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Outline

1.Proton structure (PDFs) and NNPDF

2.PDFs in the precision LHC era

3.New sources of uncertainty in PDF determinations


• Approach I: The theoretical covariance matrix

• Approach II: Monte Carlo scale uncertainties
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What are PDFs?

σp1p2→X = ∑
a,b∈{g,q,q̄}

fp1
⊗ fp2

⊗ ̂σab→X

PDFs

• ‘Factorisation’ separates long and short distance 
behaviour


• Parton distribution functions (PDFs) represent the 
distribution of quarks and gluons within the 
proton for a given Bjorken-  and energy scale 


• Proton structure is in non-perturbative regime: 
cannot use perturbation theory to calculate PDFs

x μ
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How do we extract PDFs?

Data 
cross sections and correlations 

(covariance matrix) 
DIS, Drell-Yan 

Top, Jets

Theory 
NNLO predictions,  
DGLAP evolution, 
flavour scheme,  

EW corrections, …

Methodology 
Parametrisation, 

error propagation, 
minimisation

fi(x, μ2) ± Δi(x, μ2)



Cavendish-DAMTP seminar, Cameron Voisey24/10/19 5

The NNPDF approach

Guiding principles: introduce minimal theoretical prejudice into functional form of 
PDFs, and use statistically sound error propagation 

1. Generate  ‘data replicas’ by Monte Carlo sampling according to distribution 
of exp. data and their uncertainties, correlations (defined by )


2. For each data replica, parametrise PDFs with Neural Networks 

3. Fit  ‘PDF replicas’ using  as a figure of merit with certain algorithm





       

                             


  maximise agreement between data and theoretical predictions for each 
replica

Nrep
covexp

Nrep χ2

χ2 = (data − theory)T(covexp)−1(data − theory)

⇒

covexp,ij = ρij σi σj
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The NNPDF approach

• PDF uncertainties = propagated experimental uncertainties

• Methodological uncertainties under control (see ‘closure tests’)

• Uncertainties on theoretical predictions not included
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State-of-the-art PDFs

• PDFs now high precision: 1% uncertainty in data region 
• Uncertainties will get smaller with HL-LHC

• PDFs are precise, but are they accurate?

[Khalek et al, 2018]

[NNPDF, 2017]



Cavendish-DAMTP seminar, Cameron Voisey24/10/19 8

Theoretical uncertainties at the LHC

Example: gluon-gluon fusion


• Missing higher-order uncertainties (MHOUs) often dominant at LHC

• MHOUs are uncertainties due to truncation of series used in calculations, namely 

in partonic cross sections and PDF evolution (DGLAP equations)

NNLO N3LO

[S. Forte, Lattice 2017]
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Estimating MHOUs
Standard technique: scale variations 
• Thinking behind method:


1.  are “unphysical” scales that all-orders prediction cannot depend on


2. Varying  in  calculation generates  terms


• Convention (for hadronic processes): vary  in partonic cross section and  in PDF, 
where 


• Compute observable for different scale combinations and take envelope

μR, μF

μR, μF O(αn
s ) O(αn+1

s )

μR μF

kR, kF ∈ ( 1
2

, 1, 2)

24/10/19

k =
μ
μ0

HXSWG 
recommendation
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Missing higher-order uncertainties & PDFs

[NNPDF, 2017]

• NNLO-NLO PDF shift now of same order or larger than PDF uncertainties

• Should we worry about accuracy of PDFs? Looking forward: yes

• Standard PDF fits use fixed-order partonic cross sections and fixed-order PDF 
evolution (NNLO for state-of-the-art PDFs)

What is the potential impact of MHOUs in PDF fits?
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PDF determinations
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PDF determinations

How to extend scale variation to global PDF fits?

• O(4000) data points from different processes


• How to correlate? Common DGLAP evolution, different  dependence in 
partonic cross sections

αs

Cavendish-DAMTP seminar, Cameron Voisey24/10/19
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PDF fits with varied scales
Starting point for estimating MHOUs: 

• Produce PDF fits for range of scale combinations

• Define MHOUs band as envelope of central values

Cavendish-DAMTP seminar, Cameron Voisey24/10/19
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PDF fits with varied scales
Starting point for estimating MHOUs: 

• Produce PDF fits for range of scale combinations

• Define MHOUs band as envelope of central values

• Neglects correlations in scale variations

• MHOUs only estimated, not included in PDF uncertainties

Can we include MHOUs and their correlations in PDF uncertainties by accounting 

for them in fitting methodology?

Cavendish-DAMTP seminar, Cameron Voisey24/10/19



Approach I:

The theoretical covariance matrix

arXiv: 1906.10698 - long paper 
arXiv: 1905.04311 - summary paper

http://arxiv.org/abs/arXiv:1905.04311


Experimental uncertainties propagated to PDFs via minimisation of figure of merit:


Modify this to account for theory errors: [R. D. Ball & A. Deshpande, 2018]

    


Assumptions:

1. Theoretical uncertainties independent from experimental uncertainties

            we are adding exp. and th. uncertainties in quadrature

2. Theoretical uncertainties are Gaussianly distributed


Applicable to other types of theoretical uncertainty, e.g. Monte Carlo, nuclear 
uncertainties [R. D. Ball et al, 2018], …

16

The theoretical covariance matrix

χ2
tot = (data − theory)T(covexp + covth)−1(data − theory)

χ2 = (data − theory)T(covexp)−1(data − theory)

→

Cavendish-DAMTP seminar, Cameron Voisey24/10/19
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A theoretical covariance matrix for MHOUs

covth,ij =
1
N ∑

k

Δ(k)
i Δ(k)

j Δ(k)
i = ti(μR, μF) − ti(μR,0, μF,0)

i, j: data points

k: scale combinations

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

Construct covth from scale variations to estimate:

1. MHOU on each point

2. Correlations between points


Choices:

 0. Definition of covariance matrix

1. Range of scale variation

2. Number of scale combinations (3, 7, …)

3. Correlation between scales (same process, 

different processes)

4. Process categorisation

5. Type of scale variation
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A theoretical covariance matrix for MHOUs

covth,ij =
1
N ∑

k

Δ(k)
i Δ(k)

j Δ(k)
i = ti(μR, μF) − ti(μR,0, μF,0)

1
2

≤ kF, kR ≤ 2

i, j: data points

k: scale combinations
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Construct covth from scale variations to estimate:

1. MHOU on each point

2. Correlations between points


Choices:

 0. Definition of covariance matrix

1. Range of scale variation

2. Number of scale combinations (3, 7, …)

3. Correlation between scales (same process, 

different processes)

4. Process categorisation

5. Type of scale variation
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A theoretical covariance matrix for MHOUs

covth,ij =
1
N ∑

k

Δ(k)
i Δ(k)

j Δ(k)
i = ti(μR, μF) − ti(μR,0, μF,0)

i, j: data points

k: scale combinations

} How do we correlate 
scales in this multi-scale 
problem? 

See next slides
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Construct covth from scale variations to estimate:

1. MHOU on each point

2. Correlations between points


Choices:

 0. Definition of covariance matrix

1. Range of scale variation

2. Number of scale combinations (3, 7, …)

3. Correlation between scales (same process, 

different processes)

4. Process categorisation

5. Type of scale variation



Construct covth from scale variations to estimate:

1. MHOU on each point

2. Correlations between points
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A theoretical covariance matrix for MHOUs

covth,ij =
1
N ∑

k

Δ(k)
i Δ(k)

j Δ(k)
i = ti(μR, μF) − ti(μR,0, μF,0)

DIS neutral current

DIS charged current

Drell-Yan

Jets

Top

i, j: data points

k: scale combinations
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Choices:

 0. Definition of covariance matrix

1. Range of scale variation

2. Number of scale combinations (3, 7, …)

3. Correlation between scales (same process, 

different processes)

4. Process categorisation

5. Type of scale variation



Construct covth from scale variations to estimate:

1. MHOU on each point

2. Correlations between points
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A theoretical covariance matrix for MHOUs

covth,ij =
1
N ∑

k

Δ(k)
i Δ(k)

j Δ(k)
i = ti(μR, μF) − ti(μR,0, μF,0)

• Vary  in 


• Vary  in PDF 
(scale at which 
PDF is evaluated)

μR ̂σ
μF

i, j: data points

k: scale combinations
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Choices:

 0. Definition of covariance matrix

1. Range of scale variation

2. Number of scale combinations (3, 7, …)

3. Correlation between scales (same process, 

different processes)

4. Process categorisation

5. Type of scale variation
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Example: 3-pt theoretical covariance matrix

i, j from same process

covth,ij =
1
2 {Δi( + , + )Δj( + , + ) + Δi( − , − )Δj( − , − )}

where

i, j from different processes

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

Δi( + , + ) = ti(kF = 2, kR = 2) − ti(kF = 1, kR = 1)

Δi( − , − ) = ti(kF =
1
2

, kR =
1
2 ) − ti(kF = 1, kR = 1)

Assumptions: one  in total, one  per processμF μR

covth,ij =
1
4 {(Δi( + , + ) + Δi( − , − ))(Δj( + , + ) + Δj( − , − ))}
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Example: 3-pt theoretical covariance matrix

i, j from same process

covth,ij =
1
4 {(Δi( + , + ) + Δi( − , − ))(Δj( + , + ) + Δj( − , − ))}

where
Δi( + , + ) = ti(kF = 2, kR = 2) − ti(kF = 1, kR = 1)

Δi( − , − ) = ti(kF =
1
2

, kR =
1
2 ) − ti(kF = 1, kR = 1)

i, j from different processes
  fully correlatedμF, μR

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

  fully uncorrelated


 missing  correlation

μF, μR

⇒ μF

covth,ij =
1
2 {Δi( + , + )Δj( + , + ) + Δi( − , − )Δj( − , − )}

Assumptions: one  in total, one  per processμF μR
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More complex scale combinations: 9-pt

i, j from same process i, j from different processes

The more complex scale combination allows us to define more complex correlation 
structure:


• same process:  fully correlated


• different processes:  fully correlated,  fully uncorrelated


We expect this to produce a more accurate correlation structure, since we account 
for common DGLAP evolution, and different  dependence in partonic cross sections

μF, μR

μF μR

αs

Cavendish-DAMTP seminar, Cameron Voisey24/10/19
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How can we validate and compare our 
theory covariance matrices?

A theoretical covariance matrix for MHOUs

Cavendish-DAMTP seminar, Cameron Voisey24/10/19
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Validation

We can compare MHOU per point, but this only tests diagonal elements 
of theoretical covariance matrix

     We want to test full covariance matrix: MHOU per point + correlations→

Cavendish-DAMTP seminar, Cameron Voisey24/10/19
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Validation: uncertainties + correlations

• We validate covth against exact result: NNLO-NLO shift 

• covth is positive semi-definite (eigenvalues > 0 or 0)

• Eigenvalue of covariance matrix is variance in direction of eigenvector

• Eigenvalue = 0    no variance/shift predicted by covth in direction of 

eigenvector 


• Define angle, , of matrix as angle between shift and proportion of shift 
that is contained within non-zero eigenvectors


⇒

θ

θ = 0∘ : covth predicts 
variation in same 
directions as shift

0∘ ≤ θ ≤ 90∘

Cavendish-DAMTP seminar, Cameron Voisey24/10/19
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Validation: uncertainties + correlations

3-pt 
Per data set:  

Per process:


Global:

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

θ = 52∘

0.14∘ ≤ θ ≤ 73.5∘
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Validation: uncertainties + correlations

3-pt                                                                     9-pt 
Per data set:  

Per process:


Global:

0.14∘ ≤ θ ≤ 73.5∘

θ = 52∘ θ = 26∘

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

0.00∘ ≤ θ ≤ 24.6∘



30

Validation: uncertainties + correlations

9-pt does best       use this for our PDF fits→

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

θ = 52∘

0.14∘ ≤ θ ≤ 73.5∘ 0.00∘ ≤ θ ≤ 24.6∘

θ = 26∘

3-pt                                                                     9-pt 
Per data set:  

Per process:


Global:
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Results: PDF fits with covth

• We use  in both MC sampling (replica generation) and fitting ( )

• Overall small increase in uncertainties (if at all): tensions relieved 

 Increase in PDF uncertainties counteracted by change of data set 
weighting in fit: addition of MHOUs leads to better fit 


covth χ2

⇒

Cavendish-DAMTP seminar, Cameron Voisey24/10/19
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Results: PDF fits with covth

If NNLO-NLO shift is large compared to standard NLO PDF uncertainty:

• PDF uncertainty increases with addition of covth


• Shift contained within PDF uncertainty when MHOUs accounted for


 More reliable PDF uncertainties⇒
Cavendish-DAMTP seminar, Cameron Voisey24/10/19



NNLO
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pp! e+e�, LHC 13 TeV

NNLO PDFs
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Results: Impact at the LHC

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

Z production 

• PDF uncertainties compatible

• PDF uncertainty increases by 

70% once MHOUs included

• Central value shifts beyond 

original PDF uncertainty

• “True” NNLO result now within 

uncertainties

• Less precise, more accurate

“True” NNLO central value

Standard

Approach I
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Results: Impact at the LHC

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

Z production 

• At NNLO, PDF uncertainties 
compatible


• PDF uncertainty increases by 
70%


• Central value shifts beyond 
original PDF uncertainty


• Again, “true” NNLO result now 
within uncertainties


• Less precise, more accurate

“True” NNLO central value

Standard

Approach I

Relevant quantity: 
Light sea quark PDFs down to x ∼ 10−3
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Results: Impact at the LHC

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

Top pair production 

NNLO

780

800

820

840

860

�
[p
b
]

light: scale uncertainty

dark: PDF uncertainty

left: C

right: C+S

pp! tt̄, LHC 13 TeV

NNLO PDFs

• PDF uncertainty increases by 
20% once MHOUs included


• Central value shifts by amount 
comparable to original PDF 
uncertainty


• Again, “true” NNLO result now 
within uncertainties


• Slightly less precise, more 
accurate
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Results: Impact at the LHC
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Top pair production 

NNLO

780

800

820

840

860

�
[p
b
]

light: scale uncertainty

dark: PDF uncertainty

left: C

right: C+S

pp! tt̄, LHC 13 TeV

NNLO PDFs

• PDF uncertainty increases by 
20% once MHOUs included


• Central value shifts by amount 
comparable to original PDF 
uncertainty


• Again, “true” NNLO result now 
within uncertainties


• Slightly less precise, more 
accurate


Relevant quantity: 
Gluon PDF at x ∼ 0.3



• Systematically including MHOUs in PDFs is now important, and will 
become crucial


• A new framework for including MHOUs in PDFs has been developed, 
based on fitting with a theory covariance matrix 

• This is validated against NNLO-NLO shift

• Using this we have produced the first PDF fits including MHOUs, which 

are more consistent with NNLO PDFs than standard NLO fits

• Framework is applicable to all sources of theoretical uncertainty

37

Approach I: Conclusions

Cavendish-DAMTP seminar, Cameron Voisey24/10/19
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Shortcomings of the approach

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

• Black-box approach: user of PDFs has no choice over the prescription 
used to include MHOUs

• Effect of scale variations integrated into PDF replicas


• Missing correlation when combining PDFs with partonic cross sections:


• For processes not included in fit (e.g. Higgs), missing  correlation


• For processes included in fit (e.g.  ), missing ,  correlation


μF

tt̄ μF μR



Approach II:

Monte Carlo scales uncertainties
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Monte Carlo scale uncertainties

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

Overcomes two issues with envelope approach:


1.  no longer has to be the same for all processes

2. We define a probability density for the PDFs by Monte Carlo 

sampling


Overcomes two issues with the theory covariance matrix approach:

1. No longer a “black-box”: the user can resample the replicas

2. Can keep track of correlation between scales in observable (e.g. 

Higgs cross section) and scales in PDFs

μR

Idea: sample from the space of scale variations for each PDF replica
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Monte Carlo scale uncertainties

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

• Split data into  processes, assign one  (fully correlated approx.) and  
renormalisation scales to theory predictions for each replica


• Vary these scales. Again, 


• Build set of  replicas where scale info. is recorded (in LHAPDF files)


 Experimental uncertainties and MHOUs propagated to PDFs


E.g. rep_1:   


        rep_2:  , etc.

Np μF Np

kF, kR ∈ ( 1
2

, 1, 2)
Nrep

⇒

kF = 1, kR,DIS NC =
1
2

, kR,jets = 2, . . .

kF = 2, kR,DIS NC = 2, kR,jets = 1, . . .

Idea: sample from the space of scale variations for each PDF replica
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Monte Carlo scale uncertainties

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

• There are then  scale combinations (729 for )


• Given  for a normal PDF fit (  day per replica), impractical to 
fit same no. of replicas for each scale combination


 Define probability distribution for sampling scale combinations


3Np+1 Np = 5

Nrep = 100 ∼ 1

⇒
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Monte Carlo scale uncertainties

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

• There are then  scale combinations (729 for )


• Given  for a normal PDF fit (  day per replica), impractical to 
fit same no. of replicas for each scale combination


 Define probability distribution for sampling scale combinations


Define:   , where 


Define:  

3Np+1 Np = 5

Nrep = 100 ∼ 1

⇒

P(μ = ξ) = ∑
all reps where μ=ξ

P(ω) ω ∈ (μF, μR,1, . . . , μR,Np
)

P(μ1 = ξ1 |μ2 = ξ2) =
1

P(μ2 = ξ2) ∑
all reps where μ1=ξ1, μ2=ξ2

P(ω)
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Sampling model - symmetries

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

1. For one process, probability invariant under exchange of  and 
μF μR

P(μF = ξ) = P(μR,i = ξ) ∀ i = 1, . . . , Np
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Sampling model - symmetries

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

1. For one process, probability invariant under exchange of  and 


2. Conditional probabilities symmetric


μF μR

P(μF = ξ) = P(μR,i = ξ)

P(μF = ξx |μR,i = ξy) = P(μR,i = ξx |μF = ξy)

∀ i = 1, . . . , Np

∀ i = 1, . . . , Np
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Sampling model - symmetries

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

1. For one process, probability invariant under exchange of  and 


2. Conditional probabilities symmetric


3. Probability symmetric under flipping of upper and lower variations

μF μR

P(μF = 2, μR,1 = 1, μR,2 =
1
2

, . . . ) = P(μF =
1
2

, μR,1 = 1, μR,2 = 2,...)

P(μF = ξ) = P(μR,i = ξ)

∀ i = 1, . . . , NpP(μF = ξx |μR,i = ξy) = P(μR,i = ξx |μF = ξy)

∀ i = 1, . . . , Np
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Sampling model - symmetries

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

4. Renormalisation scales are not directly dependent on each other


P(μR,i = ξi |μF = ξF, μR, j = ξj) = P(μR,i = ξi |μF = ξF)

∀ i, j = 1, . . . , Np



48

Sampling model - symmetries

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

4. Renormalisation scales are not directly dependent on each other


5. Symmetry between renormalisation scales


P(μR,i = ξi |μF = ξF, μR, j = ξj) = P(μR,i = ξi |μF = ξF)

P(μR,i = ξ) = P(μR, j = ξ)

P(μR,i = ξ |μF = ξμ) = P(μR, j = ξ |μF = ξμ)

∀ i, j = 1, . . . , Np

∀ i, j = 1, . . . , Np
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Monte Carlo scale uncertainties

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

•  variations independent so we write:


                                        3                                   9

• Four normalisation constraints:


• Symmetry when flipping upper and lower variations: 4 more


• Symmetry when flipping  and  in probability: 1 more

μR

μF μR

P(μF = ξF, . . . , μR,Np
= ξR,Np

) = P(μF = ξF)
Np

∏
i=1

P(μR,i = ξR,i | μF = ξF)

∑
ξ∈ 1

2 ,1,2

P(μ = ξ) = 1 ∑
ξ∈ 1

2 ,1,2

P(μ = ξ | μF = ξF) = 1 12 → 8

8 → 4

4 → 3
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Free parameters

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

a ≡
P(kF = 1)
P(kF = 2)

=
P(kF = 1)

P(kF = 1
2 )

b ≡
P(kR = 1 |kF = 1)
P(kR = 2 |kF = 1)

=
P(kR = 1 |kF = 1)

P(kR = 1
2 |kF = 1)

c ≡
P(kR = 2 |kF = 2)

P(kR = 1
2 |kF = 2)

=
P(kR = 1

2 |kF = 1
2 )

P(kR = 2 |kF = 1
2 )

Under the symmetries of the model, there are just three free parameters 

Interpretation:


• If  and  are totally independent then , 


• If  and  are fully correlated then 

μF μR a = b c = 1
μF μR b, c → ∞
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Preliminary results: PDFs

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

, , a = 2 b =
10
3

c = 9

DIS CC Jets

• We can plot PDF replicas and analyse the scale dependence for each 
process 

• E.g. here  leads to enhancement of the  distribution below 0.05

• Can ask new questions: e.g. do certain scale choices for certain processes 

lead to bad fits?

μF = 0.5 u
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Preliminary results: PDFs

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

• Compatible PDFs with theory cov. mat. and MC scales approaches


• MC scales leads to larger uncertainties in data regions  effect of 
MHOU not ‘integrated out’ in MC scale approach

→

 

 

a = 2
b =

10
3

c = 9



53

Computing cross sections
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‘Default’ predictions:

• Whatever scale choices in partonic cross section, convolute with all 

PDF replicas


‘Matched’ predictions:

• Combine pieces in correlated way

• Convolute PDF replicas with partonic cross section at same scales

• Generate combined scale variation, PDF (inc. MHOU) uncertainty

σ(μF,top, μR,top) = ̂σ(μR = μR,top) ⊗ f (k)(μF = μF,top, μR = μR,top)

σ(μF,Higgs, μR,Higgs) = ̂σ(μR = μR,Higgs) ⊗ f (k)(μF = μF,Higgs)
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Preliminary results: cross sections

Cavendish-DAMTP seminar, Cameron Voisey24/10/19
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Preliminary results: cross sections

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

• Approach has little impact when using ‘default’ predictions 
• Much better estimate of MHOUs when using ‘matched’ 

predictions 
• Correlation of scales has big impact
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Preliminary results: cross sections

Cavendish-DAMTP seminar, Cameron Voisey24/10/19
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Preliminary results: cross sections

Cavendish-DAMTP seminar, Cameron Voisey24/10/19

• Situation is reversed w.r.t. Z production (matched predictions 
reduce PDF uncertainty) 

• Matched predictions again give reasonable results, while default 
predictions do not 

• Correlation of scales has big impact



• Develop MC scales approach by e.g. studying impact of choices of , , 

• Study differences between two approaches. Do they give similar results?


Refine each approach:

• Study impact of process categorisation


• Decorrelate  by having independent variations for different PDFs 
(singlet vs non-singlet evolution)


• Produce global NNLO fits with MHOUs included - will be most state-of-
the-art PDFs available

a b c

μF
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Future work
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Thank you for listening!



Extra slides



• Theory is perturbative expansion to some order :


• Standard case:


• Bayes’ theorem:


• Assume Gaussian theory prior:


• Assume MHOUs due to O(        ) terms only → marginalise these terms:


• Include higher order terms by induction 
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Theoretical covariance matrix

αp+1

χ2
exp

χ2
th

χ2
tot
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[credit: S. Forte, 2018]
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Point prescriptions
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Symmetric

Asymmetric

3-pt 7-pt

5-pt -pt5̄ 9-pt
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Validation: size of uncertainties
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            3-pt                                                    9-pt
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Results: Impact at the LHC
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• Now do this comparison at level of observable predictions

• Recommended method for combining partonic cross section with PDFs: 

proceed as normal 

1. Use DGLAP evolution with central scale choice (  variation 
accounted for elsewhere)


2. Compute PDF uncertainty as normal, by convoluting all PDF replicas 
with partonic cross section at central scales: this now includes 
MHOUs


3. Estimate MHOU on partonic cross section by using scale variations, 
can e.g. use a point prescription


μF

How does our treatment of MHOUs impact precision 
and accuracy of predictions?
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Results: Impact at the LHC
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NNLO

3.88

3.90

3.92

3.94

3.96

3.98

4.00
�
[p
b
]

light: scale uncertainty

dark: PDF uncertainty

left: C

right: C+S (9pt)

Higgs production: Vector Boson Fusion

NNLO PDFs
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Preliminary results: cross sections
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Data set and cuts

Data removed:

• Fixed target Drell-Yan

• Bottom structure function

• Jets without exact NNLO theory

• W+charm

Changes to cuts:


Intersection of NLO, NNLO cuts

Q2

min = 3.49 → 13.96 GeV2

Cavendish-DAMTP seminar, Cameron Voisey



69

Correlating scale variations between PDFs 
and predictions

Consider a situation when all data is at one scale. Let us only have 
evolution uncertainties, i.e. turn off uncertainties in hard cross sections

We have two evolutions:

Q0 → Qdata
Q0 → Qpred.

How to use these PDFs consistently in theoretical predictions?

We have three scales:

•      : fitting scale of PDFs

•         : scale of data

•          : scale of prediction

Q0

Qdata

Qpred.

1.        is kept fixed. There is no dependence on       because for a 
sufficiently flexible parameterisation changes in       are absorbed by fit


2. We vary          in fits (in a correlated way among data points)

3. One varies           when making a prediction for an observable

Q0 Q0
Q0

Qdata
Qpred.
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Correlating scale variations between PDFs 
and predictions

• In our procedure           and           variations will necessarily be uncorrelated - 
necessary consequence of delivering universal PDFs


• For points where                               , the variations are fully correlated and we 
overestimate uncertainty by factor of 


• In global fit overestimate due to missing correlation will be between 1 and     , 
but likely to be closer to 1


• Importantly: if one neglects either variation, one will in general underestimate 
MHOUs


• Better to have a conservative estimate of uncertainties than to underestimate 
them


• Same for coefficient function: if estimating      uncertainty for process included 
in fit, we will miss correlations      larger uncertainty than in ideal scenario


• Not a double counting. Instead, a problem of missing correlation 

How are          and           correlated?Qdata Qpred.

Qdata Qpred.

Qdata = Qpred. ≠ Q0
2

2

μR
⇒
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