarithmic accuracy of shower preserved (pT ordered)

MiNNLOPS features
[Monni, Nason, Re, MW, Zanderighi '19]

well suited for any color-singlet process, e.g. VV production
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Diboson theory predictions under excellent control:
NNLO QCD done!  ➙  publicly available within MATRIX 

NLO QCD corrections for loop-induced gg contribution

Intriguing results for combination with NLO EW

MATRIX+RadISH: powerful resummation framework

MiNNLOPS: New NNLO+PS approach (no reweighting)

Ongoing and future work:
public MATRIX v2:  NNLO QCD x NLO EW + gg NLO QCD

gg NLO QCD for Higgs interference in ZZ and WW

MiNNLOPS for diboson processes

Conclusions
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dileptons with certain cuts (and photon final states) are special
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[Grazzini,  Kallweit,  MW '17]
rcut→0 extrapolation in MATRIX
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Figure 2: Dependence of the NNLO cross sections on rcut for various processes. The NNLO
results at fixed values of rcut are normalized to the rcut ! 0 extrapolation obtained by using
rcut � 0.15%. The blue band represents the combined numerical and extrapolation uncertainty.
For processes with a large rcut dependence, the extrapolated result and uncertainty obtained by
using rcut � 0.05% is shown in red. Where available, rcut-independent reference results are black.
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Figure 2: Dependence of the NNLO cross sections on the qT -subtraction cut, rcut, for various
processes. The normalization is the result extrapolated to rcut = 0 by taking into account the
rcut dependence above rcut � 0.15 (default value). The blue bands is the combined numerical
and extrapolation uncertainty estimated by Matrix in every run.
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Combination: NNLO QCD and NLO EW
[Grazzini, Kallweit, Lindert, Pozzorini, MW 'to appear]

let's look in detail on one interesting aspect:  photon-induced + giant K-factor

Combination of NNLO QCD and NLO EW predictions in Matrix Di↵erential distributions for VV production
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Giant K -factors at NLO QCD, increasing with pT,Vlead (up to ⇠ 20 in WZ)
,! high-pT,Vlead region dominated by V+jet topologies (plus soft W/Z emission).

Large K -factors at NLO EW (WW/WZ), (over-)compensating Sudakov corrections
,! �-induced V+jet topologies should not be combined multiplicatively!
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General remarks on EW corrections for VV production Contributions from initial-state photons

Contributions from initial-state photons/

ZZ

ra
ti
o

LHC
p
s = 13TeVpp ! e�e+⌫µ⌫̄µ

pT,Zlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

ggNLO/NNLO QCD
ggLO/NNLO QCD

pT,Zlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7 aNLO EW/NLO EW
aLO/LO

pT,Zlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

pT,Zlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

WW

ra
ti
o

LHC
p
s = 13TeVpp ! e�µ+⌫µ⌫̄e

pT,Wlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

pT,Wlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

pT,Wlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7 ggNLO/NNLO QCD
ggLO/NNLO QCD
aNLO EW/NLO EW
aLO/LO

pT,Wlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

WZ

ra
ti
o

LHC
p
s = 13TeVpp ! e�e+µ⌫

pT,Vlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

pT,Vlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

pT,Vlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7 ggNLO/NNLO QCD
ggLO/NNLO QCD
aNLO EW/NLO EW
aLO/LO

pT,Vlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

Born subprocesses �� ! VV at same perturbative order as LO qq̄ ! VV:

�

�

`+

⌫`0

`�

⌫̄`0

Z
`

`

�

�

`+

⌫l

`0�

⌫̄`0

W+
W

W�

—

,! suppressed (ZZ – no double-resonant diagrams) or moderate (WW) in size.

NLO EW corrections, connecting qq̄ and �� induced subprocesses by IR structure:

q

�

⌫`0

⌫̄`0

`�

`+

q

Z
q

q
Z/�

q

�

q

`0�

⌫̄`0

`+

⌫`W+

Z/�

W
W�

d

�

u

`+

`�

`0�

⌫̄`0

Z/�

W�

W

u

,! can become sizable in tails of some high-energy observables (“giant K -factors”).
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➞ don't include γ in 
    multiplicative combination!

high pT dominated by V+jet
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ZZ

ra
ti
o

LHC
p
s = 13TeVpp ! e�e+⌫µ⌫̄µ

pT,Zlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

ggNLO/NNLO QCD
ggLO/NNLO QCD

pT,Zlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7 aNLO EW/NLO EW
aLO/LO

pT,Zlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

pT,Zlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

WW

ra
ti
o

LHC
p
s = 13TeVpp ! e�µ+⌫µ⌫̄e

pT,Wlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

pT,Wlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

pT,Wlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7 ggNLO/NNLO QCD
ggLO/NNLO QCD
aNLO EW/NLO EW
aLO/LO

pT,Wlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

WZ

ra
ti
o

LHC
p
s = 13TeVpp ! e�e+µ⌫

pT,Vlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

pT,Vlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

pT,Vlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7 ggNLO/NNLO QCD
ggLO/NNLO QCD
aNLO EW/NLO EW
aLO/LO

pT,Vlead [GeV]
20001000500200100

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

Born subprocesses �� ! VV at same perturbative order as LO qq̄ ! VV:

�

�

`+

⌫`0

`�

⌫̄`0

Z
`

`

�

�

`+

⌫l

`0�

⌫̄`0

W+
W

W�

—

,! suppressed (ZZ – no double-resonant diagrams) or moderate (WW) in size.

NLO EW corrections, connecting qq̄ and �� induced subprocesses by IR structure:

q

�

⌫`0

⌫̄`0

`�

`+

q

Z
q

q
Z/�

q

�

q

`0�

⌫̄`0

`+

⌫`W+

Z/�

W
W�

d

�

u

`+

`�

`0�

⌫̄`0

Z/�

W�

W

u

,! can become sizable in tails of some high-energy observables (“giant K -factors”).
Stefan Kallweit (UNIMIB) Combination of NNLO QCD and NLO EW in VV March 28, 2019, Moriond LIV, La Thuile 8 / 17

General remarks on EW corrections for VV production Contributions from initial-state photons

Contributions from initial-state photons/
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Combination: NNLO QCD and NLO EW
[Grazzini, Kallweit, Lindert, Pozzorini, MW 'to appear]

let's look in detail on one interesting aspect:  photon-induced + giant K-factor

Combination of NNLO QCD and NLO EW predictions in Matrix Di↵erential distributions for VV production

Distribution in transverse momentum of leading V (inclusive setup)/
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Giant K -factors at NLO QCD, increasing with pT,Vlead (up to ⇠ 20 in WZ)
,! high-pT,Vlead region dominated by V+jet topologies (plus soft W/Z emission).

Large K -factors at NLO EW (WW/WZ), (over-)compensating Sudakov corrections
,! �-induced V+jet topologies should not be combined multiplicatively!
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Combination of NNLO QCD and NLO EW predictions in Matrix Di↵erential distributions for VV production

Distribution in transverse momentum of leading V (jet-vetoed setup)/

pT,Zlead [GeV]

d
�
/d

�
N
N
L
O

Q
C
D

�
1[
%
]

20001000500200100

0

�20

�40

�60

�80

�100
NNLO QCD⇥EW (�-ind. added)
NNLO QCD⇥EW
NNLO QCD+EW
NNLO QCD

pT,Zlead [GeV]

d
�
/d

�
N
N
L
O

Q
C
D

�
1[
%
]

20001000500200100

0

�20

�40

�60

�80

�100

K
�
fa
ct
or

�
1
[%

]

+150

+100

+50

0

�50

�100
NNLO QCD/NLO QCD
NLO QCD/LO
NLO EW/LO

K
�
fa
ct
or

�
1
[%

]

+150

+100

+50

0

�50

�100

p
ro
d
u
ce
d
by

M
a
t
r
ix

+
O
p
e
n
L
o
o
p
s2

d
�
/d

p T
,Z

le
a
d
[f
b
/G

eV
]

LHC
p
s = 13TeVpp ! e�e+⌫µ⌫̄µ

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8 NNLO QCD⇥EW
NNLO QCD+EW
NNLO QCD
NLO QCD
NLO EW
LO

p
ro
d
u
ce
d
by

M
a
t
r
ix

+
O
p
e
n
L
o
o
p
s2

d
�
/d

p T
,Z

le
a
d
[f
b
/G

eV
]

LHC
p
s = 13TeVpp ! e�e+⌫µ⌫̄µ

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

pT,Wlead [GeV]

d
�
/d

�
N
N
L
O

Q
C
D

�
1[
%
]

20001000500200100

0

�20

�40

�60

�80

�100
NNLO QCD⇥EW (�-ind. added)
NNLO QCD⇥EW
NNLO QCD+EW
NNLO QCD

pT,Wlead [GeV]

d
�
/d

�
N
N
L
O

Q
C
D

�
1[
%
]

20001000500200100

0

�20

�40

�60

�80

�100

K
�
fa
ct
or

�
1
[%

]

+150

+100

+50

0

�50

�100
NNLO QCD/NLO QCD
NLO QCD/LO
NLO EW/LO

K
�
fa
ct
or

�
1
[%

]

+150

+100

+50

0

�50

�100

p
ro
d
u
ce
d
by

M
a
t
r
ix

+
O
p
e
n
L
o
o
p
s2

d
�
/d

p T
,W

le
a
d
[f
b
/G

eV
]

LHC
p
s = 13TeVpp ! e�µ+⌫µ⌫̄e

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8 NNLO QCD⇥EW
NNLO QCD+EW
NNLO QCD
NLO QCD
NLO EW
LO

p
ro
d
u
ce
d
by

M
a
t
r
ix

+
O
p
e
n
L
o
o
p
s2

d
�
/d

p T
,W

le
a
d
[f
b
/G

eV
]

LHC
p
s = 13TeVpp ! e�µ+⌫µ⌫̄e

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

pT,Vlead [GeV]

d
�
/d

�
N
N
L
O

Q
C
D

�
1[
%
]

20001000500200100

0

�20

�40

�60

�80

�100
NNLO QCD⇥EW (�-ind. added)
NNLO QCD⇥EW
NNLO QCD+EW
NNLO QCD

pT,Vlead [GeV]

d
�
/d

�
N
N
L
O

Q
C
D

�
1[
%
]

20001000500200100

0

�20

�40

�60

�80

�100

K
�
fa
ct
or

�
1
[%

]

+150

+100

+50

0

�50

�100
NNLO QCD/NLO QCD
NLO QCD/LO
NLO EW/LO

K
�
fa
ct
or

�
1
[%

]

+150

+100

+50

0

�50

�100

p
ro
d
u
ce
d
by

M
a
t
r
ix

+
O
p
e
n
L
o
o
p
s2

d
�
/d

p T
,V

le
a
d
[f
b
/G

eV
]

LHC
p
s = 13TeVpp ! e�e+µ⌫

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8 NNLO QCD⇥EW
NNLO QCD+EW
NNLO QCD
NLO QCD
NLO EW
LO

p
ro
d
u
ce
d
by

M
a
t
r
ix

+
O
p
e
n
L
o
o
p
s2

d
�
/d

p T
,V

le
a
d
[f
b
/G

eV
]

LHC
p
s = 13TeVpp ! e�e+µ⌫

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

[G
ra
zz
in
i,
S
K
,
L
in
d
er
t,

P
oz
zo
ri
n
i,
W

ie
se
m
an

n
,
(i
n
pr
ep

ar
at
io
n
)]

P
re
lim

in
ar
y!

NLO QCD K -factors strongly reduced (by a factor of ⇠ 10)
,! di↵erence between additive and multiplicative combination strongly reduced.

Typical Sudakov suppression in high-pT,Vlead region restored by jet veto
,! treatment of �-induced channels only mildly a↵ects multiplicative combination.
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Born subprocesses �� ! VV at same perturbative order as LO qq̄ ! VV:
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➞ don't include γ in 
    multiplicative combination!

jet-veto (HT,jet< 0.2 HT,lep)

Sudakov suppression restored 

high pT dominated by V+jet
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Giulia Zanderighi, WW@NNLOPS

Setup

14

The remaining three variables and their binning chosen to be

Cuts inspired by ATLAS 13 TeV study (1702.04519): NNLO uses the central scale

All uncertainty bands are the envelop 
of 7-scales. In the NNLOPS scales in 
MiNLO and NNLO are varied in a 
correlated way 

gg-channel not included in our study, as 
it can it is know at one-loop and can be 
added incoherently 

Setup:
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Validation:

1. Total inclusive NNLO cross section reproduced by NNLOPS sample 

2. NNLO distributions for observables used for reweighting reproduced

3. NNLO distributions for CS angles reproduced

4. NNLO distributions for invariant masses of  W's reproduced

5. NNLO distributions for other Born-level observables reproduced 
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2. NNLO distributions for observables used for reweighting reproduced
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(a) (b) (c)

Figure 2. Comparison at LHE level of our NNLOPS results (solid, blue) with the nominal NNLO
predictions (red, dashed) for the three distributions used in the reweighting, with the binning of
Eq. (2.8): (a) pT,W� , (b) yWW and (c) �yW+W� ; MiNLO results at the LHE level (black, dotted)
are shown for reference; see text for details.

results.

We next consider the CS angles of the W+ decay. The corresponding results for the

W� decay are practically identical which is why we refrain from discussing them separately.

Fig. 3 shows that the distributions in ✓CS
W+ and �CS

W+ are in perfect agreement between

NNLOPS and NNLO, which demonstrates the validity of our procedure to describe the W

decays via CS angles. In fact, we have checked explicitly at NNLO level that Eq. (2.13)

reproduces the correct cross section when being di↵erential in any two of the four CS angles

at the same time.

Let us add at this point that we have also tried to only use the three-dimensional

reweighting in d�
W

+
⇤ W

�
⇤

without using the CS angles by replacing

d�

d�B

⌘
d�

d�
W

+
⇤ W

�
⇤

=
d3�

dpT,W�dyWWd�yW+W�
(2.16)

in Eq. (2.2). As expected, this reduces some statistical fluctuations. In fact, we found

that excluding the CS angles the NNLO distributions are still very well reproduced by the

NNLOPS sample. Of all one-dimensional distributions we considered, only ✓CS
W+ and ✓CS

W�

show a mildly di↵erent shape (at the few-percent level) in this case. We therefore provide

the reweighting without CS angles as an option in our code, while keeping the application

of the full expression in Eq. (2.13) the default in the code and throughout this paper. One

must bear in mind that as soon as double di↵erential distributions in angular observables

of the leptons are considered the validity of the application of the reweighting without CS

angles may be limited.

The only observables in our definition of the Born phase space, see Eq. (2.7), which

remain to be validated are the invariant masses of the two W bosons. We first recall

that for reasons of complexity we excluded them from the Born-level variables in the
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3. NNLO distributions for CS angles reproduced
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(a) (b)

Figure 3. Same as Fig. 2, but for the CS angles of the W+ decay: (a) ✓CSW+ and (b) �CS
W+ .

(a) (b)

Figure 4. Same as Fig. 2, but for the invariant mass of the W+ boson mW+ in two di↵erent
regions: (a) around the W -mass peak, mW+ 2 [50, 100]GeV, and (b) including o↵-shell regions,
mW+ 2 [0, 1000]GeV.
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[Re, MW, Zanderighi '18]

4. NNLO distributions for invariant masses of  W's reproduced

(a) (b)

Figure 3. Same as Fig. 2, but for the CS angles of the W+ decay: (a) ✓CSW+ and (b) �CS
W+ .
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(a) (b)

Figure 4. Same as Fig. 2, but for the invariant mass of the W+ boson mW+ in two di↵erent
regions: (a) around the W -mass peak, mW+ 2 [50, 100]GeV, and (b) including o↵-shell regions,
mW+ 2 [0, 1000]GeV.
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Validation at LHE level:
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(a) (b) (c)

(d) (e) (f)

Figure 5. Same as Fig. 2, but for observables which have not been used in Eq. (2.7) to define a
basis of the Born-level phase space: (a) invariant mass of the W+W� pair mWW , (b) transverse
momentum pT,W+ and (c) rapidity yW+ of W+, (d) transverse mass of the W+W� pair mT,WW

defined Eq. (2.17), (e) missing transverse momentum pmiss
T and (f) lepton separation ��``.

reweighting procedure by assuming them to feature flat higher-order corrections. Indeed,

Fig. 4 (a) confirms this to be an appropriate assumption in the peak-region of the spectrum,

where the bulk of events is situated and the agreement of the NNLO with the NNLOPS

distributions is close to perfect. Even in the phase-space areas where the two W bosons

become far o↵-shell the NNLOPS result deviates by less than 5% from the NNLO curve,

see Fig. 4 (b). This discrepancy is at the level of the statistical uncertainty in these regions.

We note that we only show the mW+ distribution in that figure, because the mW� results

are practically identical.

We conclude this section by studying distributions which have not been used in the

parametrization of our phase-space definition in Eq. (2.7). This is important in order to

convince oneself that, beyond the observables used for the reweighting, our procedure repro-

duces correctly the NNLO cross section for other distributions. Fig. 5 shows corresponding

plots for the invariant mass of the W+W� pair, the transverse momentum and the rapidity
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(d) (e) (f)

Figure 5. Same as Fig. 2, but for observables which have not been used in Eq. (2.7) to define a
basis of the Born-level phase space: (a) invariant mass of the W+W� pair mWW , (b) transverse
momentum pT,W+ and (c) rapidity yW+ of W+, (d) transverse mass of the W+W� pair mT,WW

defined Eq. (2.17), (e) missing transverse momentum pmiss
T and (f) lepton separation ��``.

reweighting procedure by assuming them to feature flat higher-order corrections. Indeed,

Fig. 4 (a) confirms this to be an appropriate assumption in the peak-region of the spectrum,

where the bulk of events is situated and the agreement of the NNLO with the NNLOPS

distributions is close to perfect. Even in the phase-space areas where the two W bosons

become far o↵-shell the NNLOPS result deviates by less than 5% from the NNLO curve,

see Fig. 4 (b). This discrepancy is at the level of the statistical uncertainty in these regions.

We note that we only show the mW+ distribution in that figure, because the mW� results

are practically identical.

We conclude this section by studying distributions which have not been used in the

parametrization of our phase-space definition in Eq. (2.7). This is important in order to

convince oneself that, beyond the observables used for the reweighting, our procedure repro-

duces correctly the NNLO cross section for other distributions. Fig. 5 shows corresponding

plots for the invariant mass of the W+W� pair, the transverse momentum and the rapidity
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[Re, MW, Zanderighi '18]

Phenomenological results:
pT,WW (IR sensitive) compared to NNLO+NNLL

→ Resummation (analytic or shower) crucial at low pT; NNLOPS in decent agreement with NNLL
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PRELIMINARY
not completely fair comparison yet: 
- on-shell WW for analytic resummation
- slightly different setups
→ full comparison will be done
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(a) (b)

Figure 9. Same as Fig. 7, but for the distribution in the azimuthal angle between the dilepton
system and the two neutrinos; (a) fiducial-noJV and (b) fiducial-JV phase space.

��``,⌫⌫ separations as they require the W+W� system to recoil against hard jet radiation.

The shower reshu✏es events such that more of such configurations are generated and

increases the cross section at small ��``,⌫⌫ . Being dominated by corrections from the

shower, also this observable may serve as a way to tune parton showers and as a probe of

non-perturbative models in the parton shower Monte Carlo.

To conclude our analysis of di↵erential observables in the fiducial phase, we consider a

set of distributions in Fig. 10 which have been unfolded in the 8 TeV measurement done by

ATLAS in Ref. [6]. They involve the leading lepton pT , the transverse momentum, invariant

mass and rapidity of the dilepton system, the separation in the azimuthal angle of the two

leptons as well as an observable sensitive to new physics searches which is defined through

the separation in ⌘ of the two leptons:

|cos(✓?)| = |tanh (�⌘``/2)| . (3.5)

It is nice to see that, on the one hand, the inclusion of NNLO corrections on top of the

MiNLO generator is crucial not only for the correct normalization, but in many cases also

to capture relevant shape e↵ects. On the other hand, the impact of the parton shower on

top of the NNLO predictions is moderate in many phase space regions, but absolutely vital

in cases where the perturbative prediction fails due to soft radiation e↵ects, as we have

already seen in Figs. 7�9. Moreover, even in some of the distributions where the NNLO

prediction is not challenged by large logarithms, the shower induces shape e↵ects at the

5% level, see Fig. 10 (a) and (c) for example.
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Phenomenological results:
ΔΦℓℓ,νν (IR sensitive)

no jet veto applied with jet veto

→ NNLOPS corrects regions sensitive to soft-gluon effects
→ jet veto can turn observables sensitive soft-gluon emissions everywhere
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Phenomenological results:
Charge asymmetry

NNLOPS inclusive phase space fiducial phase space

AW

C
0.1263(1)+2.1%

�1.8%
0.0726(3)+2.0%

�2.6%

A`

C
�[0.0270(1)+5.0%

�6.4%
] �[0.0009(4)+72%

�87%
]

Table 3. NNLOPS predictions for the charge asymmetry for W -bosons and charged leptons in
W+W� production. The fiducial volume is defined in Tab. 1 (including the jet-veto requirement).

the positively and negatively charged W bosons as shown in Fig. 11 (a): W+ bosons are

generally more forward, while W� bosons are situated more at central rapidity. However,

since theW -boson momenta of theW+W� final state are not accessible in the measurement

due to the two neutrinos (not even under the assumption that they are on-shell), one may

wonder whether this asymmetry persists in the case of the leptons. Indeed, Fig. 11 (b)

shows a similar, but less pronounced behaviour for the leptons. In fact, the asymmetry is

reversed with respect to the charges in this case with the `+ being more central and the

`� more forward.

We can now use the previous observation to define a charge asymmetry in W+W�

production for the W bosons:

AW

C =
�(|yW+ | > |yW� |)� �(|yW+ | < |yW� |)

�(|yW+ | > |yW� |) + �(|yW+ | < |yW� |)
, (3.6)

as well as for the leptons:17

A`

C =
�(|y`+ | > |y`� |)� �(|y`+ | < |y`� |)

�(|y`+ | > |y`� |) + �(|y`+ | < |y`� |)
. (3.7)

This allows us to express the size of the asymmetry by a single number. It is zero if there

is no asymmetry, positive if the positively-charged particle is more forward, and negative

otherwise. Note that the denominator simply corresponds to the integrated cross section,

within the considered cuts.

Tab. 3 summarizes the NNLOPS predictions for AW

C
and A`

C
in the inclusive and in

the fiducial phase. The uncertainties are obtained by computing a 7-point variation in

the numerator and dividing by the central cross section in the denominator. This choice

is motivated by the fact that fully correlated uncertainties in the ratio lead to too small

uncertainties for AW

C
. The W -boson asymmetry in the inclusive phase space is pretty large

and positive, as one could expect from Fig. 11 (a). It is significantly reduced by the fiducial

cuts, but still clearly di↵erent from zero. Also the leptons yield a charge asymmetry at

inclusive level, which, however, is smaller than for W bosons and negative. Unfortunately,

once lepton cuts are applied in the fiducial volume A`

C
becomes almost compatible with

zero within both perturbative and numerical uncertainties. This again is due to the left-

handed nature of the W -boson interactions: in the case of the W+ decay, the neutrino

17Note that for the leptons, since they are massless, the rapidity entering the asymmetry and the pseudo-

rapidity used to define the fiducial cuts coincide (y` ⌘ ⌘`).
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• W momentum cannot be 
reconstructed → use leptons

• lepton asymmetry smaller; 
almost vanishes in fiducial

• can be recovered by widening 
rapidity range of leptons or by 
considering boosted regime

• sensitive to W polarizations      
→ powerful probe of new physics
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(a) (b)

Figure 11. Comparison of rapidity distributions of negatively (magenta, solid) and positively
(green, dotted) charged particles at NNLOPS for (a) the two W bosons and (b) the two leptons.

may wonder whether this asymmetry persists in the case of the leptons. Indeed, Fig. 11 (b)

shows a similar, but less pronounced behaviour for the leptons. In fact, the asymmetry is

reversed with respect to the charges in this case with the `+ being more central and the

`� more forward.

We can now use the previous observation to define a charge asymmetry in W+W�

production for the W bosons:

AW

C =
�(|yW+ | > |yW� |)� �(|yW+ | < |yW� |)

�(|yW+ | > |yW� |) + �(|yW+ | < |yW� |)
, (3.6)

as well as for the leptons:17
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�(|y`+ | > |y`� |)� �(|y`+ | < |y`� |)

�(|y`+ | > |y`� |) + �(|y`+ | < |y`� |)
. (3.7)

This allows us to express the size of the asymmetry by a single number. It is zero if there

is no asymmetry, positive if the positively-charged particle is more forward, and negative

otherwise. Note that the denominator simply corresponds to the integrated cross section,

within the considered cuts.

Tab. 3 summarizes the NNLOPS predictions for AW

C
and A`

C
in the inclusive and in

the fiducial phase. The uncertainties are obtained by computing a 7-point variation in

the numerator and dividing by the central cross section in the denominator. This choice

17Note that for the leptons, since they are massless, the rapidity entering the asymmetry and the pseudo-

rapidity used to define the fiducial cuts coincide (y` ⌘ ⌘`).
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1. merge       pp ➞ WW        and        pp ➞ WW+jet    (both at NLO+PS)

MiNLO+reweighting

Giulia Zanderighi, WW@NNLOPS

Reweighing: NNLOPS

11

Reweighing the weight of XJ-MiNLO events with 

Gives by construction NNLO accuracy for all inclusive observables and 
does not spoil the accuracy of XJ-MiNLO ⟹ X@NNLOPS  

X X+jet X+2jets X+nj (n>2)
XJ (NLO) — NLO LO —
XJ-MiNLO NLO NLO LO PS
X@NNLO NNLO NLO LO —

X@NNLOPS NNLO NLO LO PS

POWHEG (F+jet):

NLO+PS (F+jet): 

2 Description of the procedure

In this section we describe the procedure to perform a consistent matching of a NNLO
QCD calculation for the production of a heavy colour-singlet system to a fully exclusive
parton-shower simulation. We start by recalling the necessary elements of the MiNLO0

method in section 2.1 and 2.2, while in section 2.3 we derive the additional terms necessary
to achieve NNLO accuracy.

2.1 The MiNLO
0 method

We review now the basic elements of the MiNLO0 method, and how it achieves NLO
accuracy. We formulate it in a way that is as independent as possible from the details of
the implementation.

We consider the production of a generic colour-singlet system F of invariant mass Q and
transverse momentum pT in hadronic collisions. We start with the MiNLO0 formula [7, 23]
for an arbitrary infrared-safe observable O, embedded in the POWHEG method [23, 24]
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3If the colourless system is produced via strong interactions, as it is the case for Higgs-boson production,
the extra powers of ↵s are evaluated at a scale related to the mass of the heavy colourless system. For
the sake of simplicity, and to avoid confusion, for the time being we will focus upon cases in which the
production is of electroweak origin.
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as
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We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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Figure 3. Distribution in the rapidity of the leading-jet (left) and its rapidity difference with the
Higgs boson (right) for MiNNLOPS (blue, solid) and MiNLO0 (black, dotted).

curve. The bands correspond to the residual uncertainties that are computed from scale
variations as indicated in section 5.1.

The transverse-momentum distribution of the Higgs boson (pT,H) is shown in the left
panel of figure 2. At fixed order this distribution diverges in the pT,H ! 0 limit, and the
accuracy is effectively reduced to NLO across the spectrum. By comparing MiNNLOPS

and MiNLO0 curves, we observe that the NNLO corrections are included consistently in
the low-pT,H region through the MiNNLOPS procedure. The additional NNLO (two-loop)
contributions in the MiNNLOPS matching are spread in a way that is similar in spirit to
how analytic resummations are combined with fixed order. This is enforced through the use
of the modified logarithms in eq. (3.8). At large pT,H, where the MiNNLOPS and MiNLO0

predictions have both NLO accuracy, we expect the MiNNLOPS procedure not to alter the
MiNLO0 distribution, as can be seen from the figure. The harder tail of the NNLO curve
is due to the different (less appropriate) scale choice in the fixed-order calculation, set to
the Higgs-boson mass rather than to pT,H.

The rapidity distribution of the Higgs boson (yH) in the right panel of figure 2 is the
most relevant observable for which MiNNLOPS needs to be validated against the NNLO
result. Indeed, we find that up to statistical fluctuations the NNLO/MiNNLOPS ratio of
the distribution is completely flat, which shows their equivalence. Henceforth, the difference
of the two results is purely due to the normalisation, i.e. the total inclusive cross section,
which has been discussed in detail in section 5.2 and requires no further comments. In
particular, the conclusions about the uncertainty bands and the size of the corrections
drawn from table 1 hold also for the rapidity distribution shown in figure 2.

We conclude our discussion of the results for Higgs-boson production by looking at jet-
related distributions. We note that the transverse-momentum distribution of the leading
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Figure 5. Distribution in the transverse momentum (left) and rapidity (right) of the negatively
charged lepton for MiNNLOPS (blue, solid), MiNLO0 (black, dotted), and NNLO (red, dashed).

arising from the decay of the Z boson.
Figure 4 shows the transverse-momentum distribution of the Z boson (pT,Z) in the left

panel, and its rapidity distribution (yZ) in the right panel. As seen before, the corrections
are smaller in the case of the DY process, but the general behaviour is the same as for
Higgs-boson production: At large pT,Z the MiNNLOPS result is essentially identical to
the MiNLO0 one, while the additional NNLO terms enter at smaller values of pT,Z. The
NNLO spectrum diverges at small pT,Z, and is harder in the tail due to the different scale
setting. For the yZ distribution, the MiNNLOPS uncertainties are significantly reduced
with respect to the MiNLO0 ones. In the central region (|yZ| < 3) the NNLO/MiNNLOPS

ratio is nicely flat up to statistical fluctuations, and the two results agree within their
respective uncertainties. For very forward Z bosons (|yZ| > 3), on the other hand, we
observe a slight increase of the NNLO/MiNNLOPS ratio. We have checked explicitly that
without the Pythia8 parton shower, i.e. at the level of Les Houches events, this effect is
more moderate and the NNLO and MiNNLOPS uncertainty bands overlap in the forward
region. In fact, we noticed that already for the MiNLO0 prediction, Pythia8 has the same
effect, making the Z-boson rapidity distribution slightly more central.9

Next, we consider the transverse-momentum distribution of the negatively charged lep-
ton (p

T,`�) and its rapidity distribution (y`�) in the left and right panels of figure 5, respec-
tively. For the rapidity distribution the relative behaviour between MiNNLOPS, MiNLO0,
and NNLO is essentially identical to the one of the Z-boson rapidity and does not require
any further discussion. As far as the transverse-momentum spectrum is concerned, the

9We observed that part of this effect can be attributed to the global recoil adopted by Pythia8 for ISR.
The difference from the NNLO prediction is reduced if one uses a more local scheme for the parton-shower
recoil, e.g. via the flag SpaceShower:dipoleRecoil=1.

– 26 –



Marius Wiesemann    (MPI Munich) February 27th, 2020Diboson production at the LHC: Precision phenomenology 109

MiNNLOPS results
[Monni, Nason, Re, MW, Zanderighi '19]

dσ/bin [pb] pp→Z→�+�- (on-shell)@LHC 13 TeV

MiNNLOPS
MiNLO'

0
2
4
6
8
10
12
14
16
18

dσ/dσMiNNLOPS

pT,j1 > 30 GeV

yj1

0.7
0.8
0.9
1

1.1
1.2
1.3

-4 -3 -2 -1 0 1 2 3 4

dσ/bin [pb] pp→Z→�+�- (on-shell)@LHC 13 TeV

MiNNLOPS
MiNLO'

10-1

100

101

102

dσ/dσMiNNLOPS

pT,j1 > 30 GeV

Δyj1,Z

0.7
0.8
0.9
1

1.1
1.2
1.3

-6 -4 -2 0 2 4 6

Figure 6. Distribution in the rapidity of the leading-jet (left) and its rapidity difference with the
Z boson (right) for MiNNLOPS (blue, solid) and MiNLO0 (black, dotted).

NNLO result shows a very peculiar behaviour for p
T,`� = mZ/2, which reflects the pertur-

bative instability associated with the fact that the leptons at LO are back-to-back and can
share only the available partonic centre-of-mass energy

p
ŝ = mZ, so that their transverse

momenta can be at most p
T,`�  mZ/2. Beyond this value the NNLO result is therefore

effectively only NLO accurate, which can be also seen from the increased uncertainty band.
Since such an instability is related to soft-gluon effects, this feature is cured in both the
MiNNLOPS and MiNLO0 results, which are in good agreement with each other in terms of
shape. Again the MiNNLOPS uncertainty band is significantly smaller than the MiNLO0

one, and we observe a rather constant correction, of the order of ⇠ 5 � 10%, due to the
additional NNLO terms.

Finally, also for the DY process the jet-related observables are fully consistent within
uncertainties when comparing MiNNLOPS and MiNLO0 predictions, as can be seen in
figure 6. However, the size of their uncertainty bands is very different. This is due to the
fact that in the original MiNLO0 prediction a different prescription for the scale variation
was adopted, that also involved the integration boundaries of the Sudakov form factor.
We have checked that by using our prescription in MiNLO0 the uncertainty band becomes
comparable to the MiNNLOPS one. We stress again that we have tested a variety of pT,J

thresholds in the jet definition, and also looked at the azimuthal angle between the leading
jet and the Z boson, and found consistent results throughout.

6 Summary

In this article we have presented a novel approach, dubbed MiNNLOPS, to combine NNLO
QCD calculations with parton showers for colour-singlet production at the LHC. The
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fully differentially by closely following the POWHEG procedure as previously discussed.
We obtain
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where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃

(C) with the full luminosity
factor as
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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where we used eq. (2.14), namely
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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MiNNLOPS master formula

the MiNNLOPS formula, since at finite transverse momentum [D(pT)]
(3) contributes with

a O(↵3
s(Q)) correction to the integrated cross section. It follows that at large values of pT

the kinematics associated with the [D(pT)]
(3) terms can be completed in an arbitrary way,

implying variations beyond NNLO accuracy. In particular, we observe that a �F phase-
space point can be obtained from a �FJ phase-space point through a suitable mapping,
while the pT corresponds to that of the �FJ kinematics. The mapping should project �FJ

to �F smoothly when pT ! 0.
In order to embed the new MiNNLOPS formulation of eq. (2.20) into the MiNLO0

framework, one must therefore associate each value of [D(pT)]
(3) to a specific point in the

�FJ phase space. This requires supplementing the �F and pT information of the [D(pT)]
(3)

term with the remaining kinematics of the radiation that has been previously lost. In other
words, [D(pT)]

(3) should be spread over the �FJ phase space in such a way that, upon
integration, eq. (2.20) is eventually reproduced.

The most obvious way to spread the [D(pT)]
(3) term in the �FJ phase space is either

uniformly, or according to some distribution of choice. To this end, we multiply [D(pT)]
(3)

by the following factor
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where �F (�0
F) is a projection of the �FJ (�0

FJ) phase into the phase space for the production
of the colour singlet F alone (for instance performed according to the FKS mapping for
initial-state radiation (ISR) discussed in section 5.5.1 of ref. [24], that preserves the rapidity
of the colour-singlet system). J` is an arbitrary function of �FJ, and ` labels the flavour
structure of the FJ production process. Finally, pT is the transverse momentum of the
radiation (hence that of the colour singlet) in the �FJ phase space. The factor F corr

` is such
that upon integration in the �FJ phase space together with a function that depends only on
pT and �F, the result reduces to the integral of that function over �F and pT. In formulae,
for an arbitrary function G(�F, pT), we have

X

`

Z
d�

0
FJG(�

0
F, pT

0
)F corr

` (�
0
FJ) =

Z
d�F dpTG(�F, pT)

⇥

X

`

Z
d�

0
FJ�(�F � �

0
F)�(pT � pT

0
)F corr

` (�
0
FJ) =

Z
d�F dpTG(�F, pT) . (3.2)

The full phase-space parametrisation and the �FJ ! �F mapping are given in appendix A.
The function J`(�FJ) in eq. (3.1) gives us some freedom in choosing how to spread

[D(pT)]
(3) in the radiation phase space. Among the sensible choices, one could simply use

a uniform distribution by setting
J`(�FJ) = 1 . (3.3)

For this trivial choice an analytic solution for the integral in the denominator of eq. (3.1) is
given for illustration in appendix A. However, we found that this choice generates a spurious
behaviour when the jet is produced at very large rapidities. A more natural choice is to
spread [D(pT)]

(3) according to the actual rapidity distribution of the radiation, by setting

J`(�FJ) = |MFJ
` (�FJ)|

2
(f [a]f [b]

)` , (3.4)

– 10 –

the MiNNLOPS formula, since at finite transverse momentum [D(pT)]
(3) contributes with

a O(↵3
s(Q)) correction to the integrated cross section. It follows that at large values of pT

the kinematics associated with the [D(pT)]
(3) terms can be completed in an arbitrary way,

implying variations beyond NNLO accuracy. In particular, we observe that a �F phase-
space point can be obtained from a �FJ phase-space point through a suitable mapping,
while the pT corresponds to that of the �FJ kinematics. The mapping should project �FJ

to �F smoothly when pT ! 0.
In order to embed the new MiNNLOPS formulation of eq. (2.20) into the MiNLO0

framework, one must therefore associate each value of [D(pT)]
(3) to a specific point in the

�FJ phase space. This requires supplementing the �F and pT information of the [D(pT)]
(3)

term with the remaining kinematics of the radiation that has been previously lost. In other
words, [D(pT)]

(3) should be spread over the �FJ phase space in such a way that, upon
integration, eq. (2.20) is eventually reproduced.

The most obvious way to spread the [D(pT)]
(3) term in the �FJ phase space is either

uniformly, or according to some distribution of choice. To this end, we multiply [D(pT)]
(3)

by the following factor

F corr
` (�FJ) =

J`(�FJ)P
l0
R
d�0

FJJl0(�
0
FJ)�(pT � pT

0)�(�F � �0
F)
, (3.1)

where �F (�0
F) is a projection of the �FJ (�0

FJ) phase into the phase space for the production
of the colour singlet F alone (for instance performed according to the FKS mapping for
initial-state radiation (ISR) discussed in section 5.5.1 of ref. [24], that preserves the rapidity
of the colour-singlet system). J` is an arbitrary function of �FJ, and ` labels the flavour
structure of the FJ production process. Finally, pT is the transverse momentum of the
radiation (hence that of the colour singlet) in the �FJ phase space. The factor F corr

` is such
that upon integration in the �FJ phase space together with a function that depends only on
pT and �F, the result reduces to the integral of that function over �F and pT. In formulae,
for an arbitrary function G(�F, pT), we have

X

`

Z
d�

0
FJG(�

0
F, pT

0
)F corr

` (�
0
FJ) =

Z
d�F dpTG(�F, pT)

⇥

X

`

Z
d�

0
FJ�(�F � �

0
F)�(pT � pT

0
)F corr

` (�
0
FJ) =

Z
d�F dpTG(�F, pT) . (3.2)

The full phase-space parametrisation and the �FJ ! �F mapping are given in appendix A.
The function J`(�FJ) in eq. (3.1) gives us some freedom in choosing how to spread

[D(pT)]
(3) in the radiation phase space. Among the sensible choices, one could simply use

a uniform distribution by setting
J`(�FJ) = 1 . (3.3)

For this trivial choice an analytic solution for the integral in the denominator of eq. (3.1) is
given for illustration in appendix A. However, we found that this choice generates a spurious
behaviour when the jet is produced at very large rapidities. A more natural choice is to
spread [D(pT)]

(3) according to the actual rapidity distribution of the radiation, by setting

J`(�FJ) = |MFJ
` (�FJ)|

2
(f [a]f [b]

)` , (3.4)

– 10 –

the MiNNLOPS formula, since at finite transverse momentum [D(pT)]
(3) contributes with

a O(↵3
s(Q)) correction to the integrated cross section. It follows that at large values of pT

the kinematics associated with the [D(pT)]
(3) terms can be completed in an arbitrary way,

implying variations beyond NNLO accuracy. In particular, we observe that a �F phase-
space point can be obtained from a �FJ phase-space point through a suitable mapping,
while the pT corresponds to that of the �FJ kinematics. The mapping should project �FJ

to �F smoothly when pT ! 0.
In order to embed the new MiNNLOPS formulation of eq. (2.20) into the MiNLO0

framework, one must therefore associate each value of [D(pT)]
(3) to a specific point in the

�FJ phase space. This requires supplementing the �F and pT information of the [D(pT)]
(3)

term with the remaining kinematics of the radiation that has been previously lost. In other
words, [D(pT)]

(3) should be spread over the �FJ phase space in such a way that, upon
integration, eq. (2.20) is eventually reproduced.

The most obvious way to spread the [D(pT)]
(3) term in the �FJ phase space is either

uniformly, or according to some distribution of choice. To this end, we multiply [D(pT)]
(3)

by the following factor

F corr
` (�FJ) =

J`(�FJ)P
l0
R
d�0

FJJl0(�
0
FJ)�(pT � pT

0)�(�F � �0
F)
, (3.1)

where �F (�0
F) is a projection of the �FJ (�0

FJ) phase into the phase space for the production
of the colour singlet F alone (for instance performed according to the FKS mapping for
initial-state radiation (ISR) discussed in section 5.5.1 of ref. [24], that preserves the rapidity
of the colour-singlet system). J` is an arbitrary function of �FJ, and ` labels the flavour
structure of the FJ production process. Finally, pT is the transverse momentum of the
radiation (hence that of the colour singlet) in the �FJ phase space. The factor F corr

` is such
that upon integration in the �FJ phase space together with a function that depends only on
pT and �F, the result reduces to the integral of that function over �F and pT. In formulae,
for an arbitrary function G(�F, pT), we have

X

`

Z
d�

0
FJG(�

0
F, pT

0
)F corr

` (�
0
FJ) =

Z
d�F dpTG(�F, pT)

⇥

X

`

Z
d�

0
FJ�(�F � �

0
F)�(pT � pT

0
)F corr

` (�
0
FJ) =

Z
d�F dpTG(�F, pT) . (3.2)

The full phase-space parametrisation and the �FJ ! �F mapping are given in appendix A.
The function J`(�FJ) in eq. (3.1) gives us some freedom in choosing how to spread

[D(pT)]
(3) in the radiation phase space. Among the sensible choices, one could simply use

a uniform distribution by setting
J`(�FJ) = 1 . (3.3)

For this trivial choice an analytic solution for the integral in the denominator of eq. (3.1) is
given for illustration in appendix A. However, we found that this choice generates a spurious
behaviour when the jet is produced at very large rapidities. A more natural choice is to
spread [D(pT)]

(3) according to the actual rapidity distribution of the radiation, by setting

J`(�FJ) = |MFJ
` (�FJ)|

2
(f [a]f [b]

)` , (3.4)

– 10 –

the MiNNLOPS formula, since at finite transverse momentum [D(pT)]
(3) contributes with

a O(↵3
s(Q)) correction to the integrated cross section. It follows that at large values of pT

the kinematics associated with the [D(pT)]
(3) terms can be completed in an arbitrary way,

implying variations beyond NNLO accuracy. In particular, we observe that a �F phase-
space point can be obtained from a �FJ phase-space point through a suitable mapping,
while the pT corresponds to that of the �FJ kinematics. The mapping should project �FJ

to �F smoothly when pT ! 0.
In order to embed the new MiNNLOPS formulation of eq. (2.20) into the MiNLO0

framework, one must therefore associate each value of [D(pT)]
(3) to a specific point in the

�FJ phase space. This requires supplementing the �F and pT information of the [D(pT)]
(3)

term with the remaining kinematics of the radiation that has been previously lost. In other
words, [D(pT)]

(3) should be spread over the �FJ phase space in such a way that, upon
integration, eq. (2.20) is eventually reproduced.

The most obvious way to spread the [D(pT)]
(3) term in the �FJ phase space is either

uniformly, or according to some distribution of choice. To this end, we multiply [D(pT)]
(3)

by the following factor

F corr
` (�FJ) =

J`(�FJ)P
l0
R
d�0

FJJl0(�
0
FJ)�(pT � pT

0)�(�F � �0
F)
, (3.1)

where �F (�0
F) is a projection of the �FJ (�0

FJ) phase into the phase space for the production
of the colour singlet F alone (for instance performed according to the FKS mapping for
initial-state radiation (ISR) discussed in section 5.5.1 of ref. [24], that preserves the rapidity
of the colour-singlet system). J` is an arbitrary function of �FJ, and ` labels the flavour
structure of the FJ production process. Finally, pT is the transverse momentum of the
radiation (hence that of the colour singlet) in the �FJ phase space. The factor F corr

` is such
that upon integration in the �FJ phase space together with a function that depends only on
pT and �F, the result reduces to the integral of that function over �F and pT. In formulae,
for an arbitrary function G(�F, pT), we have

X

`

Z
d�

0
FJG(�

0
F, pT

0
)F corr

` (�
0
FJ) =

Z
d�F dpTG(�F, pT)

⇥

X

`

Z
d�

0
FJ�(�F � �

0
F)�(pT � pT

0
)F corr

` (�
0
FJ) =

Z
d�F dpTG(�F, pT) . (3.2)

The full phase-space parametrisation and the �FJ ! �F mapping are given in appendix A.
The function J`(�FJ) in eq. (3.1) gives us some freedom in choosing how to spread

[D(pT)]
(3) in the radiation phase space. Among the sensible choices, one could simply use

a uniform distribution by setting
J`(�FJ) = 1 . (3.3)

For this trivial choice an analytic solution for the integral in the denominator of eq. (3.1) is
given for illustration in appendix A. However, we found that this choice generates a spurious
behaviour when the jet is produced at very large rapidities. A more natural choice is to
spread [D(pT)]

(3) according to the actual rapidity distribution of the radiation, by setting

J`(�FJ) = |MFJ
` (�FJ)|

2
(f [a]f [b]

)` , (3.4)

– 10 –

where |MFJ
` (�FJ)|

2 is the tree-level matrix element squared for the FJ process, and the
quantity (f [a]f [b]

)` represents the product of the parton densities in the initial-state flavour
configuration given by the index `. This choice provides a more physical distribution of
[D(pT)]

(3), but it can become computationally expensive for complex processes with several
degrees of freedom as the integral in the denominator of eq. (3.1) has to be evaluated for
every phase-space point numerically. A convenient compromise is to take the collinear limit
of the squared amplitude of eq. (3.4), namely

|MFJ
` (�FJ)|

2
' |MF

(�F)|
2P`(�rad) , (3.5)

where |MF
(�F)|

2 is the Born matrix element squared for the production of the colour singlet
F, and P`(�rad) is the collinear splitting function. After noticing that the Born squared
amplitude |MF

(�F)|
2 cancels in the ratio of eq. (3.1), we can simply set

J`(�FJ) = P`(�rad)(f
[a]f [b]

)` , (3.6)

where the full expression is reported in eqs. (A.14), (A.13). This prescription is computa-
tionally faster, since the integral in the denominator of eq. (3.1) has a better convergence,
and it does not change for more involved processes.

With these considerations, eq. (2.20) can be recast in a way that is differential in the
entire �FJ phase space as
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,

where the sum over flavour configurations is understood, and pT is meant to be defined in
the �FJ phase space.

A second aspect relevant to the implementation of the MiNNLOPS procedure is re-
lated to how one switches off the Sudakov form factor, as well as the terms [S̃(pT)]

(1) and
[D(pT)]

(3) in eq. (3.7), in the large pT region of the spectrum. We stress that the details
of this operation do not modify the accuracy of the result. This is because in the large pT

region eq. (3.7) differs from the NLO FJ distribution only by O(↵3
s) corrections relative to

the Born. This implies that one has some freedom in choosing how to turn off the loga-
rithmic terms at scales pT & Q. One important constraint to keep in mind is that in the
regime pT ⌧ Q the logarithmic structure has to be preserved in order to retain the NNLO
accuracy in the total (inclusive) cross section.

There are of course different sensible ways to switch off the logarithmic terms at large
pT. One possibility is to set the quantities S̃(pT), [S̃(pT)]

(1), and [D(pT)]
(3) to zero at

pT � Q. This prescription is adopted in the original MiNLO0 implementation of ref. [7]. A
second possibility, closer in spirit to what is done in resummed calculations, is to modify
the logarithms contained in S̃(pT), [S̃(pT)]

(1), and [D(pT)]
(3), so that they vanish in the

large pT limit. This is done by means of the following replacement
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require scale invariance (  , ) separately for ingredientsμR = KR pT μF = KF pT

MiNNLOPS scale variation
[Monni, Nason, Re, MW, Zanderighi '19]
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D Scale dependence of the MiNNLOPS formula

In this appendix we discuss the renormalisation and factorisation scale dependence of the
MiNNLOPS formula (4.34). The scale variation in the fixed-order ingredients is performed
in the conventional way. As far as the Sudakov and the extra NNLO terms are concerned,
we do not follow the procedure for scale variations adopted in ref. [6]. Instead, we introduce
the renormalisation and factorisation scale variation in all terms of eq. (2.20) as it is cus-
tomarily done in transverse-momentum resummations, and described below. We consider
our starting formula (2.7), and focus on the first term, namely

d�sing

d�FdpT

=
d

dpT

⇢
exp[�S̃(pT)]L(pT)

)
. (D.1)

We start by discussing the factor L, defined in eq. (4.31). We change the renormalisation
scale of the coupling from pT to KR pT, and the factorisation scale of the parton densities
from pT to KF pT. This induces the following scale dependence on its building blocks in
order to balance scale variations to the desired accuracy. The coefficients H(1) and H̃(2)
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D Scale dependence of the MiNNLOPS formula

In this appendix we discuss the renormalisation and factorisation scale dependence of the
MiNNLOPS formula (4.34). The scale variation in the fixed-order ingredients is performed
in the conventional way. As far as the Sudakov and the extra NNLO terms are concerned,
we do not follow the procedure for scale variations adopted in ref. [6]. Instead, we introduce
the renormalisation and factorisation scale variation in all terms of eq. (2.20) as it is cus-
tomarily done in transverse-momentum resummations, and described below. We consider
our starting formula (2.7), and focus on the first term, namely
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. (D.1)

We start by discussing the factor L, defined in eq. (4.31). We change the renormalisation
scale of the coupling from pT to KR pT, and the factorisation scale of the parton densities
from pT to KF pT. This induces the following scale dependence on its building blocks in
order to balance scale variations to the desired accuracy. The coefficients H(1) and H̃(2)
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fully differentially by closely following the POWHEG procedure as previously discussed.
We obtain
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where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃

(C) with the full luminosity
factor as
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to

d�

d�FdpT

=

d

h
e�S̃(pT)L(pT)

i

dpT

+Rf (pT) +O(↵3
s) , (4.32)

where we used eq. (2.14), namely

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
. (4.33)

The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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where Rf contains terms that are non-singular in the small pT limit. We notice that this
formula requires a definition of a projection of the full phase space with multiple emissions,
in particular �FJ and �FJJ, onto the �F phase space, that we denote as

�F,res(�) , (2.8)

and � stands for �FJ, �FJJ, and so on. The suffix “res” in �F,res stands for “resummation”,
to make clear that the projection is relative to the particular resummation approach that
one is using. The Sudakov form factor S̃ reads
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where all coefficients are defined in section 4 and appendix B. The factor L, defined in
eq. (4.31) of section 4, involves the parton luminosities, the Born squared amplitude for
the production of the colour-singlet system F, the hard-virtual corrections up to two loops
and the collinear coefficient functions up to second order. These constitute some of the in-
gredients necessary for the next-to-next-to-next-to-leading logarithm (N3LL) resummation.
Here, for ease of notation, we do not indicate explicitly the �F dependence of L and Rf .

As it stands, eq. (2.7) is such that its integral over pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour-singlet system.
We can recast eq. (2.7) as
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We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as
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where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
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D Scale dependence of the MiNNLOPS formula

In this appendix we discuss the renormalisation and factorisation scale dependence of the
MiNNLOPS formula (4.34). The scale variation in the fixed-order ingredients is performed
in the conventional way. As far as the Sudakov and the extra NNLO terms are concerned,
we do not follow the procedure for scale variations adopted in ref. [6]. Instead, we introduce
the renormalisation and factorisation scale variation in all terms of eq. (2.20) as it is cus-
tomarily done in transverse-momentum resummations, and described below. We consider
our starting formula (2.7), and focus on the first term, namely
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We start by discussing the factor L, defined in eq. (4.31). We change the renormalisation
scale of the coupling from pT to KR pT, and the factorisation scale of the parton densities
from pT to KF pT. This induces the following scale dependence on its building blocks in
order to balance scale variations to the desired accuracy. The coefficients H(1) and H̃(2)
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where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃

(C) with the full luminosity
factor as
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
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mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
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pT ! 0 limit).
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the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to

d�

d�FdpT

=

d

h
e�S̃(pT)L(pT)

i

dpT

+Rf (pT) +O(↵3
s) , (4.32)

where we used eq. (2.14), namely

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
. (4.33)

The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
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where Rf contains terms that are non-singular in the small pT limit. We notice that this
formula requires a definition of a projection of the full phase space with multiple emissions,
in particular �FJ and �FJJ, onto the �F phase space, that we denote as

�F,res(�) , (2.8)

and � stands for �FJ, �FJJ, and so on. The suffix “res” in �F,res stands for “resummation”,
to make clear that the projection is relative to the particular resummation approach that
one is using. The Sudakov form factor S̃ reads
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where all coefficients are defined in section 4 and appendix B. The factor L, defined in
eq. (4.31) of section 4, involves the parton luminosities, the Born squared amplitude for
the production of the colour-singlet system F, the hard-virtual corrections up to two loops
and the collinear coefficient functions up to second order. These constitute some of the in-
gredients necessary for the next-to-next-to-next-to-leading logarithm (N3LL) resummation.
Here, for ease of notation, we do not indicate explicitly the �F dependence of L and Rf .

As it stands, eq. (2.7) is such that its integral over pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour-singlet system.
We can recast eq. (2.7) as
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We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as
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where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
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with nB being the ↵s power of the Born cross section for the production of the colour singlet
F. The coefficient functions C receive the following scale dependence:
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while G (which is present only in the case of gluon-induced reactions) remains unchanged.
We then consider the Sudakov radiator S̃, defined in eq. (2.9). We change the scale

of the strong coupling in its integrand (2.9) from pT to KR pT, and modify the anomalous
dimensions as follows to keep eq. (D.1) scale invariant up to corrections of O(↵3

s)
11
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The term proportional to nB (the power of ↵s at LO), is induced by the presence of H(1)

in the B̃(2) coefficient, that in turn originates from evaluating the hard virtual corrections
at pT in the factor L, see eq. (4.25).

The scale dependence also propagates into the constituents of the [D(pT)]
(3) term, which

is defined through eq. (D.1), whose ↵3
s prefactor in eq. (4.34) is evaluated at KR pT. Besides

the dependence in the coefficients reported above (which is understood in the equation that
11We stress that, formally, the perturbative coefficient A

(3) gives a subleading contribution to the NNLO
cross section, and it is included in [D(pT)]

(3) to ensure consistency with the Sudakov radiator S̃. Since
its scale dependence would add information beyond the desired perturbative order, we explicitly decide to
omit it in our implementation.
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D Scale dependence of the MiNNLOPS formula

In this appendix we discuss the renormalisation and factorisation scale dependence of the
MiNNLOPS formula (4.34). The scale variation in the fixed-order ingredients is performed
in the conventional way. As far as the Sudakov and the extra NNLO terms are concerned,
we do not follow the procedure for scale variations adopted in ref. [6]. Instead, we introduce
the renormalisation and factorisation scale variation in all terms of eq. (2.20) as it is cus-
tomarily done in transverse-momentum resummations, and described below. We consider
our starting formula (2.7), and focus on the first term, namely
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d�FdpT

=
d
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)
. (D.1)

We start by discussing the factor L, defined in eq. (4.31). We change the renormalisation
scale of the coupling from pT to KR pT, and the factorisation scale of the parton densities
from pT to KF pT. This induces the following scale dependence on its building blocks in
order to balance scale variations to the desired accuracy. The coefficients H(1) and H̃(2)
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fully differentially by closely following the POWHEG procedure as previously discussed.
We obtain

d�sing

d�FdpT

= e�S̃(pT)

"
S̃0
(pT) 1 +

↵s(pT)

⇡
P̂ + 2�(↵s(pT))

d ln C̃

d↵s

#
⌦ L̃

(C)
(pT) +O(↵3

s(Q))

=

d

h
e�S̃(pT)L̃(C)

(pT)

i

dpT

+O(↵3
s) , (4.30)

where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃

(C) with the full luminosity
factor as
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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where Rf contains terms that are non-singular in the small pT limit. We notice that this
formula requires a definition of a projection of the full phase space with multiple emissions,
in particular �FJ and �FJJ, onto the �F phase space, that we denote as

�F,res(�) , (2.8)

and � stands for �FJ, �FJJ, and so on. The suffix “res” in �F,res stands for “resummation”,
to make clear that the projection is relative to the particular resummation approach that
one is using. The Sudakov form factor S̃ reads
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where all coefficients are defined in section 4 and appendix B. The factor L, defined in
eq. (4.31) of section 4, involves the parton luminosities, the Born squared amplitude for
the production of the colour-singlet system F, the hard-virtual corrections up to two loops
and the collinear coefficient functions up to second order. These constitute some of the in-
gredients necessary for the next-to-next-to-next-to-leading logarithm (N3LL) resummation.
Here, for ease of notation, we do not indicate explicitly the �F dependence of L and Rf .

As it stands, eq. (2.7) is such that its integral over pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour-singlet system.
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where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
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with nB being the ↵s power of the Born cross section for the production of the colour singlet
F. The coefficient functions C receive the following scale dependence:
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while G (which is present only in the case of gluon-induced reactions) remains unchanged.
We then consider the Sudakov radiator S̃, defined in eq. (2.9). We change the scale

of the strong coupling in its integrand (2.9) from pT to KR pT, and modify the anomalous
dimensions as follows to keep eq. (D.1) scale invariant up to corrections of O(↵3

s)
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The term proportional to nB (the power of ↵s at LO), is induced by the presence of H(1)

in the B̃(2) coefficient, that in turn originates from evaluating the hard virtual corrections
at pT in the factor L, see eq. (4.25).

The scale dependence also propagates into the constituents of the [D(pT)]
(3) term, which

is defined through eq. (D.1), whose ↵3
s prefactor in eq. (4.34) is evaluated at KR pT. Besides

the dependence in the coefficients reported above (which is understood in the equation that
11We stress that, formally, the perturbative coefficient A

(3) gives a subleading contribution to the NNLO
cross section, and it is included in [D(pT)]

(3) to ensure consistency with the Sudakov radiator S̃. Since
its scale dependence would add information beyond the desired perturbative order, we explicitly decide to
omit it in our implementation.
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while G (which is present only in the case of gluon-induced reactions) remains unchanged.
We then consider the Sudakov radiator S̃, defined in eq. (2.9). We change the scale

of the strong coupling in its integrand (2.9) from pT to KR pT, and modify the anomalous
dimensions as follows to keep eq. (D.1) scale invariant up to corrections of O(↵3
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The term proportional to nB (the power of ↵s at LO), is induced by the presence of H(1)

in the B̃(2) coefficient, that in turn originates from evaluating the hard virtual corrections
at pT in the factor L, see eq. (4.25).

The scale dependence also propagates into the constituents of the [D(pT)]
(3) term, which

is defined through eq. (D.1), whose ↵3
s prefactor in eq. (4.34) is evaluated at KR pT. Besides

the dependence in the coefficients reported above (which is understood in the equation that
11We stress that, formally, the perturbative coefficient A

(3) gives a subleading contribution to the NNLO
cross section, and it is included in [D(pT)]

(3) to ensure consistency with the Sudakov radiator S̃. Since
its scale dependence would add information beyond the desired perturbative order, we explicitly decide to
omit it in our implementation.

– 36 –

become

H(1)
(KR) =H(1)

+ (2⇡�0)nB lnKR

2

H̃(2)
(KR) =H̃(2)

+ 4nB

✓
1 + nB

2
⇡2�2

0 ln
2KR

2
+ ⇡2�1 lnKR

2

◆

+ 2H(1)
(1 + nB)⇡�0 lnKR

2 , (D.2)

with nB being the ↵s power of the Born cross section for the production of the colour singlet
F. The coefficient functions C receive the following scale dependence:

C(1)
(z,KF) = C(1)

(z)� P̂ (0)
(z) lnKF

2,

C̃(2)
(z,KF,KR) = C̃(2)

(z) + ⇡�0P̂
(0)

(z)
�
ln

2KF

2
� 2 lnKF

2
lnKR

2
�
� P̂ (1)

(z) lnKF

2

+
1

2
(P̂ (0)

⌦ P̂ (0)
)(z) ln2KF

2
� (P̂ (0)

⌦ C(1)
)(z) lnKF

2
+ 2⇡�0C

(1)
(z) lnKR

2 ,

(D.3)

while G (which is present only in the case of gluon-induced reactions) remains unchanged.
We then consider the Sudakov radiator S̃, defined in eq. (2.9). We change the scale

of the strong coupling in its integrand (2.9) from pT to KR pT, and modify the anomalous
dimensions as follows to keep eq. (D.1) scale invariant up to corrections of O(↵3

s)
11

A(2)
(KR) =A(2)

+ (2⇡�0)A
(1)

lnKR

2,

B̃(2)
(KR) =B̃(2)

+ (2⇡�0)B
(1)

lnKR

2
+ (2⇡�0)

2 nB lnKR

2 . (D.4)

The term proportional to nB (the power of ↵s at LO), is induced by the presence of H(1)

in the B̃(2) coefficient, that in turn originates from evaluating the hard virtual corrections
at pT in the factor L, see eq. (4.25).

The scale dependence also propagates into the constituents of the [D(pT)]
(3) term, which

is defined through eq. (D.1), whose ↵3
s prefactor in eq. (4.34) is evaluated at KR pT. Besides

the dependence in the coefficients reported above (which is understood in the equation that
11We stress that, formally, the perturbative coefficient A

(3) gives a subleading contribution to the NNLO
cross section, and it is included in [D(pT)]

(3) to ensure consistency with the Sudakov radiator S̃. Since
its scale dependence would add information beyond the desired perturbative order, we explicitly decide to
omit it in our implementation.

– 36 –

become

H(1)
(KR) =H(1)

+ (2⇡�0)nB lnKR

2

H̃(2)
(KR) =H̃(2)

+ 4nB

✓
1 + nB

2
⇡2�2

0 ln
2KR

2
+ ⇡2�1 lnKR

2

◆

+ 2H(1)
(1 + nB)⇡�0 lnKR

2 , (D.2)

with nB being the ↵s power of the Born cross section for the production of the colour singlet
F. The coefficient functions C receive the following scale dependence:

C(1)
(z,KF) = C(1)

(z)� P̂ (0)
(z) lnKF

2,

C̃(2)
(z,KF,KR) = C̃(2)

(z) + ⇡�0P̂
(0)

(z)
�
ln

2KF

2
� 2 lnKF

2
lnKR

2
�
� P̂ (1)

(z) lnKF

2

+
1

2
(P̂ (0)

⌦ P̂ (0)
)(z) ln2KF

2
� (P̂ (0)

⌦ C(1)
)(z) lnKF

2
+ 2⇡�0C

(1)
(z) lnKR

2 ,

(D.3)

while G (which is present only in the case of gluon-induced reactions) remains unchanged.
We then consider the Sudakov radiator S̃, defined in eq. (2.9). We change the scale

of the strong coupling in its integrand (2.9) from pT to KR pT, and modify the anomalous
dimensions as follows to keep eq. (D.1) scale invariant up to corrections of O(↵3

s)
11

A(2)
(KR) =A(2)

+ (2⇡�0)A
(1)

lnKR

2,

B̃(2)
(KR) =B̃(2)

+ (2⇡�0)B
(1)

lnKR

2
+ (2⇡�0)

2 nB lnKR

2 . (D.4)

The term proportional to nB (the power of ↵s at LO), is induced by the presence of H(1)

in the B̃(2) coefficient, that in turn originates from evaluating the hard virtual corrections
at pT in the factor L, see eq. (4.25).

The scale dependence also propagates into the constituents of the [D(pT)]
(3) term, which

is defined through eq. (D.1), whose ↵3
s prefactor in eq. (4.34) is evaluated at KR pT. Besides

the dependence in the coefficients reported above (which is understood in the equation that
11We stress that, formally, the perturbative coefficient A

(3) gives a subleading contribution to the NNLO
cross section, and it is included in [D(pT)]

(3) to ensure consistency with the Sudakov radiator S̃. Since
its scale dependence would add information beyond the desired perturbative order, we explicitly decide to
omit it in our implementation.

– 36 –

follows), [D(pT)]
(3) acquires additional explicit scale-dependent terms:

[D(pT)]
(3)

(KF,KR) = [D(pT)]
(3)

�

X

c,c0

d|MF
|
2
cc0

d�B

2⇡

pT

⇢
2⇡�1

⇣
f [a]
c (P̂ (0)

⌦ f)[b]c0 + (P̂ (0)
⌦ f)[a]c f [b]

c0

⌘
ln

KF

2

KR
2

+ �0

✓
H(1)

(KR)

⇣
f [a]
c (P̂ (0)

⌦ f)[b]c0 + (P̂ (0)
⌦ f)[a]c f [b]

c0

⌘

+ 2

⇣
f [a]
c (P̂ (1)

⌦ f)[b]c0 + (P̂ (1)
⌦ f)[a]c f [b]

c0

⌘

+ (C(1)
(KF)⌦ f)[a]c (P̂ (0)

⌦ f)[b]c0 + (P̂ (0)
⌦ f)[a]c (C(1)

(KF)⌦ f)[b]c0

+ f [a]
c (P̂ (0)

⌦ C(1)
(KF)⌦ f)[b]c0 + (P̂ (0)

⌦ C(1)
(KF)⌦ f)[a]c f [b]

c0

◆
ln

KF

2

KR
2

� 2⇡�2
0

⇣
f [a]
c (P̂ (0)

⌦ f)[b]c0 + (P̂ (0)
⌦ f)[a]c f [b]

c0

⌘
ln

2 KF

2

KR
2

�
. (D.5)

E Considerations from impact-parameter space formulation

In this section, we derive the form of the starting equation (2.7) using the impact-parameter
space formulation of transverse-momentum resummation. We start from the formula
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and �b = ↵s(Q)�0 ln(Qb/b0), b0 = 2e��E . The gi functions are analogous to those used in
momentum space (B.7), and [69]
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where H̄ is identical to H of eq. (B.11), with the only difference being that the H̄(2)

coefficient does not contain the term �H
(2) (B.14).

We evaluate the b integral by expanding b0/b about pT in the integrand. While this
procedure is known to generate a geometric singularity in the pT space resummation, in this
article we are only interested in retaining O(↵2

s) accuracy and therefore this is not an issue
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pT resummation

where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads
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and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as
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We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as
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where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
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= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)
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. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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E Considerations from impact-parameter space formulation

In this section, we derive the form of the starting equation (2.7) using the impact-parameter
space formulation of transverse-momentum resummation. We start from the formula
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and �b = ↵s(Q)�0 ln(Qb/b0), b0 = 2e��E . The gi functions are analogous to those used in
momentum space (B.7), and [69]
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where H̄ is identical to H of eq. (B.11), with the only difference being that the H̄(2)

coefficient does not contain the term �H
(2) (B.14).

We evaluate the b integral by expanding b0/b about pT in the integrand. While this
procedure is known to generate a geometric singularity in the pT space resummation, in this
article we are only interested in retaining O(↵2

s) accuracy and therefore this is not an issue
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s) accuracy and therefore this is not an issue

– 37 –

follows), [D(pT)]
(3) acquires additional explicit scale-dependent terms:

[D(pT)]
(3)

(KF,KR) = [D(pT)]
(3)

�

X

c,c0

d|MF
|
2
cc0

d�B

2⇡

pT

⇢
2⇡�1

⇣
f [a]
c (P̂ (0)

⌦ f)[b]c0 + (P̂ (0)
⌦ f)[a]c f [b]

c0

⌘
ln

KF

2

KR
2

+ �0

✓
H(1)

(KR)

⇣
f [a]
c (P̂ (0)

⌦ f)[b]c0 + (P̂ (0)
⌦ f)[a]c f [b]

c0

⌘

+ 2

⇣
f [a]
c (P̂ (1)

⌦ f)[b]c0 + (P̂ (1)
⌦ f)[a]c f [b]

c0

⌘

+ (C(1)
(KF)⌦ f)[a]c (P̂ (0)

⌦ f)[b]c0 + (P̂ (0)
⌦ f)[a]c (C(1)

(KF)⌦ f)[b]c0

+ f [a]
c (P̂ (0)

⌦ C(1)
(KF)⌦ f)[b]c0 + (P̂ (0)

⌦ C(1)
(KF)⌦ f)[a]c f [b]

c0

◆
ln

KF

2

KR
2

� 2⇡�2
0

⇣
f [a]
c (P̂ (0)

⌦ f)[b]c0 + (P̂ (0)
⌦ f)[a]c f [b]

c0

⌘
ln

2 KF

2

KR
2

�
. (D.5)

E Considerations from impact-parameter space formulation
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In this section, we derive the form of the starting equation (2.7) using the impact-parameter
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ḡ3 ⌘ g3 +
2⇣3(A(1)

)
2

2⇡�0

�b

1� 2�b
. (E.3)

The factor Lb is defined as

Lb(Qb/b0) =
X

c,c0

d|MF
|
2
cc0

d�F

X

i,j

⇢⇣
C [a]
ci ⌦ f [a]

i

⌘
H̄(Qb/b0)

⇣
C [b]
c0j ⌦ f [b]

j

⌘

+

⇣
G[a]

ci ⌦ f [a]
i

⌘
H̄(Qb/b0)

⇣
G[b]

c0j ⌦ f [b]
j

⌘�
, (E.4)

where H̄ is identical to H of eq. (B.11), with the only difference being that the H̄(2)

coefficient does not contain the term �H
(2) (B.14).
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(pT)/d ln(Qb/b0). After performing the derivatives, we observe that,
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We directly observe that the two terms proportional to S00 are analogous to those produced
in the last line of eq. (4.23). These two terms can be incorporated in the master formula via
the replacements (4.26). On the other hand, the term proportional to S000 is a new feature
of the b-space formulation, and it is not present in the momentum space formulation. Using
the expression
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This is precisely the difference between the H̄(2) coefficient (defined in b space) and the H(2)

coefficient present in the momentum-space formulation. Therefore, the O(↵2
s) expansion of

eq. (E.6) coincides with that of eq. (2.7).
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E Considerations from impact-parameter space formulation

In this section, we derive the form of the starting equation (2.7) using the impact-parameter
space formulation of transverse-momentum resummation. We start from the formula
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where
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⇡
ḡ3(�b) , (E.2)

and �b = ↵s(Q)�0 ln(Qb/b0), b0 = 2e��E . The gi functions are analogous to those used in
momentum space (B.7), and [69]
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The factor Lb is defined as
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where H̄ is identical to H of eq. (B.11), with the only difference being that the H̄(2)

coefficient does not contain the term �H
(2) (B.14).

We evaluate the b integral by expanding b0/b about pT in the integrand. While this
procedure is known to generate a geometric singularity in the pT space resummation, in this
article we are only interested in retaining O(↵2

s) accuracy and therefore this is not an issue
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for the present discussion. We follow the appendix of ref. [60], and by neglecting terms that
contribute beyond O(↵2

s), we obtain
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where S000
(pT) = dS00

(pT)/d ln(Qb/b0). After performing the derivatives, we observe that,
retaining O(↵2

s) accuracy, we can approximate the above equation as follows
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We directly observe that the two terms proportional to S00 are analogous to those produced
in the last line of eq. (4.23). These two terms can be incorporated in the master formula via
the replacements (4.26). On the other hand, the term proportional to S000 is a new feature
of the b-space formulation, and it is not present in the momentum space formulation. Using
the expression
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↵2
s

(2⇡)2
+O(↵3
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we observe that the new O(↵2
s) constant term 8/3 ⇣3A(1)⇡�0 can be absorbed into the

coefficient H̄(2) as
H̄(2)
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This is precisely the difference between the H̄(2) coefficient (defined in b space) and the H(2)

coefficient present in the momentum-space formulation. Therefore, the O(↵2
s) expansion of

eq. (E.6) coincides with that of eq. (2.7).
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We thus define
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and we redefine all ingredients in our calculation as S ! S̃, �(C)
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(C) to take the above replacements into account. We therefore recast eq. (4.23)

as
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Finally, we take the derivative in pT in order to obtain the singular structure of the differ-
ential pT distribution, that reads
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In order to be accurate across the whole pT spectrum, we need to match eq. (4.28) to the
NLO differential cross section for the production of the colour-singlet system in association
with one jet. This can be performed in two steps.

The first step is to observe that the second emission is distributed in a way that
closely mimics the treatment of the radiation in the POWHEG method [21] discussed
in section 2.1, that is generated according to the probability

�pwg(⇤) +

Z
d�rad�pwg(pT,rad)

R(�FJ,�rad)

B(�FJ)
, (4.29)

where the factor �rad represents the full FKS [27] radiation phase space for the second
emission k2.8 The quantities R and B represent the tree-level squared amplitudes for FJJ

(double emission) and FJ (single emission), respectively. Therefore, the second emission can
be directly generated according to the POWHEG method, which guarantees an accurate
description at tree level for k2 over the whole radiation phase space �rad.

We can then focus on the first cluster contribution. For simplicity we can integrate
eq. (4.28) explicitly over the second emission k2, stressing that the latter can be restored

8We point out that the parton densities are included in the POWHEG Sudakov �pwg, yielding a
contribution analogous to the luminosity factor L.
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coefficient present in the momentum-space formulation. Therefore, the O(↵2
s) expansion of
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E Considerations from impact-parameter space formulation

In this section, we derive the form of the starting equation (2.7) using the impact-parameter
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where H̄ is identical to H of eq. (B.11), with the only difference being that the H̄(2)

coefficient does not contain the term �H
(2) (B.14).

We evaluate the b integral by expanding b0/b about pT in the integrand. While this
procedure is known to generate a geometric singularity in the pT space resummation, in this
article we are only interested in retaining O(↵2

s) accuracy and therefore this is not an issue
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article we are only interested in retaining O(↵2

s) accuracy and therefore this is not an issue
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for the present discussion. We follow the appendix of ref. [60], and by neglecting terms that
contribute beyond O(↵2

s), we obtain
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where S000
(pT) = dS00

(pT)/d ln(Qb/b0). After performing the derivatives, we observe that,
retaining O(↵2

s) accuracy, we can approximate the above equation as follows
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We directly observe that the two terms proportional to S00 are analogous to those produced
in the last line of eq. (4.23). These two terms can be incorporated in the master formula via
the replacements (4.26). On the other hand, the term proportional to S000 is a new feature
of the b-space formulation, and it is not present in the momentum space formulation. Using
the expression
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we observe that the new O(↵2
s) constant term 8/3 ⇣3A(1)⇡�0 can be absorbed into the

coefficient H̄(2) as
H̄(2)
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This is precisely the difference between the H̄(2) coefficient (defined in b space) and the H(2)

coefficient present in the momentum-space formulation. Therefore, the O(↵2
s) expansion of

eq. (E.6) coincides with that of eq. (2.7).
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and we redefine all ingredients in our calculation as S ! S̃, �(C)
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(C) to take the above replacements into account. We therefore recast eq. (4.23)
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Finally, we take the derivative in pT in order to obtain the singular structure of the differ-
ential pT distribution, that reads

d�sing

d�FdpT

=

Z
hdk1ie

�S̃(kT,1)

"
S̃0
(kT,1) 1 +

↵s(kT,1)

⇡
P̂ + 2�(↵s(kT,1))

d ln C̃

d↵s

#

⌦

⇢
�̃

(C)
(kT,1,⇤)L̃

(C)
(kT,1) +

Z
hdk2i


S̃0
(kT,2) 1 +

↵s(kT,2)

⇡
P̂

�
⇥(kT,1 � kT,2)

⌦

⇣
�̃

(C)
(kT,1, kT,2)L̃

(C)
(kT,1)

⌘�
�(pT � kT,1) +O(↵3

s) . (4.28)

In order to be accurate across the whole pT spectrum, we need to match eq. (4.28) to the
NLO differential cross section for the production of the colour-singlet system in association
with one jet. This can be performed in two steps.

The first step is to observe that the second emission is distributed in a way that
closely mimics the treatment of the radiation in the POWHEG method [21] discussed
in section 2.1, that is generated according to the probability

�pwg(⇤) +

Z
d�rad�pwg(pT,rad)

R(�FJ,�rad)

B(�FJ)
, (4.29)

where the factor �rad represents the full FKS [27] radiation phase space for the second
emission k2.8 The quantities R and B represent the tree-level squared amplitudes for FJJ

(double emission) and FJ (single emission), respectively. Therefore, the second emission can
be directly generated according to the POWHEG method, which guarantees an accurate
description at tree level for k2 over the whole radiation phase space �rad.

We can then focus on the first cluster contribution. For simplicity we can integrate
eq. (4.28) explicitly over the second emission k2, stressing that the latter can be restored

8We point out that the parton densities are included in the POWHEG Sudakov �pwg, yielding a
contribution analogous to the luminosity factor L.
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for the present discussion. We follow the appendix of ref. [60], and by neglecting terms that
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This is precisely the difference between the H̄(2) coefficient (defined in b space) and the H(2)

coefficient present in the momentum-space formulation. Therefore, the O(↵2
s) expansion of

eq. (E.6) coincides with that of eq. (2.7).
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redefining:


dL(pT)

dpT

�(3)
=�

X

c,c0

d|MF
|
2
cc0

d�B

2

pT

⇢
H̃(2)

h
(P̂ (0)

⌦ f)[a]c f [b]
c0 + f [a]

c (P̂ (0)
⌦ f)[b]c0

i

+H(1)
h
(P̂ (1)

⌦ f)[a]c f [b]
c0 + f [a]

c (P̂ (1)
⌦ f)[b]c0

+ (C(1)
⌦ f)[a]c (P̂ (0)

⌦ f)[b]c0 + (P̂ (0)
⌦ f)[a]c (C(1)

⌦ f)[b]c0

+ f [a]
c (P̂ (0)

⌦ C(1)
⌦ f)[b]c0 + (P̂ (0)

⌦ C(1)
⌦ f)[a]c f [b]

c0

i

+ (P̂ (2)
⌦ f)[a]c f [b]

c0 + f [a]
c (P̂ (2)

⌦ f)[b]c0

+ (C̃(2)
⌦ f)[a]c (P̂ (0)

⌦ f)[b]c0 + (P̂ (0)
⌦ f)[a]c (C̃(2)

⌦ f)[b]c0

+ f [a]
c (P̂ (0)

⌦ C̃(2)
⌦ f)[b]c0 + (P̂ (0)

⌦ C̃(2)
⌦ f)[a]c f [b]

c0

+ (C(1)
⌦ f)[a]c (P̂ (1)

⌦ f)[b]c0 + (P̂ (1)
⌦ f)[a]c (C(1)

⌦ f)[b]c0

+ f [a]
c (P̂ (1)

⌦ C(1)
⌦ f)[b]c0 + (P̂ (1)

⌦ C(1)
⌦ f)[a]c f [b]

c0

+ (C(1)
⌦ f)[a]c (P̂ (0)

⌦ C(1)
⌦ f)[b]c0 + (P̂ (0)

⌦ C(1)
⌦ f)[a]c (C(1)

⌦ f)[b]c0

+ (G(1)
⌦ f)[a]c (P̂ (0)

⌦G(1)
⌦ f)[b]c0 + (P̂ (0)

⌦G(1)
⌦ f)[a]c (G(1)

⌦ f)[b]c0

� 4�0⇡
h
H̃(2)f [a]

c f [b]
c0 + (C̃(2)

⌦ f)[a]c f [b]
c0 + f [a]

c (C̃(2)
⌦ f)[b]c0

+H(1)
(C(1)

⌦ f)[a]c f [b]
c0 +H(1)f [a]

c (C(1)
⌦ f)[b]c0

+ (C(1)
⌦ f)[a]c (C(1)

⌦ f)[b]c0 + (G(1)
⌦ f)[a]c (G(1)

⌦ f)[b]c0
i

� 4�1⇡
2
h
H(1)f [a]

c f [b]
c0 + (C(1)

⌦ f)[a]c f [b]
c0 + f [a]

c (C(1)
⌦ f)[b]c0

i�
. (C.5)

D Scale dependence of the MiNNLOPS formula

In this appendix we discuss the renormalisation and factorisation scale dependence of the
MiNNLOPS formula (4.34). The scale variation in the fixed-order ingredients is performed
in the conventional way. As far as the Sudakov and the extra NNLO terms are concerned,
we do not follow the procedure for scale variations adopted in ref. [6]. Instead, we introduce
the renormalisation and factorisation scale variation in all terms of eq. (2.20) as it is cus-
tomarily done in transverse-momentum resummations, and described below. We consider
our starting formula (2.7), and focus on the first term, namely
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)
. (D.1)

We start by discussing the factor L, defined in eq. (4.31). We change the renormalisation
scale of the coupling from pT to KR pT, and the factorisation scale of the parton densities
from pT to KF pT. This induces the following scale dependence on its building blocks in
order to balance scale variations to the desired accuracy. The coefficients H(1) and H̃(2)
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pT resummation
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(3) acquires additional explicit scale-dependent terms:
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E Considerations from impact-parameter space formulation

In this section, we derive the form of the starting equation (2.7) using the impact-parameter
space formulation of transverse-momentum resummation. We start from the formula
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ḡ3(�b) , (E.2)

and �b = ↵s(Q)�0 ln(Qb/b0), b0 = 2e��E . The gi functions are analogous to those used in
momentum space (B.7), and [69]
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The factor Lb is defined as
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where H̄ is identical to H of eq. (B.11), with the only difference being that the H̄(2)

coefficient does not contain the term �H
(2) (B.14).

We evaluate the b integral by expanding b0/b about pT in the integrand. While this
procedure is known to generate a geometric singularity in the pT space resummation, in this
article we are only interested in retaining O(↵2

s) accuracy and therefore this is not an issue
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where H̄ is identical to H of eq. (B.11), with the only difference being that the H̄(2)

coefficient does not contain the term �H
(2) (B.14).

We evaluate the b integral by expanding b0/b about pT in the integrand. While this
procedure is known to generate a geometric singularity in the pT space resummation, in this
article we are only interested in retaining O(↵2

s) accuracy and therefore this is not an issue
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for the present discussion. We follow the appendix of ref. [60], and by neglecting terms that
contribute beyond O(↵2
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where S000
(pT) = dS00

(pT)/d ln(Qb/b0). After performing the derivatives, we observe that,
retaining O(↵2

s) accuracy, we can approximate the above equation as follows
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We directly observe that the two terms proportional to S00 are analogous to those produced
in the last line of eq. (4.23). These two terms can be incorporated in the master formula via
the replacements (4.26). On the other hand, the term proportional to S000 is a new feature
of the b-space formulation, and it is not present in the momentum space formulation. Using
the expression
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This is precisely the difference between the H̄(2) coefficient (defined in b space) and the H(2)

coefficient present in the momentum-space formulation. Therefore, the O(↵2
s) expansion of

eq. (E.6) coincides with that of eq. (2.7).
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Finally, we take the derivative in pT in order to obtain the singular structure of the differ-
ential pT distribution, that reads

d�sing

d�FdpT

=

Z
hdk1ie

�S̃(kT,1)

"
S̃0
(kT,1) 1 +

↵s(kT,1)

⇡
P̂ + 2�(↵s(kT,1))

d ln C̃

d↵s

#

⌦

⇢
�̃

(C)
(kT,1,⇤)L̃

(C)
(kT,1) +

Z
hdk2i


S̃0
(kT,2) 1 +

↵s(kT,2)

⇡
P̂

�
⇥(kT,1 � kT,2)

⌦

⇣
�̃

(C)
(kT,1, kT,2)L̃

(C)
(kT,1)

⌘�
�(pT � kT,1) +O(↵3

s) . (4.28)

In order to be accurate across the whole pT spectrum, we need to match eq. (4.28) to the
NLO differential cross section for the production of the colour-singlet system in association
with one jet. This can be performed in two steps.

The first step is to observe that the second emission is distributed in a way that
closely mimics the treatment of the radiation in the POWHEG method [21] discussed
in section 2.1, that is generated according to the probability

�pwg(⇤) +

Z
d�rad�pwg(pT,rad)

R(�FJ,�rad)

B(�FJ)
, (4.29)

where the factor �rad represents the full FKS [27] radiation phase space for the second
emission k2.8 The quantities R and B represent the tree-level squared amplitudes for FJJ

(double emission) and FJ (single emission), respectively. Therefore, the second emission can
be directly generated according to the POWHEG method, which guarantees an accurate
description at tree level for k2 over the whole radiation phase space �rad.

We can then focus on the first cluster contribution. For simplicity we can integrate
eq. (4.28) explicitly over the second emission k2, stressing that the latter can be restored

8We point out that the parton densities are included in the POWHEG Sudakov �pwg, yielding a
contribution analogous to the luminosity factor L.
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for the present discussion. We follow the appendix of ref. [60], and by neglecting terms that
contribute beyond O(↵2

s), we obtain

d�(pT)

d�F

= e�S(pT)

⇢
Lb(pT)

✓
1�

1

2
S00

(pT)@
2
S0 +

1

6
S000

(pT)@
3
S0

◆
+

1

2
S00

(pT)
dLb(pT)

d ln(Q/pT)
@3
S0

�

⇥ e��ES0 �(1�
S0

2 )

�(1 +
S0
2 )

+O(↵3
s(Q)) , (E.5)

where S000
(pT) = dS00

(pT)/d ln(Qb/b0). After performing the derivatives, we observe that,
retaining O(↵2

s) accuracy, we can approximate the above equation as follows

d�(pT)

d�F

= e�S(pT)

⇢
Lb(pT)
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1�

⇣3
4
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(pT)S
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⇣3
12

S000
(pT)

◆

�
⇣3
4

↵s(pT)

⇡
S00

(pT)P̂ ⌦ Lb(pT)

�
+O(↵3

s(Q)) . (E.6)

We directly observe that the two terms proportional to S00 are analogous to those produced
in the last line of eq. (4.23). These two terms can be incorporated in the master formula via
the replacements (4.26). On the other hand, the term proportional to S000 is a new feature
of the b-space formulation, and it is not present in the momentum space formulation. Using
the expression

S000
(pT) = 32A(1)⇡�0

↵2
s

(2⇡)2
+O(↵3

s) (E.7)

we observe that the new O(↵2
s) constant term 8/3 ⇣3A(1)⇡�0 can be absorbed into the

coefficient H̄(2) as
H̄(2)

! H(2)
= H̄(2)

+
8

3
⇣3A

(1)⇡�0 . (E.8)

This is precisely the difference between the H̄(2) coefficient (defined in b space) and the H(2)

coefficient present in the momentum-space formulation. Therefore, the O(↵2
s) expansion of

eq. (E.6) coincides with that of eq. (2.7).
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redefining:


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D Scale dependence of the MiNNLOPS formula

In this appendix we discuss the renormalisation and factorisation scale dependence of the
MiNNLOPS formula (4.34). The scale variation in the fixed-order ingredients is performed
in the conventional way. As far as the Sudakov and the extra NNLO terms are concerned,
we do not follow the procedure for scale variations adopted in ref. [6]. Instead, we introduce
the renormalisation and factorisation scale variation in all terms of eq. (2.20) as it is cus-
tomarily done in transverse-momentum resummations, and described below. We consider
our starting formula (2.7), and focus on the first term, namely

d�sing

d�FdpT

=
d

dpT

⇢
exp[�S̃(pT)]L(pT)

)
. (D.1)

We start by discussing the factor L, defined in eq. (4.31). We change the renormalisation
scale of the coupling from pT to KR pT, and the factorisation scale of the parton densities
from pT to KF pT. This induces the following scale dependence on its building blocks in
order to balance scale variations to the desired accuracy. The coefficients H(1) and H̃(2)
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NLO (F+jet):

MiNLO:

analytic all-order formula:

121

• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads
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. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows
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�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term
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,
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[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.14)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
of eq. 2.9 contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (2.9) between the infrared scale ⇤ and Q is given by [1]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.15)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (2.9). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (2.9) we obtain the MiNLO0 formula [1], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.16)

Notice that eq. (2.11) corresponds precisely to eq. (??) for an observable

O(�) = �(�B(�)� �F ) �(pt(�)� pt). (2.17)

It is now natural to extend its precision up to NNLO (i.e. O(↵2
s(Q)) accuracy in the total

cross section). One observes that this requires the inclusion of all terms up to O(↵3
s(pT))

in the curly brackets of eq. (2.9)

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.18)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (2.5).

The regular terms not explicitly reported in eq. (2.12) arise from the O(↵3
s(pT)) expansion

of the term Rf (pT)/ exp[�S(pT)] in eq. (2.9), which vanish in the limit pT ! 0. The
absence of a 1/pT singularity, ensures that such terms give a N3LO contribution to the total
cross section, and therefore they can be ignored. We explicitly verified that their inclusion
yields a negligible numerical effect. Eq. (2.12) constitutes our master formula to build the
MiNNLOPS generator. This simply amounts to add to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.19)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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NLO (F+jet):

MiNLO:

analytic all-order formula:

121

• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�
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= exp[�S(pT)]
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2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ
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↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]
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+


dL(pT)

dpT

�(3)
(2.21)
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pT

✓
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ln
Q2

p2T
+B(1)

◆
[L(pT)]
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+

2
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✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]
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+


dL(pT)

dpT

�(3)
,
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
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⇤
dpT

1
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↵m

s (pT) ln
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pT

Q
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2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads
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2⇡
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. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�
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= exp[�S(pT)]
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[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)
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
dS(pT)

dpT

�(1)
[L(pT)]

(2)
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
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[L(pT)]
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(2.21)

=
2

pT

✓
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✓
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+
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�
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= exp[�S(pT)]

⇢
↵s(pT)
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
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�(1)✓
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2⇡
[S(pT)]

(1)

◆

+
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↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ
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�(1)✓
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2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)
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+
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◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT
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[L(pT)]
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=
2
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✓
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ln
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+
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✓
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+
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+
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↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
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pT

✓
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p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
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ln
Q2

p2T
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[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.14)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
of eq. 2.9 contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (2.9) between the infrared scale ⇤ and Q is given by [1]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.15)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (2.9). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (2.9) we obtain the MiNLO0 formula [1], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.16)

Notice that eq. (2.11) corresponds precisely to eq. (??) for an observable

O(�) = �(�B(�)� �F ) �(pt(�)� pt). (2.17)

It is now natural to extend its precision up to NNLO (i.e. O(↵2
s(Q)) accuracy in the total

cross section). One observes that this requires the inclusion of all terms up to O(↵3
s(pT))

in the curly brackets of eq. (2.9)
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↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡
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d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.18)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (2.5).

The regular terms not explicitly reported in eq. (2.12) arise from the O(↵3
s(pT)) expansion

of the term Rf (pT)/ exp[�S(pT)] in eq. (2.9), which vanish in the limit pT ! 0. The
absence of a 1/pT singularity, ensures that such terms give a N3LO contribution to the total
cross section, and therefore they can be ignored. We explicitly verified that their inclusion
yields a negligible numerical effect. Eq. (2.12) constitutes our master formula to build the
MiNNLOPS generator. This simply amounts to add to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT
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[L(pT)]

(2)
�


dS(pT)

dpT
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[L(pT)]

(1)
+


dL(pT)

dpT
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(2.19)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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NLO (F+jet):

MiNLO:

analytic all-order formula:

121

• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)

– 4 –

where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
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and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
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where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)
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�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
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This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
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We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable
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that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
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s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
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Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
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all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3
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◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)
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◆3
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+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term
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dpT
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[L(pT)]

(1)
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(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


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– 7 –

where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.14)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
of eq. 2.9 contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (2.9) between the infrared scale ⇤ and Q is given by [1]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.15)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (2.9). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (2.9) we obtain the MiNLO0 formula [1], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.16)

Notice that eq. (2.11) corresponds precisely to eq. (??) for an observable

O(�) = �(�B(�)� �F ) �(pt(�)� pt). (2.17)

It is now natural to extend its precision up to NNLO (i.e. O(↵2
s(Q)) accuracy in the total

cross section). One observes that this requires the inclusion of all terms up to O(↵3
s(pT))

in the curly brackets of eq. (2.9)

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.18)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (2.5).

The regular terms not explicitly reported in eq. (2.12) arise from the O(↵3
s(pT)) expansion

of the term Rf (pT)/ exp[�S(pT)] in eq. (2.9), which vanish in the limit pT ! 0. The
absence of a 1/pT singularity, ensures that such terms give a N3LO contribution to the total
cross section, and therefore they can be ignored. We explicitly verified that their inclusion
yields a negligible numerical effect. Eq. (2.12) constitutes our master formula to build the
MiNNLOPS generator. This simply amounts to add to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.19)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,

– 7 –

counting:

MiNLO missing terms
for NNLO accuracy

New approach:  MiNNLOPS
[Monni, Nason, Re, MW, Zanderighi '19]



Marius Wiesemann    (MPI Munich) February 27th, 2020Diboson production at the LHC: Precision phenomenology 122

MiNNLOPS practical implementation
[Monni, Nason, Re, MW, Zanderighi '19]

fully differentially by closely following the POWHEG procedure as previously discussed.
We obtain

d�sing

d�FdpT

= e�S̃(pT)

"
S̃0
(pT) 1 +

↵s(pT)

⇡
P̂ + 2�(↵s(pT))

d ln C̃

d↵s

#
⌦ L̃

(C)
(pT) +O(↵3

s(Q))

=

d

h
e�S̃(pT)L̃(C)

(pT)

i

dpT

+O(↵3
s) , (4.30)

where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃

(C) with the full luminosity
factor as

L̃
(C)

(kT,1) ! L(kT,1) =
X

c,c0

d|MF
|
2
cc0

d�F

X

i,j

⇢⇣
C̃ [a]
ci ⌦ f [a]

i

⌘
H̃(kT,1)

⇣
C̃ [b]
c0j ⌦ f [b]

j

⌘

+

⇣
G[a]

ci ⌦ f [a]
i

⌘
H̃(kT,1)

⇣
G[b]

c0j ⌦ f [b]
j

⌘�
. (4.31)

Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to

d�

d�FdpT

=

d

h
e�S̃(pT)L(pT)

i

dpT

+Rf (pT) +O(↵3
s) , (4.32)

where we used eq. (2.14), namely

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
. (4.33)

The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain

d�

d�FJ

=exp[�S̃(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FJ

�(1)✓
1 +

↵s(pT)

2⇡
[S̃(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FJ

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)F corr

(�FJ)

�

⇥

⇢
�pwg(⇤) +

Z
d�rad�pwg(pT,rad)

R(�FJ,�rad)

B(�FJ)

�
+O(↵3

s) , (4.34)
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where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃

(C) with the full luminosity
factor as
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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fully differentially by closely following the POWHEG procedure as previously discussed.
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where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃

(C) with the full luminosity
factor as
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain

d�

d�FJ

=exp[�S̃(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FJ

�(1)✓
1 +

↵s(pT)

2⇡
[S̃(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FJ

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)F corr

(�FJ)

�

⇥

⇢
�pwg(⇤) +

Z
d�rad�pwg(pT,rad)

R(�FJ,�rad)

B(�FJ)

�
+O(↵3

s) , (4.34)

– 19 –

fully differentially by closely following the POWHEG procedure as previously discussed.
We obtain

d�sing

d�FdpT

= e�S̃(pT)

"
S̃0
(pT) 1 +

↵s(pT)

⇡
P̂ + 2�(↵s(pT))

d ln C̃

d↵s

#
⌦ L̃

(C)
(pT) +O(↵3

s(Q))

=

d

h
e�S̃(pT)L̃(C)

(pT)

i

dpT

+O(↵3
s) , (4.30)

where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃

(C) with the full luminosity
factor as

L̃
(C)

(kT,1) ! L(kT,1) =
X

c,c0

d|MF
|
2
cc0

d�F

X

i,j

⇢⇣
C̃ [a]
ci ⌦ f [a]

i

⌘
H̃(kT,1)

⇣
C̃ [b]
c0j ⌦ f [b]

j

⌘

+

⇣
G[a]

ci ⌦ f [a]
i

⌘
H̃(kT,1)

⇣
G[b]

c0j ⌦ f [b]
j

⌘�
. (4.31)

Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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fully differentially by closely following the POWHEG procedure as previously discussed.
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where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃

(C) with the full luminosity
factor as
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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terms up to O(↵3
s(pT)) in the curly brackets of eq. (2.16), and we obtain
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where [D(pT)]
(3) is the third-order term in the expansion of the D(pT) function (2.12).

The regular terms that we omitted in eq. (2.20) arise from the O(↵3
s(pT)) expansion of the

term Rf (pT)/ exp[�S̃(pT)] in eq. (2.16), which vanish in the limit pT ! 0. The absence
of a 1/pT singularity ensures that such terms give a N3LO contribution to the total cross
section, and therefore can be ignored. We explicitly verified that their inclusion yields a
subleading numerical effect. Equation (2.20) constitutes the reference formula to build the
MiNNLOPS generator. This simply amounts to adding to the MiNLO0 formula the new
term
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where all coefficients are defined in appendices B and C.

3 Implementation of the [D(pT)](3) term in the MiNLO
0
framework

The MiNLO0 method based on eq. (2.18) has been implemented within the POWHEG-
BOX framework [25] and it has been thoroughly tested. In order to achieve NNLO accuracy,
we therefore include the new terms discussed in the previous section as a correction to the
existing implementation.

We recall that all terms in the MiNLO0 formula (2.18) are directly related to the phase
space of the production of the colour singlet F together with either one (�FJ) or two jets
(�FJJ). Conversely, in the MiNNLOPS master formula (2.20), the new term [D(pT)]

(3)

arises from a resummed calculation in the pT ! 0 limit where the information about the
rapidity of the radiation has been integrated out inclusively. As such it depends on the
phase space �F of the colour singlet with no additional radiation, and carries an explicit
dependence on the pT of the system. This dependence, however, does not correspond
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fully differentially by closely following the POWHEG procedure as previously discussed.
We obtain
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dpT

+O(↵3
s) , (4.30)

where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃

(C) with the full luminosity
factor as
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Equation (4.30), when expanded, correctly reproduces up to O(↵2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT ! 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT ! 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to

d�
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d
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where we used eq. (2.14), namely
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The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain
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MiNNLOPS master formula

the MiNNLOPS formula, since at finite transverse momentum [D(pT)]
(3) contributes with

a O(↵3
s(Q)) correction to the integrated cross section. It follows that at large values of pT

the kinematics associated with the [D(pT)]
(3) terms can be completed in an arbitrary way,

implying variations beyond NNLO accuracy. In particular, we observe that a �F phase-
space point can be obtained from a �FJ phase-space point through a suitable mapping,
while the pT corresponds to that of the �FJ kinematics. The mapping should project �FJ

to �F smoothly when pT ! 0.
In order to embed the new MiNNLOPS formulation of eq. (2.20) into the MiNLO0

framework, one must therefore associate each value of [D(pT)]
(3) to a specific point in the

�FJ phase space. This requires supplementing the �F and pT information of the [D(pT)]
(3)

term with the remaining kinematics of the radiation that has been previously lost. In other
words, [D(pT)]

(3) should be spread over the �FJ phase space in such a way that, upon
integration, eq. (2.20) is eventually reproduced.

The most obvious way to spread the [D(pT)]
(3) term in the �FJ phase space is either

uniformly, or according to some distribution of choice. To this end, we multiply [D(pT)]
(3)

by the following factor

F corr
` (�FJ) =

J`(�FJ)P
l0
R
d�0

FJJl0(�
0
FJ)�(pT � pT

0)�(�F � �0
F)
, (3.1)

where �F (�0
F) is a projection of the �FJ (�0

FJ) phase into the phase space for the production
of the colour singlet F alone (for instance performed according to the FKS mapping for
initial-state radiation (ISR) discussed in section 5.5.1 of ref. [24], that preserves the rapidity
of the colour-singlet system). J` is an arbitrary function of �FJ, and ` labels the flavour
structure of the FJ production process. Finally, pT is the transverse momentum of the
radiation (hence that of the colour singlet) in the �FJ phase space. The factor F corr

` is such
that upon integration in the �FJ phase space together with a function that depends only on
pT and �F, the result reduces to the integral of that function over �F and pT. In formulae,
for an arbitrary function G(�F, pT), we have

X

`

Z
d�

0
FJG(�

0
F, pT

0
)F corr

` (�
0
FJ) =

Z
d�F dpTG(�F, pT)

⇥

X
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Z
d�

0
FJ�(�F � �

0
F)�(pT � pT

0
)F corr

` (�
0
FJ) =

Z
d�F dpTG(�F, pT) . (3.2)

The full phase-space parametrisation and the �FJ ! �F mapping are given in appendix A.
The function J`(�FJ) in eq. (3.1) gives us some freedom in choosing how to spread

[D(pT)]
(3) in the radiation phase space. Among the sensible choices, one could simply use

a uniform distribution by setting
J`(�FJ) = 1 . (3.3)

For this trivial choice an analytic solution for the integral in the denominator of eq. (3.1) is
given for illustration in appendix A. However, we found that this choice generates a spurious
behaviour when the jet is produced at very large rapidities. A more natural choice is to
spread [D(pT)]

(3) according to the actual rapidity distribution of the radiation, by setting
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the kinematics associated with the [D(pT)]
(3) terms can be completed in an arbitrary way,
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to �F smoothly when pT ! 0.
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where |MFJ
` (�FJ)|

2 is the tree-level matrix element squared for the FJ process, and the
quantity (f [a]f [b]

)` represents the product of the parton densities in the initial-state flavour
configuration given by the index `. This choice provides a more physical distribution of
[D(pT)]

(3), but it can become computationally expensive for complex processes with several
degrees of freedom as the integral in the denominator of eq. (3.1) has to be evaluated for
every phase-space point numerically. A convenient compromise is to take the collinear limit
of the squared amplitude of eq. (3.4), namely

|MFJ
` (�FJ)|

2
' |MF

(�F)|
2P`(�rad) , (3.5)

where |MF
(�F)|

2 is the Born matrix element squared for the production of the colour singlet
F, and P`(�rad) is the collinear splitting function. After noticing that the Born squared
amplitude |MF

(�F)|
2 cancels in the ratio of eq. (3.1), we can simply set

J`(�FJ) = P`(�rad)(f
[a]f [b]

)` , (3.6)

where the full expression is reported in eqs. (A.14), (A.13). This prescription is computa-
tionally faster, since the integral in the denominator of eq. (3.1) has a better convergence,
and it does not change for more involved processes.

With these considerations, eq. (2.20) can be recast in a way that is differential in the
entire �FJ phase space as

d�
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(3)F corr
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�
,

where the sum over flavour configurations is understood, and pT is meant to be defined in
the �FJ phase space.

A second aspect relevant to the implementation of the MiNNLOPS procedure is re-
lated to how one switches off the Sudakov form factor, as well as the terms [S̃(pT)]

(1) and
[D(pT)]

(3) in eq. (3.7), in the large pT region of the spectrum. We stress that the details
of this operation do not modify the accuracy of the result. This is because in the large pT

region eq. (3.7) differs from the NLO FJ distribution only by O(↵3
s) corrections relative to

the Born. This implies that one has some freedom in choosing how to turn off the loga-
rithmic terms at scales pT & Q. One important constraint to keep in mind is that in the
regime pT ⌧ Q the logarithmic structure has to be preserved in order to retain the NNLO
accuracy in the total (inclusive) cross section.

There are of course different sensible ways to switch off the logarithmic terms at large
pT. One possibility is to set the quantities S̃(pT), [S̃(pT)]

(1), and [D(pT)]
(3) to zero at

pT � Q. This prescription is adopted in the original MiNLO0 implementation of ref. [7]. A
second possibility, closer in spirit to what is done in resummed calculations, is to modify
the logarithms contained in S̃(pT), [S̃(pT)]

(1), and [D(pT)]
(3), so that they vanish in the

large pT limit. This is done by means of the following replacement
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