Anomaly free Froggatt-Nielsen model of flavor

Michele Tammaro

University of Cincinnati

with A. Smolkovič (IJS) and J. Zupan (UC)

July 9, 2019

https://cerncourier.com/model-physicist/

Home | About | News | Features | Community | Viewpoint | Reviews | Archive | F

FEATURE Model physicist 13 October 2017

Steven Weinberg talks to CERN Courier about his seminal 1967 work and discusses where next for particle physics following the discovery of the Higgs boson.

Steven Weinberg

Asked what single mystery, if he could choose, he would like to see solved in his lifetime, Weinberg doesn't have to think for long: he wants to be able to explain the observed pattern of quark and lepton masses. In the summer of 1972, when the SM was coming together, he set himself the task of figuring it out but couldn't come up with anything. "It was the worst summer of my life! I mean, obviously there are broader questions such as: why is there something rather than nothing? But if you ask for a very specific question, that's the one. And I'm no closer now to answering it than I was in the summer of 1972," he says, still audibly irritated. He also doesn't want to die without knowing what dark matter is. There are all kinds of frustrations, he says. "But how could it be otherwise? I am enjoying what I am doing and I have had a good run, and I have a few more years. We're having a total eclipse here in April 2024 and I look forward to seeing that."

I think we should make Steven happy.

A mandatory slide

The Standard Model!

Mass hierarchy

Fermion masses show a huge hierarchy!

Neutrino: $m_{\nu} \lesssim \text{eV}$, Electron: $m_e \sim \text{MeV}$, Top: $m_t \sim 100 \text{ GeV}$.

Mixing structure

CKM matrix is mostly diagonal.

PMNS is "anarchic".

How can we explain these structures?

New Physics!

Can we generate exponential hierarchies between scales?

Not in the SM. Need New Physics!

- Extra dimensions [RS: 99, 0107190, 1903.08359 and many others];
- Two (or more) Higgs Doublets Models [1512.03458, 1704.04869 and many others];
- Clockwork [1807.09792];
- Extra abelian gauge group [Froggatt, Nielsen: 79, many others and now also A. Smolkovic, MT, J. Zupan: 1907.xxxx].

Introduce an extra abelian gauge group $U(1)_H$ [Froggatt, Nielsen: 79]. Chiral SM fermion fields are charged under this new group.

Need to introduce one new scalar field ϕ (flavon) and a set of massive vector-like fermions.

Symmetry breaking through $\langle \phi \rangle$ generates an exponential suppression of fermion masses.

But, without additional matter content, this model is anomalous.

A different "construction" of this model can be realized and be anomaly-free.

Outline

Anomaly-free FN model;

• Extension to leptons;

• Z' phenomenology;

• Conclusions.

- Gauge group: $G_{FN} = U(1)$;
- Flavon: $[\phi] = 1;$
- Chiral fermions: $[d_{R,0}] = [q_{L,0}] = 0;$
- Higgs: [H] = 0;
- Vector-like fermions $[d_{R/L,n}] = +n, [q_{R/L,n}] = -n.$

$$\mathcal{L}_1 = \mathcal{L}_{kin} + \mathcal{L}_q + \mathcal{L}_d + \left(Y_0^d \bar{q}_{L,0} d_{R,0} H + \text{h.c.}\right),$$

- Gauge group: $G_{FN} = U(1)$;
- Flavon: $[\phi] = 1;$
- Chiral fermions: $[d_{R,0}] = [q_{L,0}] = 0;$
- Higgs: [H] = 0;
- Vector-like fermions $[d_{R/L,n}] = +n, [q_{R/L,n}] = -n.$

$$\mathcal{L}_1 = \mathcal{L}_{kin} + \mathcal{L}_q + \mathcal{L}_d + \left(Y_0^d \bar{q}_{L,0} d_{R,0} H + \text{h.c.}\right)$$

Higgs only couples with chiral fermions on the zero-th node!

- Gauge group: $G_{FN} = U(1)$;
- Flavon: $[\phi] = 1;$
- Chiral fermions: $[d_{R,0}] = [q_{L,0}] = 0;$
- Higgs: [H] = 0;
- Vector-like fermions $[d_{R/L,n}] = +n, [q_{R/L,n}] = -n.$

- Gauge group: $G_{FN} = U(1)$;
- Flavon: $[\phi] = 1;$
- Chiral fermions: $[d_{R,0}] = [q_{L,0}] = 0;$
- Higgs: [H] = 0;
- Vector-like fermions $[d_{R/L,n}] = +n, [q_{R/L,n}] = -n.$

$$\mathcal{L}_1 = \mathcal{L}_{kin} + \underline{\mathcal{L}_q} + \mathcal{L}_d + \left(Y_0^d \bar{q}_{L,0} d_{R,0} H + \text{h.c.}\right)$$
$$\mathcal{L}_q = -\sum_{n=1}^{N_q} \left(M_n^q \bar{q}_{L,n} q_{R,n} - Y_n^q \phi \bar{q}_{L,n-1} q_{R,n} + \text{h.c.}\right)$$

 M_n vector-like fermion mass, Y_n fermion-flavon Yukawa coupling

Michele Tammaro (University of Cincinnati)

- Gauge group: $G_{FN} = U(1)$;
- Flavon: $[\phi] = 1;$
- Chiral fermions: $[d_{R,0}] = [q_{L,0}] = 0;$
- Higgs: [H] = 0;
- Vector-like fermions $[d_{R/L,n}] = +n, [q_{R/L,n}] = -n.$

$$\mathcal{L}_1 = \mathcal{L}_{kin} + \mathcal{L}_q + \underline{\mathcal{L}}_d + \left(Y_0^d \bar{q}_{L,0} d_{R,0} H + \text{h.c.}\right)$$
$$\mathcal{L}_d = -\sum_{n=1}^{N_d} \left(M_n^d \bar{d}_{L,n} d_{R,n} - Y_n^d \phi \bar{d}_{L,n} d_{R,n-1} + \text{h.c.}\right)$$

 M_n vector-like fermion mass, Y_n fermion-flavon Yukawa coupling

- Flavon vev $\langle \phi \rangle$ spontaneously breaks G_{FN} ,
- $N_q \times (N_q + 1)$ mass matrix for q and $(N_d + 1) \times N_d$ for d,
- $N_q + N_d$ massive eigenstates and two massless eigenstates (zero modes)

$$q'_{L,0} = \sum_{n=0}^{N_q} V_{n0}^{q_L} q_{L,n}, \qquad d'_{R,0} = \sum_{n=0}^{N_d} V_{n0}^{d_R} d_{R,n}$$

Overlap of the zero modes with the *n*-th node $(Y_n^d = Y_n^q = 1, M_n^d = M_n^q = M)$

$$V_{n0}^{q_L} = \mathcal{N}_0^{q_L} \left(\frac{M}{\langle \phi \rangle}\right)^{N_q - n}, \qquad V_{n0}^{d_R} = \mathcal{N}_0^{d_R} \left(\frac{M}{\langle \phi \rangle}\right)^{N_d - n}$$

• for $\langle \phi \rangle \gg M$ and large $N_{q(d)},$ the zero mode - zero node overlap is exponentially suppressed

New vs Old FN

Chain setting:

Expansion parameter: N: $\lambda = M/\langle \phi \rangle$ O: $\lambda = \langle \phi \rangle/M$.

Anomalies: N: free O: anomalous U(1).

Emergent U(1)

After G_{FN} broken, \mathcal{L} shows an approximate $U(1)_{app}$ explicitly broken by M.

Treat M as a spurion with [M] = +1, the fermion mass matrix is formally invariant under $U(1)_{app}$.

Diagonalize the matrix, the $U(1)_{app}$ invariant term is

$$\mathcal{L}_{\rm SM} \sim Y_0^d \left(\frac{M}{\langle \phi \rangle}\right)^{N_q + N_d} \bar{q}_{L,N_q} d_{R,N_d} H,$$

The zero modes acquire mass once Higgs acquires a vev

$$m_d \simeq V_{00}^{q_L} V_{00}^{d_R} \frac{Y_0^d v}{\sqrt{2}} \simeq \frac{Y_0^d v}{\sqrt{2}} \left(\frac{M}{\langle \phi \rangle}\right)^{N_q + N_d}$$

The quark mass is exponentially suppressed!

$$\frac{M}{\langle \phi \rangle} \simeq \lambda = \sin \theta_C \sim 0.2, \quad m_d \sim \lambda^7 \quad \Rightarrow \quad N_q = 3, N_d = 4.$$

If we have the up-quarks too

$$m_u \sim \lambda^7$$
, $V_{CKM}^{ij} \sim \frac{V_{00}^{q_L^i}}{V_{00}^{q_L^j}}$, $|V_{ud}| \sim 1$, $|V_{us}| \sim \lambda$

$$N_{q(1)} = 3$$
, $N_{u(1)} = N_{d(1)} = 4$, $N_{q(2)} = 2$

How can we extend this model to three quark generations?

• "Decoupled chains": $G_{FN} = U(1)^3$ (one per generation);

• "Coupled chains":
$$G_{FN} = U(1)$$
.

Decoupled chains

$$\begin{split} N_{q(1)} &= 3, \quad N_{q(2)} = 2, \quad N_{q(3)} = 0, \\ N_{u(1)} &= 4, \quad N_{u(2)} = 2, \quad N_{u(3)} = 0, \\ N_{d(1)} &= 4, \quad N_{d(2)} = 3, \quad N_{d(3)} = 3. \end{split}$$

Coupled chains

$$\begin{split} N_{q(1)} &= 3, \quad N_{q(2)} = 2, \quad N_{q(3)} = 0, \\ N_{u(1)} &= 3, \quad N_{u(2)} = 1, \quad N_{u(3)} = 0, \\ N_{d(1)} &= 3, \quad N_{d(2)} = 3, \quad N_{d(3)} = 3. \end{split}$$

$$\frac{M_1}{\langle \phi_1 \rangle} = \frac{M_2}{\langle \phi_2 \rangle} = \frac{M_3}{\langle \phi_3 \rangle} = \frac{1}{q} \simeq \lambda = 0.2, \quad \frac{\langle \phi \rangle}{q} \sim 10^7 \text{GeV}$$

Generate random complex Yukawas and $M_n^f = r_a e^{i\varphi_a} \langle \phi \rangle / q, \ r_a \in [0.3, 0.9], \ \varphi \in [0, 2\pi)$

1.0 Vaud 1.0 Vcd 1.0 Vid Val Val $|V_{us}|$ $|V_{cl}|$ 0.8 0.8 0.8 0.6 Vub 0.6 Vcb 0.6 Vib 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 10-4 10-3 10-2 10-1 10^{-3} 10^{-2} 10^{-1} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 100 100 10^{0} 0.20 0.20 0.20 0.15 0.15 0.15 0.10 0.10 0.10 0.05 0.05 0.05 0.00 km 10⁻² 0.00 0.00 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} $10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0}$ 100 10^{-1} 100 101 m_u [GeV] m_d [GeV] m_c [GeV] 0.20 0.20 0.20 0.15 0.15 0.15 0.10 0.10 0.10 0.05 0.05 0.05 0.00 0.00 0.00 10^{-2} 10^{-1} 100 50 100 150 100 10¹ m_s [GeV] m_t [GeV] m_h [GeV]

Decoupled FN Chains, $G_{\rm FN} = U(1)^3$

$$\frac{M}{\langle \phi \rangle} = \frac{1}{q} \simeq \lambda = 0.2, \quad \frac{\langle \phi \rangle}{q} \sim 10^7 \text{GeV}$$

Generate random complex Yukawas and $M_n^f = r_a e^{i\varphi_a} \langle \phi \rangle / q, \ r_a \in [0.3, 0.9], \ \varphi \in [0, 2\pi)$

1.0 1.0 Ved 1.0 Vind 0.8 |Vus 0.8 Vci $|V_{rs}|$ 0.8 0.6 Vub 0.6 Vcb 0.6 Vib 0.4 0.4 0.4 0.2 0.2 0.2 0.04 0.0 0.0 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10-2 10-1 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{-4} 10^{-3} 100 100 0.30 0.30 0.30 0.25 0.25 0.25 0.20 0.20 0.20 0.15 0.15 0.15 0.10 0.10 0.10 0.05 0.05 0.05 0.00 0.00 0.00 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 100 101 m_u [GeV] m_d [GeV] m_c [GeV] 0.30 0.30 0.30 0.25 0.25 0.25 0.20 0.20 0.20 0.15 0.15 0.15 0.10 0.10 0.10 0.05 0.05 0.05 0.00 0.00 0.00 10^{-3} 10^{-2} 10^{-1} 50 100 150 200 250 10^{0} 0 10^{0} 10¹ 10² m_s [GeV] m_t [GeV] m_h [GeV]

Coupled FN Chains, $G_{\rm FN} = U(1)$

Need some assumptions:

neutrino have Majorana masses from dim 5 Weinberg operator

$$\mathcal{L}_{\dim 5} \supset \frac{c_{ij}}{\Lambda_{\rm LN}} (L_i H) (L_j H), \qquad m_{ij}^{\nu} \simeq c_{ij} \frac{v^2}{\Lambda_{\rm LN}} \Big(\frac{M^L}{\langle \phi \rangle} \Big)^{N_L(i) + N_L(j)},$$

Pick $\Lambda_{\rm LN} \sim 10^{11} {\rm GeV}$ to saturate the cosmology bound $\sum_i m_{\nu_i} \lesssim 0.15 {\rm eV}$

• PMNS mixing angles "anarchic", all of $\mathcal{O}(1) \Rightarrow$ left-handed leptons must have same chain length

$$N_{L(1)} = N_{L(2)} = N_{L(3)}.$$

Decoupled chains:

$$m_{ij}^e \sim v \left(\frac{M}{\langle \phi \rangle}\right)^{N_{L(i)} + N_{e(j)}}.$$

The observed hierarchy between $m_e: m_\mu: m_\tau$ is obtained for

$$N_{e(1)} = N_{e(2)} + 3 = N_{e(3)} + 4.$$

In this benchmark

$$N_{L(1)} = N_{L(2)} = N_{L(3)} = 3, \qquad N_{e(1)} = 4, \qquad N_{e(2)} = 1, \qquad N_{e(3)} = 0,$$

Decoupled FN chains

Coupled chains: products of random matrices have hierarchical eigenvalues [von Gersdorff: 1705.05430]. Pick completely anarchic charge assignment

$$N_{L(i)} = N_L = 2,$$
 $N_{e(i)} = N_e = 3.$

Coupled FN chains

Decoupled FN Chains, $G_{\rm FN} = U(1)^3$ - neutrinos

Coupled FN Chains, $G_{\rm FN} = U(1)$ - neutrinos

Z' phenomenology

$$\mathcal{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + B_{\mu} J^{\mu}_{Y} + W^{a}_{\mu} J^{\mu}_{W^{a}} - \frac{\epsilon}{2} B_{\mu\nu} Z'^{\mu\nu} + Z'_{\mu} J^{\mu}_{FN} \,,$$

$$\mathcal{L} \supset \underline{-\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}Z'_{\mu\nu}Z'^{\mu\nu} + B_{\mu}J^{\mu}_{Y} + W^{a}_{\mu}J^{\mu}_{W^{a}} - \frac{\epsilon}{2}B_{\mu\nu}Z'^{\mu\nu} + Z'_{\mu}J^{\mu}_{FN} ,$$

Gauge boson kinetic terms.

$$\mathcal{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \underline{B_{\mu} J_Y^{\mu} + W_{\mu}^a J_{W^a}^{\mu}} - \frac{\epsilon}{2} B_{\mu\nu} Z'^{\mu\nu} + Z'_{\mu} J_{\rm FN}^{\mu} \,,$$

Electroweak currents

$$\mathcal{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + B_{\mu} J^{\mu}_{Y} + W^{a}_{\mu} J^{\mu}_{W^{a}} - \frac{\epsilon}{2} B_{\mu\nu} Z'^{\mu\nu} + Z'_{\mu} J^{\mu}_{FN} \,,$$

Kinetic mixing, allowed with new abelian gauge group.

Field redefinition: $B_{\mu} \rightarrow B_{\mu} - \epsilon Z'_{\mu}$, kin. mix. can be traded for $\epsilon Z'_{\mu} J^{\mu}_{Y}$ and Z - Z' mixing by a field redefinition.

We consider $\epsilon \to 0$ scenario, phenomenology dictated by g'.

$$\mathcal{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + B_{\mu} J^{\mu}_{Y} + W^{a}_{\mu} J^{\mu}_{W^{a}} - \frac{\epsilon}{2} B_{\mu\nu} Z'^{\mu\nu} + \underline{Z'_{\mu} J^{\mu}_{FN}} \,,$$

New gauge current:

$$J_{\rm FN}^{\mu} = g' \sum_{n=1}^{N_{d(1)}} \sum_{i=1}^{\hat{N}_d|_n} n\left(\bar{d}_{L,n}^{(i)} \gamma^{\mu} d_{L,n}^{(i)} + \bar{d}_{R,n}^{(i)} \gamma^{\mu} d_{R,n}^{(i)}\right) + \cdots + g' \sum_{n=1}^{N_{q(1)}} \sum_{i=1}^{\hat{N}_q|_n} n\left(-\bar{q}_{L,n}^{(i)} \gamma^{\mu} q_{L,n}^{(i)} - \bar{q}_{R,n}^{(i)} \gamma^{\mu} q_{R,n}^{(i)}\right) + \cdots$$

Unitary transformation to mass basis

$$J_{Y}^{\mu} = \sum_{f,i,j} \Big[g' c_{f_{L}}^{ij} \left(\bar{f}_{L}^{(i)} \gamma^{\mu} f_{L}^{(j)} \right) + g' c_{f_{R}}^{ij} \left(\bar{f}_{R}^{(i)} \gamma^{\mu} f_{R}^{(j)} \right) \Big],$$

Couplings get rotated too

$$c_{u_L}^{ij} = \left(V_{u_L}^{\dagger} c^{\prime q_L} V_{u_L} \right)_{ij}$$

Both diagonal and off-diagonal entries!

$$\begin{aligned} c_{u_L}^{ij} &= \begin{pmatrix} -2.722 & -0.411 + 0.102i & 0.004 + 0.013i \\ -0.411 - 0.102i & -2.228 & 0.025 + 0.058i \\ 0.004 - 0.013i & 0.025 - 0.058i & -0.002 \end{pmatrix} \\ c_{u_R}^{ij} &= \begin{pmatrix} 2.932 & 0.058 + 0.155i & 0.004 + 0.005i \\ 0.058 - 0.155i & 0.992 & 0.078 - 0.049i \\ 0.004 - 0.005i & 0.078 + 0.049i & 0.009 \end{pmatrix} \end{aligned}$$

Magnitude of couplings depends on chain length;

• Mostly axial couplings (q - negative charges, u/d - positive charges);

Benchmark

Can ignore VL fermions and flavon in flavor observables because $m_F \sim m_\phi \sim \mathcal{O}(\langle \phi \rangle)$

Rich collection of processes to look at!

- Flavor diagonal
 - Direct Z' production
 - Atomic Parity Violation
 - Neutrino trident
 - (g 2)/EDM
 - SN1987A
 - White dwarf cooling

Flavor off-diagonal

- Meson mixing $(K^0 \bar{K}^0, B_q \bar{B}_q, D^0 \bar{D}^0)$
- $\mu \to e$ conversion
- Decay to three leptons $(\tau \rightarrow 3\mu, \tau \rightarrow 3e, \mu \rightarrow 3e)$
- Radiative decays $(\tau \rightarrow e\gamma, \tau \rightarrow \mu\gamma, \mu \rightarrow e\gamma)$
- Rare meson decays ($K^+ \to \pi^+ \mu^+ e^-$)

Direct production

Production of Z' at colliders dominated by diagonal couplings.

•
$$e^+e^- \rightarrow Z'\gamma, Z' \rightarrow e^+e^-, \mu^+\mu^-, inv$$
 (BaBar, KLOE);

• $eZ \rightarrow eZZ', Z' \rightarrow e^+e^-$ (APEX, E137, E141, E774, Orsay, KEK, NA64);

•
$$pZ \rightarrow pZZ', Z' \rightarrow e^+e^-$$
 (ν -CAL I);

•
$$\bar{q}_i q_i \rightarrow Z', Z' \rightarrow \mu^+ \mu^-$$
 (LHCb) for $m_{Z'} > 1$ GeV.

Can recast dark photon searches by $\epsilon eQ_f \rightarrow g' \left[(c_{fV}^{11})^2 + (c_{fA}^{11})^2 \right]^{1/2}$ with Darkcast [Ilten et al. : 1801.04847]

Meson mixing

Tree level process. Involves two off-diagonal couplings.

 \bar{q}_i

Match into EFT to constraint Wilson coefficients

• $K^0 - \bar{K}^0$: $s\bar{d} \to d\bar{s}$;

 \bar{q}_i

 q_i

•
$$B_q - \bar{B}_q$$
: $b\bar{q} \to q\bar{b}$, $q = s, d\bar{s}$

• $D^0 - \overline{D}^0$: $c\overline{u} \to u\overline{c}$.

Use UTFiT results to constrain the paramenter space

WC	Current	Projected
-	17	17
ImC_K^{o}	$[-5.2, 2.8] \cdot 10^{-17}$	$[-1.16, 3.2] \cdot 10^{-17}$
$ C_{B_{s}}^{4} $	$< 1.16 \cdot 10^{-11}$	$< 1.7 \cdot 10^{-13}$
$ C_{B_{s}}^{5} $	$< 4.5 \cdot 10^{-11}$	$< 4.8 \cdot 10^{-13}$
$ C_{B_{d}}^{4} $	$< 2.1 \cdot 10^{-13}$	$< 1.6 \cdot 10^{-14}$
$ C_{B_{d}}^{5^{u}} $	$< 6.0 \cdot 10^{-13}$	$< 4.5 \cdot 10^{-14}$
C_D^{-a}	$ C_D^4 < 4.8 \cdot 10^{-14}$	$\operatorname{Im} C_D^4 \in [-5.5, 5.5] \cdot 10^{-17}$
$C_D^{\overline{5}}$	$ C_D^{\overline{5}} < 4.8 \cdot 10^{-13}$	$\operatorname{Im}C_D^5 \in [-6.6, 6.6] \cdot 10^{-16}$

Atomic Parity Violation

Bounds from $g'^2 |c_{\ell A}^{11} c_N^V|$ in Cs 6s - 7s transitions

[Dzuba et al.: 1709.10009]

Neutrino trident

For small g', SM - NP interference dominates: bounds from

 $g' \big[c_{\nu_L}^{22} \left((-\frac{1}{4} + s_W^2) c_{\ell_L}^{22} + s_W^2 c_{\ell_R}^{22} \right) / \left(-\frac{1}{4} + 2 s_W^2 \right) \big]^{1/2}$ [Altmannshofer et al.: 1902.06765]

Temperature inside WD is $\mathcal{O}(\text{few})$ keV, use EFT to bound Wilson coefficients

$$\frac{1.12 \cdot 10^{-5}}{\text{GeV}^{-2}} < \frac{g'^2 c_{\nu L}^{\text{eff}} |c_{\ell A}^{11}|}{m_{Z'}^2} < \frac{4.50 \cdot 10^{-3}}{\text{GeV}^{-2}}$$

[Bauer et al.: 1803.05466]

Restrict analysis to $m_{Z'} > 10$ MeV:

- corrections from coupling with electron plasma are negligible;
- main production channel is bremsstrahlung in neutron–proton scattering $pn \rightarrow pnZ'$.

Can rescale bounds from [Chang et al. : 1611.03864] by the replacement $\epsilon'\sim 3g'^2c_{pA}^2$

One loop

Anomalous magnetic moment:

$$\delta a_\ell \propto (g' c_{\ell A}^{ii})^2 \frac{m_\ell^2}{m_{Z'}^2} L \,.$$

Chirality flip from τ in the loop is suppressed by two off-diagonal couplings.

б

Limits

$$\delta a_e \lesssim 10^{-12} , \quad \delta a_\mu \lesssim 2.7 \cdot 10^{-9} ,$$

One loop

Electric dipole moment:

$$\frac{d_{f_i}}{e} \propto m_{f_k} \operatorname{Im} \left(c_{fV}^{ik} c_{fA}^{ik*} - c_{fA}^{ik} c_{fV}^{ik*} \right) L'.$$

Vanishes for diagonal couplings.

Limits

$$|d_e| < 1.1 \cdot 10^{-29} e \,\mathrm{cm}, \quad |d_n| < 2.9 \cdot 10^{-26} e \,\mathrm{cm}.$$

One loop

Radiative decays:

$$\Gamma(\ell_i \to \ell_j \gamma) \propto \frac{\alpha g'^4 m_i^5}{4\pi m_{Z'}^4} \left(\left| c_L^{\gamma} \right|^2 + \left| c_R^{\gamma} \right|^2 \right) L'',$$

Largest contribution from τ in the loop.

 $\mathrm{Br}(\tau \to \mu \gamma) < 4.4 \cdot 10^{-8} \,, \quad \mathrm{Br}(\tau \to e \gamma) < 3.3 \cdot 10^{-8} \,, \quad \mathrm{Br}(\mu \to e \gamma) < 4.2 \cdot 10^{-13} \,.$

Belle-II (for τ) and MEG-II (for μ) will improve these bounds.[Altmannshofer et al.: 1808.10567; Baldini et al.: 1801.04688] $\mu \rightarrow e$ conversion

Stopped muons $(q^2 \simeq -m_\mu^2)$ coherently scattering with heavy nuclei

$$Br(\mu \to e) \propto \left(\frac{(g')^2 c_{fV}^{11} c_{\ell V}^{12}}{m_{\mu}^2 + m_{Z'}^2}\right)^2 \frac{1}{\Gamma_{\text{capt}}}$$

Axial part induces spin-dependent interactions which are relevant for $m_{Z'} < 1 - 10$ MeV.

$$\operatorname{Br}(\mu \to e) = \frac{\Gamma(\mu^{-}\mathsf{A}\mathsf{u} \to e^{-}\mathsf{A}\mathsf{u})}{\Gamma_{\operatorname{capt}}(\mu^{-}\mathsf{A}\mathsf{u})} < 7 \cdot 10^{-13}$$

Future improvements from Mu2e. [Bertl et al.: Eur. Phys. J, 337 (2006); Bernstein et al.: 1901.11099]

Three lepton decays

$$\Gamma(\ell_i \to 3\ell_j) \propto \frac{g'^4 m_{\ell_i}^5}{m_{Z'}^4} |c_{\ell A}^{jj}|^2 \left(|c_{\ell V}^{ij}|^2 + |c_{\ell A}^{ij}|^2 \right)$$

Longitudinal part of the propagator gives $1/m_{Z'}^2$ also for very light Z'. Most stringent [Bellgardt et al.: Nucl. Phys. B299, 1 (1988); Bernstein et al.: 1901.11099. For $\tau \rightarrow 3\ell$ Hayasaka et al.: 1001.3221]

$$Br(\mu \to 3e) < 1.0 \cdot 10^{-12}$$

Projections from Belle-II and Mu3e [Perrevoort et al.: 1812.00741]

Preliminary!

Switch on only quark interactions

Only electrons

Only muons

Only taus

Preliminary!

Strongest bounds on parameter space

Summary and Conclusions

- we identified a simple anomaly free twist of FN models of flavor;
- expansion in $M/\langle \phi \rangle \sim \lambda$ can reproduce fermion mass spectrum;
- can be gauged;
- rich phenomenology for Z';
- Z' can be light.

Thanks!

Backup slides

Before electroweak symmetry breaking: $SU(3)_C \times SU(2)_L \times U(1)_Y$

$$\mathcal{L}_{fermion} \supset i \sum_{f} \bar{f} \not D f - \sum_{j=1}^{3} Y_{j}^{\ell} \bar{L}_{L} H \ell_{R} - \sum_{j=1}^{3} \left(Y_{j}^{d} \bar{q}_{L} H d_{R} + Y_{j}^{u} \bar{q}_{L} \tilde{H} u_{R} \right) + \text{h.c.}$$

Fermion mass

Before electroweak symmetry breaking: $SU(3)_C \times SU(2)_L \times U(1)_Y$

$$\mathcal{L}_{fermion} \supset i \sum_{f} \bar{f} \not D f - \sum_{j=1}^{3} \underbrace{Y_{j}^{\ell}}_{L} \bar{L}_{L} H \ell_{R} - \sum_{j=1}^{3} \underbrace{\left(Y_{j}^{d})}_{q_{L}} \bar{q}_{L} H d_{R} + \underbrace{Y_{j}^{u}}_{q_{L}} \bar{q}_{L} \tilde{H} u_{R}\right) + \text{h.c.}$$

Yukawa couplings Y_j are free parameters of the theory.

No symmetry or other mechanism preventing them to be all of $\mathcal{O}(1)$.

Fermion mass

Before electroweak symmetry breaking: $SU(3)_C \times SU(2)_L \times U(1)_Y$

$$\mathcal{L}_{fermion} \supset i \sum_{f} \bar{f} \not D f - \sum_{j=1}^{3} \underbrace{Y_{j}^{\ell}}_{L} \bar{L}_{L} H \ell_{R} - \sum_{j=1}^{3} \underbrace{\left(Y_{j}^{d})}_{q_{L}} \bar{q}_{L} H d_{R} + \underbrace{Y_{j}^{u}}_{q_{L}} \bar{q}_{L} \tilde{H} u_{R}\right) + \text{h.c.}$$

Yukawa couplings Y_j are free parameters of the theory.

No symmetry or other mechanism preventing them to be all of $\mathcal{O}(1)$.

Higgs acquires a vev $v = 246 \text{ GeV} \Rightarrow \text{EWSB}$: $SU(3)_C \times U(1)_{em}$

$$\mathcal{L}_{fermion} \supset -\sum_{f} \left(\frac{Y_f v}{\sqrt{2}} \bar{f}_L f_R + \text{h.c.} \right), \qquad m_f = \frac{Y_f v}{\sqrt{2}},$$

The Yukawa determines the fermion mass.

If all of $\mathcal{O}(1)$, all fermions have similar masses, but...

Fermion mixing

The covariant derivative contains the gauge boson fields

Charged currents mediated by W_{μ} boson

$$\mathcal{L}_{CC} \propto W^{\dagger}_{\mu} \left(\bar{u} \gamma^{\mu} (1 - \gamma_5) d + \bar{\nu}_{\ell} \gamma^{\mu} (1 - \gamma_5) \ell + \text{h.c.} \right)$$

Rotate from interaction basis to mass basis

$$f' = V_f f , \quad V_f^{\dagger} V_f = 1$$

$$\mathcal{L}_{CC} \propto W^{\dagger}_{\mu} \Big(\bar{u}' \underbrace{V^{\dagger}_{u} V_{d}}_{CKM} \gamma^{\mu} (1 - \gamma_5) d' + \bar{\nu}'_{\ell} \underbrace{V^{\dagger}_{\nu} V_{\ell}}_{PMNS} \gamma^{\mu} (1 - \gamma_5) \ell' + \text{h.c.} \Big)$$

 $K^0 - \bar{K}^0$

• light Z': use ChPT with Z' as external field. Leading order is axial

$$(\bar{s}\gamma^{\mu}\gamma_5 d) \rightarrow -f_K \partial^{\mu} K^0 + \cdots$$

Vector part comes at 1-loop.

$$M_{12}^{Z'} = \langle K^0 | \mathcal{H}_{\text{eff}}^{Z'} | \bar{K}^0 \rangle = -g'^2 (c_{dA}^{12})^2 f_K^2 \frac{m_K^2}{m_{Z'}^2},$$

 $1/m_{Z'}^2$ behavior from longitudinal component of propagator.

• heavy Z': integrate out the Z' at scale $\mu \simeq m_{Z'}$. Match onto effective hamiltonian $H_{\rm eff} = \sum_a C_a Q_a$.

$$Q_1^{sd} = (\bar{d}\gamma^{\mu}s_L)^2, \tilde{Q}_1^{sd} = (\bar{d}\gamma^{\mu}s_R)^2, Q_5^{sd} = (\bar{d}^{\alpha}s_R^{\beta})(\bar{d}^{\beta}s_L^{\alpha}).$$

With coefficients

$$C_1^{sd} = \frac{g'^2}{m_{Z'}^2} (c_{d_L}^{12})^2, \quad \tilde{C}_1^{sd} = \frac{g'^2}{m_{Z'}^2} (c_{d_R}^{12})^2, \quad C_5^{sd} = -4 \frac{g'^2}{m_{Z'}^2} c_{d_L}^{12} c_{d_R}^{12},$$

Run these from $\mu \simeq m_{Z'}$ to $\mu \simeq 2$ GeV.

 $B_q - \bar{B}_q$

• light Z': Operator Product Expansion at $\mu \simeq m_b$.

$$Q_2^{qb} = (\bar{b}_R q_L)^2, \tilde{Q}_2^{qb} = (\bar{b}_L q_R)^2, Q_4^{qb} = (\bar{b}_R q_L)(\bar{b}_L q_R).$$

With coefficients

$$C_2^{qb} = -\frac{{g'}^2}{m_{Z'}^2} (c_{d_L}^{i3})^2, \quad \tilde{C}_2^{qb} = -\frac{{g'}^2}{m_{Z'}^2} (c_{d_R}^{i3})^2, \quad C_4^{qb} = -2\frac{{g'}^2}{m_{Z'}^2} c_{d_L}^{i3} c_{d_R}^{i3}$$

• heavy Z': integrate out the Z' at scale $\mu \simeq m_{Z'}$. Match onto effective hamiltonian $H_{\rm eff} = \sum_a C_a Q_a$.

$$Q_1^{qb} = (\bar{b}\gamma^{\mu}q_L)^2, \tilde{Q}_1^{qb} = (\bar{b}\gamma^{\mu}q_R)^2, Q_5^{qb} = (\bar{b}^{\alpha}q_R^{\beta})(\bar{b}^{\beta}q_L^{\alpha}).$$

With coefficients

$$C_1^{qb} = \frac{{g'}^2}{m_{Z'}^2} (c_{d_L}^{i3})^2, \quad \tilde{C}_1^{qb} = \frac{{g'}^2}{m_{Z'}^2} (c_{d_R}^{i3})^2, \quad C_5^{qb} = -4 \frac{{g'}^2}{m_{Z'}^2} c_{d_L}^{i3} c_{d_R}^{i3},$$

Run these from $\mu \simeq m_{Z'}$ to $\mu \simeq m_b$.