Proton structure in the precision LHC era

Cameron Voisey University of Cambridge

Cavendish-DAMTP seminar

24 October 2019

- 1. Proton structure (PDFs) and NNPDF
- 2.PDFs in the precision LHC era
- 3.New sources of uncertainty in PDF determinations
 - Approach I: The theoretical covariance matrix
 - Approach II: Monte Carlo scale uncertainties

What are PDFs?

$$\sigma_{p_1 p_2 \to X} = \sum_{\substack{a,b \in \{g,q,\bar{q}\} \\ \text{NNPDF3.1 (NNLO)} \\ \text{xf}(xu^2 = 10 \text{ GeV}^2)}} \int_{f(xu^2 = 10 \text{ GeV}^2)} \int_{f(xu^$$

- Parton distribution functions (PDFs) represent the distribution of quarks and gluons within the proton for a given Bjorken-*x* and energy scale μ
- Proton structure is in **non-perturbative** regime: cannot use perturbation theory to calculate PDFs

 10^{-2}

10⁻¹

Х

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3F

0.2

0.1

 10^{-3}

a/10

Cavendish-DAMTP seminar, Cameron Voisey

How do we extract PDFs?

The NNPDF approach

Guiding principles: introduce **minimal theoretical prejudice** into functional form of PDFs, and use **statistically sound error propagation**

- 1. Generate N_{rep} 'data replicas' by Monte Carlo sampling according to distribution of exp. data and their uncertainties, correlations (defined by cov_{exp})
- 2. For each data replica, parametrise PDFs with **Neural Networks**
- 3. Fit $N_{\rm rep}$ **'PDF replicas'** using χ^2 as a figure of merit with certain **algorithm**

$$\chi^2 = (data - theory)^T (cov_{exp})^{-1} (data - theory)$$

 $\mathsf{COV}_{\mathrm{exp},\mathrm{ij}} = \rho_{ij}\,\sigma_i\,\sigma_j$

 \Rightarrow maximise agreement between data and theoretical predictions for each replica

24/10/19

The NNPDF approach

- PDF uncertainties = propagated experimental uncertainties
- Methodological uncertainties under control (see 'closure tests')
- Uncertainties on theoretical predictions not included

State-of-the-art PDFs

- PDFs now high precision: 1% uncertainty in data region
- Uncertainties will get **smaller** with HL-LHC
- PDFs are **precise**, but are they **accurate**?

Theoretical uncertainties at the LHC

- · Missing higher-order uncertainties (MHOUs) often dominant at LHC
- MHOUs are uncertainties due to **truncation** of series used in calculations, namely in **partonic cross sections** and **PDF evolution** (DGLAP equations)

Estimating MHOUs

Standard technique: scale variations

- Thinking behind method:
 - 1. μ_R , μ_F are "unphysical" scales that all-orders prediction cannot depend on
 - 2. Varying μ_R , μ_F in $O(\alpha_s^n)$ calculation generates $O(\alpha_s^{n+1})$ terms
- Convention (for hadronic processes): vary μ_R in **partonic cross section** and μ_F in **PDF**, where

Compute observable for different scale combinations and take envelope

Missing higher-order uncertainties & PDFs

 Standard PDF fits use fixed-order partonic cross sections and fixed-order PDF evolution (NNLO for state-of-the-art PDFs)

- NNLO-NLO PDF shift now of same order or larger than PDF uncertainties
- Should we worry about accuracy of PDFs? Looking forward: yes

PDF determinations

PDF determinations

How to extend scale variation to global PDF fits?

- O(4000) data points from different processes
- How to **correlate**? Common DGLAP evolution, different α_s dependence in partonic cross sections

PDF fits with varied scales

Starting point for estimating MHOUs:

- Produce PDF fits for range of scale combinations
- Define MHOUs band as envelope of central values

PDF fits with varied scales

Starting point for estimating MHOUs:

- Produce PDF fits for range of scale combinations
- Define MHOUs band as envelope of central values

- Neglects correlations in scale variations
- MHOUs only estimated, not included in PDF uncertainties

Can we include MHOUs and their correlations in PDF uncertainties by accounting for them in **fitting methodology**?

Approach I: The theoretical covariance matrix

arXiv: 1906.10698 - long paper arXiv: 1905.04311 - summary paper

The theoretical covariance matrix

Experimental uncertainties propagated to PDFs via minimisation of figure of merit:

$$\chi^2 = (data - theory)^T (cov_{exp})^{-1} (data - theory)$$

Modify this to account for theory errors: [R. D. Ball & A. Deshpande, 2018]

$$\chi_{tot}^2 = (data - theory)^T (cov_{exp} + cov_{th})^{-1} (data - theory)$$

Assumptions:

- 1. Theoretical uncertainties independent from experimental uncertainties
 - \rightarrow we are adding exp. and th. uncertainties in quadrature
- 2. Theoretical uncertainties are Gaussianly distributed

Applicable to other types of theoretical uncertainty, e.g. Monte Carlo, nuclear uncertainties [R. D. Ball et al, 2018], ...

Construct covth from scale variations to estimate:

- 1. MHOU on each point
- 2. Correlations between points

1

$$\operatorname{cov}_{\text{th},\text{ij}} = \frac{1}{N} \sum_{k} \Delta_{i}^{(k)} \Delta_{j}^{(k)} \qquad \Delta_{i}^{(k)} = t_{i}(\mu_{R}, \mu_{F}) - t_{i}(\mu_{R,0}, \mu_{F,0})$$

Choices:

- 0. Definition of covariance matrix
- 1. Range of scale variation
- 2. Number of scale combinations (3, 7, ...)
- 3. Correlation between scales (same process, different processes)
- 4. Process categorisation
- 5. Type of scale variation

24/10/19

Cavendish-DAMTP seminar, Cameron Voisey

Construct covth from scale variations to estimate:

- 1. MHOU on each point
- 2. Correlations between points

$$\operatorname{cov}_{\text{th},\text{ij}} = \frac{1}{N} \sum_{k} \Delta_{i}^{(k)} \Delta_{j}^{(k)} \qquad \Delta_{i}^{(k)} = t_{i}(\mu_{R}, \mu_{F}) - t_{i}(\mu_{R,0}, \mu_{F,0})$$

Choices:

- 0. Definition of covariance matrix
- 1. Range of scale variation
- 2. Number of scale combinations (3, 7, ...)
- 3. Correlation between scales (same process, different processes)
- 4. Process categorisation
- 5. Type of scale variation

24/10/19

$$\boxed{\frac{1}{2} \le k_F, k_R \le 2}$$

i, *j*: data points

k: scale combinations

Construct covth from scale variations to estimate:

- 1. MHOU on each point
- 2. Correlations between points

$$\operatorname{cov}_{\mathrm{th},\mathrm{ij}} = \frac{1}{N} \sum_{k} \Delta_{i}^{(k)} \Delta_{j}^{(k)} \qquad \Delta_{i}^{(k)} = t_{i}(\mu_{R}, \mu_{F}) - t_{i}(\mu_{R,0}, \mu_{F,0})$$

i, j: data points *k*: scale combinations

Choices:

- 0. Definition of covariance matrix
- 1. Range of scale variation
- 2. Number of scale combinations (3, 7, ...)
- 3. Correlation between scales (same process, different processes)
- 4. Process categorisation
- 5. Type of scale variation

24/10/19

Cavendish-DAMTP seminar, Cameron Voisey

How do we correlate scales in this multi-scale problem?

See next slides

Construct covth from scale variations to estimate:

- 1. MHOU on each point
- 2. Correlations between points

$$\operatorname{cov}_{\text{th},\text{ij}} = \frac{1}{N} \sum_{k} \Delta_{i}^{(k)} \Delta_{j}^{(k)} \qquad \Delta_{i}^{(k)} = t_{i}(\mu_{R}, \mu_{F}) - t_{i}(\mu_{R,0}, \mu_{F,0})$$

i, j: data points *k*: scale combinations

Choices:

- 0. Definition of covariance matrix
- 1. Range of scale variation
- 2. Number of scale combinations (3, 7, ...)
- 3. Correlation between scales (same process, different processes)
- 4. Process categorisation
- 5. Type of scale variation

24/10/19

Cavendish-DAMTP seminar, Cameron Voisey

DIS neutral current DIS charged current Drell-Yan Jets Top

Construct covth from scale variations to estimate:

- 1. MHOU on each point
- 2. Correlations between points

$$\operatorname{cov}_{\mathrm{th},\mathrm{ij}} = \frac{1}{N} \sum_{k} \Delta_{i}^{(k)} \Delta_{j}^{(k)} \qquad \Delta_{i}^{(k)} = t_{i}(\mu_{R}, \mu_{F}) - t_{i}(\mu_{R,0}, \mu_{F,0})$$

Choices:

- 0. Definition of covariance matrix
- 1. Range of scale variation
- 2. Number of scale combinations (3, 7, ...)
- 3. Correlation between scales (same process, different processes)
- 4. Process categorisation
- 5. Type of scale variation

Cavendish-DAMTP seminar, Cameron Voisey

i, *j*: data points

• Vary μ_R in $\hat{\sigma}$

• Vary μ_F in PDF

(scale at which

PDF is evaluated)

k: scale combinations

Example: 3-pt theoretical covariance matrix

i, j from different processes

 $\operatorname{cov}_{\mathrm{th},\mathrm{ij}} = \frac{1}{4} \Big\{ (\Delta_i(+,+) + \Delta_i(-,-)) (\Delta_j(+,+) + \Delta_j(-,-)) \Big\}$

where

$$\begin{aligned} \Delta_i(+,+) &= t_i(k_F = 2, \, k_R = 2) - t_i(k_F = 1, \, k_R = 1) \\ \Delta_i(-,-) &= t_i\left(k_F = \frac{1}{2}, \, k_R = \frac{1}{2}\right) - t_i(k_F = 1, \, k_R = 1) \end{aligned}$$

Cavendish-DAMTP seminar, Cameron Voisey

Example: 3-pt theoretical covariance matrix

Cavendish-DAMTP seminar, Cameron Voisey

23

More complex scale combinations: 9-pt

The more complex scale combination allows us to define **more complex correlation structure**:

- same process: μ_F , μ_R fully correlated
- different processes: μ_F fully correlated, μ_R fully uncorrelated

We expect this to produce a more **accurate** correlation structure, since we account for common DGLAP evolution, and different α_s dependence in partonic cross sections

Experiment + theory correlation matrix for 3 points

Validation

We can compare **MHOU per point**, but this only tests diagonal elements of theoretical covariance matrix

→ We want to test **full covariance matrix**: MHOU per point + correlations

- We validate cov_{th} against exact result: **NNLO-NLO shift**
- cov_{th} is **positive semi-definite** (eigenvalues > 0 or 0)
- Eigenvalue of covariance matrix is variance in direction of eigenvector
- Eigenvalue = 0 ⇒ no variance/shift predicted by cov_{th} in direction of eigenvector
- Define **angle**, θ , of matrix as angle between shift and proportion of shift that is contained within **non-zero eigenvectors**

3-pt

Per data set: $0.14^{\circ} \le \theta \le 73.5^{\circ}$

Per process :	Process	Angle, θ
	DIS NC	54°
	DIS CC	36°
	DY	39°
	Jets	24°
	Top	12°

Global:

 $\theta = 52^{\circ}$

3-pt		9-pt
Per data set:	$0.14^{\circ} \le \theta \le 73.5^{\circ}$	$0.00^{\circ} \le \theta \le 24.6^{\circ}$

Per process :	Process	Angle, θ	Process	Angle, θ
	DIS NC	54°	DIS NC	32°
	DIS CC	36°	DIS CC	16°
	DY	39°	DY	22°
	Jets	24°	Jets	14°
	Top	12°	Top	3°

Global:

 $\theta = 52^{\circ}$

 $\theta = 26^{\circ}$

3-pt		9-pt
Per data set:	$0.14^{\circ} \le \theta \le 73.5^{\circ}$	$0.00^{\circ} \le \theta \le 24.6^{\circ}$

Per process :	Process	Angle, θ	Process	Angle, θ
	DIS NC	54°	DIS NC	32°
	DIS CC	36°	DIS CC	16°
	DY	39°	DY	22°
	Jets	24°	Jets	14°
	Top	12°	Top	3°

Global:

$$\theta = 52^{\circ}$$

9-pt does best \rightarrow use this for our PDF fits

 $\theta = 26^{\circ}$

Results: PDF fits with covth

- We use cov_{th} in both MC **sampling** (replica generation) and **fitting** (χ^2)
- Overall small increase in uncertainties (if at all): tensions relieved

 \Rightarrow Increase in PDF uncertainties counteracted by change of data set weighting in fit: addition of MHOUs leads to **better fit**

Results: PDF fits with covth

If NNLO-NLO shift is large compared to standard NLO PDF uncertainty:

- PDF uncertainty increases with addition of cov_{th}
- Shift contained within PDF uncertainty when MHOUs accounted for
 - \Rightarrow More reliable PDF uncertainties

Top pair production

 $pp \rightarrow t\bar{t}$, LHC 13 TeV

- PDF uncertainty increases by 20% once MHOUs included
- Central value shifts by amount comparable to original PDF uncertainty
- Again, "true" NNLO result now within uncertainties
- Slightly less precise, more accurate

Top pair production

Cavendish-DAMTP seminar, Cameron Voisey

- Systematically including MHOUs in PDFs is now important, and will become crucial
- A new framework for including MHOUs in PDFs has been developed, based on **fitting with a theory covariance matrix**
- This is validated against NNLO-NLO shift
- Using this we have produced the first PDF fits including MHOUs, which are more consistent with NNLO PDFs than standard NLO fits
- Framework is applicable to **all sources of theoretical uncertainty**

Shortcomings of the approach

- Black-box approach: user of PDFs has no choice over the prescription used to include MHOUs
 - Effect of scale variations integrated into PDF replicas
- **Missing correlation** when combining PDFs with partonic cross sections:
 - For processes not included in fit (e.g. Higgs), missing μ_F correlation
 - For processes included in fit (e.g. $t\overline{t}$), missing μ_F , μ_R correlation

Approach II: Monte Carlo scales uncertainties

Idea: sample from the space of scale variations for each PDF replica

Overcomes two issues with envelope approach:

- 1. μ_R no longer has to be the same for all processes
- 2. We define a **probability density** for the PDFs by Monte Carlo sampling

Overcomes two issues with the theory covariance matrix approach:

- 1. No longer a "black-box": the user can **resample** the replicas
- 2. Can keep track of **correlation** between scales in observable (e.g. Higgs cross section) and scales in PDFs

Idea: sample from the space of scale variations for each PDF replica

- Split data into N_p processes, assign one μ_F (fully correlated approx.) and N_p renormalisation scales to theory predictions for each replica

Vary these scales. Again,
$$k_F, k_R \in \left(\frac{1}{2}, 1, 2\right)$$

- Build set of $N_{\rm rep}$ replicas where scale info. is recorded (in LHAPDF files)
 - \Rightarrow Experimental uncertainties and MHOUs propagated to PDFs

E.g. rep_1:
$$k_F = 1$$
, $k_{R,\text{DIS NC}} = \frac{1}{2}$, $k_{R,\text{jets}} = 2$, ...
rep_2: $k_F = 2$, $k_{R,\text{DIS NC}} = 2$, $k_{R,\text{jets}} = 1$, ..., etc.

Cavendish-DAMTP seminar, Cameron Voisey

- There are then 3^{N_p+1} scale combinations (729 for $N_p = 5$)
- Given $N_{\rm rep} = 100$ for a normal PDF fit (~ 1 day per replica), impractical to fit same no. of replicas for each scale combination
- \Rightarrow Define **probability distribution** for sampling scale combinations

- There are then 3^{N_p+1} scale combinations (729 for $N_p = 5$)
- Given $N_{\rm rep} = 100$ for a normal PDF fit (~ 1 day per replica), impractical to fit same no. of replicas for each scale combination

⇒ Define **probability distribution** for sampling scale combinations

Define:
$$P(\mu = \xi) = \sum_{\text{all reps where } \mu = \xi} P(\omega), \text{ where } \omega \in (\mu_F, \mu_{R,1}, \dots, \mu_{R,N_p})$$

Define:
$$P(\mu_1 = \xi_1 | \mu_2 = \xi_2) = \frac{1}{P(\mu_2 = \xi_2)} \sum_{\text{all reps where } \mu_1 = \xi_1, \mu_2 = \xi_2} P(\omega)$$

Sampling model - symmetries

1. For one process, probability invariant under exchange of μ_F and μ_R

$$P(\mu_F = \xi) = P(\mu_{R,i} = \xi) \qquad \forall i = 1, \dots, N_p$$

Sampling model - symmetries

1. For one process, probability invariant under exchange of μ_F and μ_R

$$P(\mu_F = \xi) = P(\mu_{R,i} = \xi) \qquad \forall i = 1, \dots, N_p$$

2. Conditional probabilities symmetric

$$P(\mu_F = \xi_x | \mu_{R,i} = \xi_y) = P(\mu_{R,i} = \xi_x | \mu_F = \xi_y) \quad \forall i = 1, \dots, N_p$$

1. For one process, probability invariant under exchange of μ_F and μ_R

$$P(\mu_F = \xi) = P(\mu_{R,i} = \xi) \qquad \forall i = 1, \dots, N_p$$

2. Conditional probabilities symmetric

$$P(\mu_F = \xi_x | \mu_{R,i} = \xi_y) = P(\mu_{R,i} = \xi_x | \mu_F = \xi_y) \quad \forall i = 1, \dots, N_p$$

3. Probability symmetric under flipping of upper and lower variations

$$P(\mu_F = 2, \, \mu_{R,1} = 1, \, \mu_{R,2} = \frac{1}{2}, \dots) = P(\mu_F = \frac{1}{2}, \, \mu_{R,1} = 1, \, \mu_{R,2} = 2, \dots)$$

Sampling model - symmetries

4. Renormalisation scales are not directly dependent on each other

$$P(\mu_{R,i} = \xi_i | \mu_F = \xi_F, \mu_{R,j} = \xi_j) = P(\mu_{R,i} = \xi_i | \mu_F = \xi_F)$$
$$\forall i, j = 1, ..., N_p$$

4. Renormalisation scales are not directly dependent on each other

$$P(\mu_{R,i} = \xi_i | \mu_F = \xi_F, \mu_{R,j} = \xi_j) = P(\mu_{R,i} = \xi_i | \mu_F = \xi_F)$$

5. Symmetry between renormalisation scales

$$P(\mu_{R,i} = \xi) = P(\mu_{R,j} = \xi) \quad \forall i, j = 1, ..., N_p$$
$$P(\mu_{R,i} = \xi | \mu_F = \xi_\mu) = P(\mu_{R,j} = \xi | \mu_F = \xi_\mu)$$

 $\forall i, j = 1, \ldots, N_p$

• μ_R variations independent so we write:

• Four normalisation constraints:

$$\sum_{\xi \in \frac{1}{2}, 1, 2} P(\mu = \xi) = 1 \qquad \sum_{\xi \in \frac{1}{2}, 1, 2} P(\mu = \xi \mid \mu_F = \xi_F) = 1 \qquad 12 \to 8$$

- Symmetry when flipping upper and lower variations: 4 more $8 \rightarrow 4$
- Symmetry when flipping μ_F and μ_R in probability: 1 more $4 \rightarrow 3$

Free parameters

Under the symmetries of the model, there are just three free parameters

$$a \equiv \frac{P(k_F = 1)}{P(k_F = 2)} = \frac{P(k_F = 1)}{P(k_F = \frac{1}{2})}$$
$$b \equiv \frac{P(k_R = 1 \mid k_F = 1)}{P(k_R = 2 \mid k_F = 1)} = \frac{P(k_R = 1 \mid k_F = 1)}{P(k_R = \frac{1}{2} \mid k_F = 1)}$$
$$c \equiv \frac{P(k_R = 2 \mid k_F = 2)}{P(k_R = \frac{1}{2} \mid k_F = 2)} = \frac{P(k_R = \frac{1}{2} \mid k_F = \frac{1}{2})}{P(k_R = 2 \mid k_F = \frac{1}{2})}$$

Interpretation:

- If μ_F and μ_R are totally **independent** then a = b, c = 1
- If μ_F and μ_R are fully **correlated** then $b, c \to \infty$

24/10/19

Preliminary results: PDFs

 $a = 2, b = \frac{10}{3}, c = 9$

- We can plot PDF replicas and analyse the scale dependence for each process
- E.g. here $\mu_F = 0.5$ leads to enhancement of the *u* distribution below 0.05
- Can ask new questions: e.g. do certain scale choices for certain processes lead to bad fits?

24/10/19

Preliminary results: PDFs

- Compatible PDFs with theory cov. mat. and MC scales approaches
- MC scales leads to larger uncertainties in data regions → effect of MHOU not 'integrated out' in MC scale approach

Computing cross sections

'Default' predictions:

 Whatever scale choices in partonic cross section, convolute with all PDF replicas

'Matched' predictions:

- Combine pieces in correlated way
- Convolute PDF replicas with partonic cross section at same scales
- Generate combined scale variation, PDF (inc. MHOU) uncertainty

$$\sigma(\mu_{F,\text{top}},\mu_{R,\text{top}}) = \hat{\sigma}(\mu_R = \mu_{R,\text{top}}) \otimes f^{(k)}(\mu_F = \mu_{F,\text{top}},\mu_R = \mu_{R,\text{top}})$$

$$\sigma(\mu_{F,\text{Higgs}}, \mu_{R,\text{Higgs}}) = \hat{\sigma}(\mu_R = \mu_{R,\text{Higgs}}) \otimes f^{(k)}(\mu_F = \mu_{F,\text{Higgs}})$$

Cavendish-DAMTP seminar, Cameron Voisey

Cavendish-DAMTP seminar, Cameron Voisey

HERA I+II inclusive NC e^+p 820 GeV k2bins10 = 2 Q (GeV) = 3.873

HERA I+II inclusive NC e^+p 820 GeV k2bins10 = 2 Q (GeV) = 3.873

- Develop MC scales approach by e.g. studying impact of choices of *a*, *b*, *c*
- Study differences between two approaches. Do they give similar results?

Refine each approach:

- Study impact of process categorisation
- **Decorrelate** μ_F by having independent variations for different PDFs (singlet vs non-singlet evolution)
- Produce global NNLO fits with MHOUs included will be most state-ofthe-art PDFs available

Thank you for listening!

Extra slides

Theoretical covariance matrix

- Theory is perturbative expansion to some order : $t_p = \sum c_m$
- $P(d|t_p) \propto \exp\left(-\frac{1}{2}(\underline{d-t_p})^T \operatorname{cov}_{\exp}^{-1}(d-t_p)\right) \\ P(t_p|d) = \frac{P(d|t_p)P(t_p)}{P(d)} \propto P(d|t_p)P(t_p)$ Standard case:
 - Bayes' theorem:
- Assume Gaussian theory prior:

$$P(t_p) = \prod_{m=0}^{p} P(c_m) \quad \text{where} \quad P(c_m) \propto \exp\left(-\frac{1}{2} \underbrace{c_m^T \operatorname{cov}_{\operatorname{th},m}^{-1} c_m}_{\operatorname{th},m}\right) \chi_{\operatorname{th}}^2$$

• Assume MHOUs due to $O(\alpha^{p+1})$ terms only \rightarrow marginalise these terms:

$$P(t_p|d) \propto \int dc_{p+1} P(d|c_{p+1}) P(t_{p+1})$$
$$\propto \exp\left(-\frac{1}{2} (\underline{d-t_p})^T (\operatorname{cov}_{\exp} + \operatorname{cov}_{\operatorname{th}})^{-1} (d-t_p)\right) \sum_{p=1}^{2} \frac{d}{dp} e^{-\frac{1}{2}} \left(\frac{d}{dp} + \frac{1}{2} (\underline{d-t_p})^T (\operatorname{cov}_{\exp} + \operatorname{cov}_{\operatorname{th}})^{-1} (d-t_p)\right) \sum_{p=1}^{2} \frac{d}{dp} e^{-\frac{1}{2}} \left(\frac{d}{dp} + \frac{1}{2} (\underline{d-t_p})^T (\operatorname{cov}_{\exp} + \operatorname{cov}_{\operatorname{th}})^{-1} (d-t_p)\right) \sum_{p=1}^{2} \frac{d}{dp} e^{-\frac{1}{2}} e^{-\frac{1}{2}} \left(\frac{d}{dp} + \frac{1}{2} (\underline{d-t_p})^T (\operatorname{cov}_{\exp} + \operatorname{cov}_{\operatorname{th}})^{-1} (d-t_p)\right) \sum_{p=1}^{2} \frac{d}{dp} e^{-\frac{1}{2}} e^{-\frac$$

Include higher order terms by induction

Xtot

THEORY COVARIANCE MATRICES SUBTLETIES I: DEFINITION

"STANDARD" DEFINITION OF SCALE VARIATION: USE RG INVARIANCE OF PHYSICAL OBSERVABLE

- HADRONIC (HXSWG...): $\sigma(Q^2) = \sum_{ij} \hat{\sigma}_{ij} \left(\frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2}, \alpha_s(\mu_R^2) \right) f_i(\mu_F^2) f_j(\mu_F^2)$
 - FACTORIZATION: $f_i({\mu'_F}^2) = \left(1 + P_0 \ln \frac{{\mu'_F}^2}{{\mu'_F}^2}\right) f_i(\mu_F^2)$
 - RENORMALIZATION: $\alpha({\mu'}_r^2)\left(1-\beta_0\alpha\mu_R^2\ln{\frac{{\mu'_R}^2}{{\mu'_R}^2}}\right)$
 - μ_F dep in PDF, μ_R dep in $\hat{\sigma}$
- **DIS** (Virchaux-Milsztajn, MRS, PEGASUS, APFEL,...): $F(Q^2) = \sum_i C_i \left(\frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2}, \alpha_s(Q^2)\right) f_i(\mu_F^2, \mu_R^2)$
 - FACTORIZATION: AS ABOVE
 - RENORMALIZATION: LET $\alpha(\mu_F^2) \rightarrow \alpha(\mu_R^2)$ IN EVOLUTION EQUATION
 - BOTH μ_R , μ_F VARIED IN PDF
- **DIFFERENCE** DIFFERENT NNLO TERMS GENERATED AT NLO "ADDITIVE" VS. "MULTIPLICATIVE"
 - **DIS NLO** $\ln \frac{\mu_R}{\mu_F}$, HADRONIC $\ln \frac{\mu_R}{Q} \ln \frac{\mu_F}{Q}$
 - **DIS NLO** $\beta_0 P_1$ terms, hadronic $\beta_0 + P_1$

\Rightarrow ADOPT A COMMON PRESCRIPTION

Point prescriptions

Validation: size of uncertainties

24/10/19

Cavendish-DAMTP seminar, Cameron Voisey

- Now do this comparison at level of observable predictions
- Recommended method for combining partonic cross section with PDFs: proceed as normal
 - 1. Use DGLAP evolution with central scale choice (μ_F variation accounted for elsewhere)
 - Compute PDF uncertainty as normal, by convoluting all PDF replicas with partonic cross section at central scales: this now includes MHOUs
 - 3. Estimate MHOU on partonic cross section by using scale variations, can e.g. use a point prescription

How does our treatment of MHOUs impact precision

and accuracy of predictions?

Cavendish-DAMTP seminar, Cameron Voisey

Data set and cuts

The following datasets are included in both NNPDF31_nlo_as_0118_1000 and 190302_ern_nlo_central_163_global:

- HERA I+II inclusive NC e⁺p 920 GeV
- NMC p
- LHCb Z 940 pb
- CMS W rapidity 8 TeV
- D0 Z rapidity
- HERA I+II inclusive CC e⁺p
- CDF Z rapidity
- ATLAS low-mass DY 2011
- CMS \$\sigma_{tt}^{\rm tot}\$
- HERA I+II inclusive NC e⁺p 820 GeV
- CHORUS $\sigma_{CC}^{\vec{v}}$
- ATLAS W, Z 7 TeV 2011
- ATLAS HM DY 7 TeV
- ATLAS \$\sigma_{tt}^{\rm tot}\$
- BCDMS d
- BCDMS p
- LHCb $W, Z \rightarrow \mu$ 8 TeV
- CMS *W* asymmetry 840 pb
- HERA I+II inclusive NC e⁺p 575
- NuTeV σ_c^ν
- HERA I+II inclusive NC e⁺p 460
- D0 $W \rightarrow ev$ asymmetry
- HERA I+II inclusive CC e[−]p
 D0 W → μv asymmetry
- NMC d/p
- HERA \$\sigma_c^{\rm NC}\$
- SLAC d
- CMS Drell-Yan 2D 7 TeV 2011
- LHCb $W, Z \rightarrow \mu$ 7 TeV
- LHCb $Z \rightarrow ee 2 \text{ fb}$
- ATLAS *tf* rapidity y_t
- NuTeV σ_c^{ν}
- SLAC p
- ATLAS Z p_T 8 TeV (p_T^{||}, M_{||})
 CHORUS σ_{CC}^V
- ATLAS $Z p_T 8$ TeV $(p_T^{\parallel}, y_{\parallel})$
- CMS jets 7 TeV 2011
- CMS tt rapidity y_{tt}
- HERA I+II inclusive NC e[−]p
- CMS Z p_T 8 TeV (p_T^{II}, y_{II})
- CMS W asymmetry 4.7 fb
- ATLAS W, Z 7 TeV 2010
 ATLAS jets 2011 7 TeV

Changes to cuts:

 $Q_{\rm min}^2 = 3.49 \rightarrow 13.96 \ {\rm GeV}^2$

Intersection of NLO, NNLO cuts

The following datasets are included in NNPDF31_nlo_as_0118_1000 but not in 190302_ern_nlo_central_163_global :

- ATLAS jets 2.76 TeV
- CMS W + c ratio
- DY E886 \$\sigma^p_{\rm DY}\$
- ATLAS jets 2010 7 TeV
- CMS jets 2.76 TeV
- HERA H1 F₂^b
- DYE 866 \$\sigma^d_{\rm DY}/\sigma^p_{\rm DY}\$
- CMS W + c total
- DY E605 \$\sigma^p_{\rm DY}\$
- CDF Run II kt jets
- HERA ZEUS F₂^b

•

Data removed:

- Fixed target Drell-Yan
- Bottom structure function
- Jets without exact NNLO theory
- W+charm

Correlating scale variations between PDFs and predictions

How to use these PDFs consistently in theoretical predictions?

Consider a situation when all data is at one scale. Let us only have evolution uncertainties, i.e. turn off uncertainties in hard cross sections

We have three scales:

- Q_0 : fitting scale of PDFs
- Q_{data} : scale of data
- $\mathcal{Q}_{\mathrm{pred.}}$: scale of prediction

We have two evolutions:

$$Q_0 \rightarrow Q_{\text{data}}$$

 $Q_0 \rightarrow Q_{\text{pred.}}$

- 1. Q_0 is kept fixed. There is no dependence on Q_0 because for a sufficiently flexible parameterisation changes in Q_0 are absorbed by fit
- 2. We vary Q_{data} in fits (in a correlated way among data points)
- 3. One varies $\mathcal{Q}_{\text{pred.}}$ when making a prediction for an observable

Correlating scale variations between PDFs and predictions

How are
$$Q_{\text{data}}$$
 and $Q_{\text{pred.}}$ correlated?

- In our procedure Q_{data} and $Q_{pred.}$ variations will necessarily be uncorrelated necessary consequence of delivering universal PDFs
- For points where $Q_{data} = Q_{pred.} \neq Q_0$, the variations are fully correlated and we overestimate uncertainty by factor of $\sqrt{2}$
- In global fit overestimate due to missing correlation will be between 1 and $\sqrt{2}$, but likely to be closer to 1
- Importantly: if one neglects either variation, one will in general underestimate MHOUs
- Better to have a conservative estimate of uncertainties than to underestimate them
- Same for coefficient function: if estimating μ_R uncertainty for process included in fit, we will miss correlations \Rightarrow larger uncertainty than in ideal scenario
- Not a double counting. Instead, a problem of missing correlation