Lattice investigation of charmed and bottom hadrons

M. Padmanath

Universität Regensburg

Regensburg, Germany

14th November 2019

Collaborators: Nilmani Mathur, HSC and ILGTI. Based on PRL 119(2017), 042001; PRL 121(2018), 202002; PRD 99(2019), 031501; PRD 99 (2019), 034507.

Motivation

LHCb discovery of excited Ω_c^0 baryons: 2017

Motivation

A year of heavy baryons (2017) : Ξ_{cc}

Aaij et al. (LHCb) 1707.01621

Mattson et al. (SELEX) hep-ex/0208014

Other papers from LHCb on properties of Ξ_{cc} : 1905.02421; 1807.01919; 1806.02744

Charmed-bottom hadrons from lattice QCD

Universität Regensburg (3 of 27)

Motivation

Doubly heavy tetraquarks : possibly stable system

Discovery of the Doubly Charmed Ξ_{cc} Baryon Implies a Stable $bb\bar{u}\bar{d}$ Tetraquark

Marek Karliner^{1,*} and Jonathan L. Rosner^{2,†}

¹School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel ²Enrico Fermi Institute and Department of Physics, University of Chicago, 5020 South Elis Avenue, Chicago, Illinois 60637, USA (Received 28 July 2017; published 15 November 2017)

Heavy Quark Symmetry implies for a sufficiently heavy "heavy" quark, the doubly heavy tetraquarks should be stable to strong decays.

Carlson et al. PRD37 744 (1988); Eichten and Quigg 1707.09575

For a heavy-light meson-like system of doubly charm baryons

$$\frac{M(\Xi_{QQ}^*) - M(\Xi_{QQ})}{M(V_Q) - M(PS_Q)} \rightarrow \frac{3}{4}$$

Brambilla et al hep-ph/0506065

Data : Brown et al 1409.0497

Figure : Lewis CHARM-2018

Heavy hadrons

- Clean signature for many observables, even though rarity in events.
- A large number of discoveries in heavy hadron sector over the past decade.
 - usual quarkonium mesons like $h_c(1P)$, $h_b(1P)$, $h_b(2P)$, $\psi(1^3D_2)$.
 - heavy baryons like Ξ_{cc} and highly excited states of Ω_c (LHCb).
 - new beauty baryons like $\Sigma_b^{\pm}(6097)$, $\Lambda_b(6146)$ and $\Lambda_b(6152)$ by LHCb.
 - tetraquarks (LHCb, Belle) and pentaquarks (LHCb).
 - many other states with less theoretical understanding (XYZ).
- Charmed-bottom hadrons : largely unexplored unlike others. Discovered : $B_c(1S, 0^-)$ at 6275(1) MeV $B_c(2S, 0^-)$ at 6842(6) MeV (ATLAS) $B_c(2S, 0^-)$ at 6872(6) MeV and $B_c(2S, 1^-)$ (LHCb) at 6841(6) MeV*

Lattice QCD : theoretical prospects

LQCD : A non-perturbative, gauge invariant regulator for the QCD path integrals.

- Quarks lives on sites
- Gauge fields lives on links
- Lattice spacing : UV cut off
- Lattice size : IR cut off

Discretization \Rightarrow Finite number of degrees of freedom

 \Rightarrow Infinite dimensional path integrals \rightarrow finite dimensional integrals.

Employ Monte Carlo importance sampling methods on Euclidean metric for numerical studies.

QCD spectrum from Lattice QCD

- Aim : to extract the physical states of QCD.
- Euclidean two point current-current correlation functions

$$\mathcal{C}_{ji}(t_f-t_i)=\langle 0|\Phi_j(t_f)ar{\Phi}_i(t_i)|0
angle =\sum_nrac{Z_i^{n*}Z_j^n}{2m_n}e^{-m_n(t_f-t_i)}$$

where $\Phi_j(t_f)$ and $\overline{\Phi}_i(t_i)$ are the desired interpolating operators and $Z_i^n = \langle 0 | \Phi_j | n \rangle$.

• Effective mass defined as $\log[\frac{C(t)}{C(t+1)}]$

• The ground states : from the exponential fall off at large times. Non-linear fitting techniques.

LHCb discovery of excited Ω_c^0 baryons: 2017

Excited baryon spectroscopy

- Aim : Extraction of highly excited states. Local operators \rightarrow low lying states. Extended operators \rightarrow Radial and orbital excitations.
- Continuum operators with well defined quantum nos. Reduce/subduce into the irreps of the reduced symmetry.

- Variational analysis of correlation matrices, C_{ji}.
- Rigorous spin identification procedure using operator state overlaps, Z.

Results : Ω_c spectrum (L1)

MP & Mathur 1704.00259, Charm 2013 (1311.4806), Charm 2015 (1508.07168).

Magenta ellipses : States with strong non-relativistic content. The low lying spectrum same as non-relativistic expectations.

Experiment vs. lattice predictions (L1)

Expt.

422(1)

395(1)

Lattice

464(20)

409(19)

 $\begin{array}{l} \mbox{Spin 1/2, 3/2, 5/2} \\ \Omega_{ccc}: \ \mbox{HSC 1307.7022} \\ \Xi_{cc} \ \mbox{and} \ \Omega_{cc}: \ \ \mbox{HSC 1502.01845} \end{array}$

Here $\Delta E = E - E_{\Omega_c^0}$.

The new states correspond to the excited *p*-wave excitations.

MP & Mathur 1704.00259, Charm 2013, Charm 2015.

On anisotropic $N_f=2+1$ lattices $L\sim 1.9~fm,~a_tm_c=0.114$ and $m_\pi=391~MeV$

Edwards et al. 0803.3960

Energy

 $\overline{\Delta E}_{\Omega^0_2(3119)}$

 $\Delta E_{\Omega^0_c(3090)}$

Heavy quarks on the lattice

Fermion action:

$$ar{\psi}(\gamma.\mathsf{D}+\mathsf{m})\psi$$

Only dimensionless quantities defined on the lattice Lattice fermion action: $\bar{\psi}(\mathbf{x})(\gamma.\mathbf{D_L} + \mathbf{am})\psi(\mathbf{x})$

$$\label{eq:Discretization} \begin{split} \text{Discretization} &\to \textbf{D}_{\textbf{L}} \text{; clover, staggered, overlap, domain-wall, etc.} \\ \text{Discretization errors on observables } \mathcal{O}(\textbf{am}). \end{split}$$

Charm quarks: $m_c \sim 1.275~{
m GeV}$

 $am_c=0.5 \ \Rightarrow \ a\sim 0.075 \ {
m fm}$

 $am_c = 0.3 \ \Rightarrow \ a \sim 0.046 \ {
m fm}$

Bottom quarks: $m_b \sim 4.66$ GeV

$$am_b = 0.5 \Rightarrow a \sim 0.021 \text{ fm}$$

$$am_b = 0.3 \Rightarrow a \sim 0.013 \text{ fm}$$

Another lattice calculation: L2

- State-of-the-art ensembles : $N_f = 2+1+1$ HISQ (MILC) a = 0.1207(11), 0.0888(8) and 0.0582(5) fm. MILC Collaboration 1212.4768
- Chiral fermion action for quark masses from light to charm. Exact chiral symmetry at finite lattice spacing. No O(am) errors.
- Heavy quark mass tuning Dowdall *et al.* 1110.6887 $\Delta E_{hfs}^{1S,\bar{c}c} = 115(2)(3) \text{ MeV } (Lattice) \& \Delta E_{hfs}^{1S,\bar{c}c} = 114 \text{ MeV } (Expt).$
- We work with energy splittings

$$\Delta M_H = [M_H^L - n_c \overline{1S}_c/2] a^{-1}.$$

- Continuum extrapolation fit forms $Q^f = A + a^2 B$, $L^f = A + a^2 log(a)B$.
- We extract the mass of hadrons from

$$M_H^c = \Delta M_H^c + n_c (\overline{1S}_c)_{phys}/2.$$

Comparison between two lattice determinations

MP & Mathur (HSC) 1704.00259

Charmed-bottom hadrons from lattice QCD

Doubly charmed baryons

A year of heavy baryons (2017) : Ξ_{cc}

Aaij et al. (LHCb) 1707.01621

Mattson et al. (SELEX) hep-ex/0208014

Others papers from LHCb on properties of Ξ_{cc} : 1905.02421; 1807.01919; 1806.02744

Charmed-bottom hadrons from lattice QCD

Universität Regensburg (13 of 27)

Ξ_{cc} from lattice QCD

Ξ_{cc} isospin splitting (LQCD), 2.16(11)(17) MeV : BMW 1406.4088 SELEX measurement (3519 MeV) : Mattson *et al.* hep-ex/0208014

Charmed-bottom hadrons from lattice QCD

M. Padmanath

Doubly charmed baryons

Doubly charmed baryons from lattice QCD

Figure from arXiv:1905.09651 [hep-lat]

 Ω_{cc} : probably the next doubly charm baryon to be observed in LHCb. Ξ_{cc}^* : radiative decay might be predominant over strong decays. So might be difficult for LHCb to discover.

Singly charmed baryons from lattice QCD

Figure from arXiv:1905.09651 [hep-lat]

Charmed-bottom hadrons from lattice QCD: L2

- State-of-the-art ensembles : $N_f = 2+1+1$ HISQ (MILC) 24³ × 64, 32³ × 96 and 48³ × 144 a = 0.1207(11), 0.0888(8) and 0.0582(5) fm. MILC Collaboration 1212.4768
- Chiral fermion action for quark masses from light to charm. Exact chiral symmetry at finite lattice spacing. No O(am) errors.
- Bottom quarks realized using NRQCD formulation. Includes terms in the Hamiltonian through $\mathcal{O}(\alpha \nu_b^4)$. HPQCD Collaboration 1110.6887, Hammant *et al* 1303.3234.
- Heavy quark mass tuning Dowdall *et al.* 1110.6887 $\Delta E_{hfs}^{1S,\bar{c}c} = 115(2)(3) \text{ MeV and } \Delta E_{hfs}^{1S,\bar{b}b} = 63(3)(5) \text{ MeV} \quad \text{Lattice}$ $\Delta E_{hfs}^{1S,\bar{c}c} = 114 \text{ MeV and } \Delta E_{hfs}^{1S,\bar{b}b} = 62(1) \text{ MeV} \quad \text{Expt.}$

Charmed-bottom hadrons from lattice QCD: L2

• We work with energy splittings and dimensionless ratios

$$\Delta M_H = [M_H^L - n_b \overline{1S}_b/2 - n_c \overline{1S}_c/2] a^{-1} \quad \text{and} \\ R_H = \frac{M_H^L - n_b \overline{1S}_b/2}{M_{B_c(0^-)}^L - n_b \overline{1S}_b/2}.$$

- Chiral extrapolation (Ξ_{bc}) using $A + m_{\pi}^2 B$ and other fancy chiral extrapolation forms as in Brown *et al* 1409.0497.
- Continuum extrapolation fit forms $Q^f = A + a^2 B$, $C^f = A + a^3 B$, $L^f = A + a^2 log(a)B$.
- We extract the mass of hadrons from

$$\begin{aligned} M_H^c &= \Delta M_H^c + n_b (\overline{1S}_b)_{phys}/2 + n_c (\overline{1S}_c)_{phys}/2 & \text{and} \\ M_H^c &= R_H^c \times (M_{B(0^-)} - n_b \overline{1S}_b/2)_{phys} + n_b (\overline{1S}_b)_{phys}/2. \end{aligned}$$

B_c meson results (L2)

Hadrons	Lattice	HPQCD	Wurtz <i>et al</i>	Experiment
$B_{c}(0^{-})$	6276(3)(6)	6278(9)	-	6274.9(8)
$B_{c}^{*}(1^{-})$	6331(4)(6)	6332(9)	6332.5(3)	?
$B_{c}(0^{+})$	6712(18)(7)	6707(17)	6711(2)	?
$B_{c}(1^{+})$	6736(17)(7)	6742(16)	6752(2)	?

Mathur, MP, Mondal 1806.04151; Dowdall et al. (HPQCD) 1207.5149; Wurtz et al. 1505.04410

bc baryons: L2 Vs other lattice results

Hadrons	Lattice	Brown <i>et al</i>	Experiment
$\Xi_{cb}(cbu)(1/2^+)$	6945(22)(14)	6943(33)(28)	?
$\Xi_{cb}^{\prime}(cbu)(1/2^+)$	6966(23)(14)	6959(36)(28)	?
$\Xi_{cb}^{*}(cbu)(3/2^{+})$	6989(24)(14)	6985(36)(28)	?
$\Omega_{cb}(cbs)(1/2^+)$	6994(15)(13)	6998(27)(20)	?
$\Omega_{cb}^{\prime}(cbs)(1/2^+)$	7045(16)(13)	7032(28)(20)	?
$\Omega^*_{cb}(cbs)(3/2^+)$	7056(17)(13)	7059(28)(21)	?
$\Omega_{ccb}(1/2^+)$	8005(6)(11)	8007(9)(20)	?
$\Omega^*_{ccb}(3/2^+)$	8026(7)(11)	8037(9)(20)	?
$\Omega_{cbb}(1/2^+)$	11194(5)(12)	11195(8)(20)	?
$\Omega^*_{cbb}(3/2^+)$	11211(6)(12)	11229(8)(20)	?

Brown *et al* 1409.0497

Mathur, MP, Mondal 1806.04151

bc baryons: L2 Vs other lattice results

Brown et al 1409.0497

Mathur, MP, Mondal 1806.04151

Charmed-bottom hadrons from lattice QCD

Summary in predictions for *bc* hadrons (L2)

Mathur, MP, Mondal 1806.04151

Doubly heavy tetraquarks : possibly stable system

Discovery of the Doubly Charmed Ξ_{cc} Baryon Implies a Stable $bb\bar{u}\bar{d}$ Tetraquark

Marek Karliner1,* and Jonathan L. Rosner2,†

¹School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel ²Enrico Fermi Institute and Department of Physics, University of Chicago, 5020 South Elis Avenue, Chicago, Illinois 60637, USA (Received 28 July 2017; published 15 November 2017)

Heavy Quark Symmetry implies for a sufficiently heavy "heavy" quark, the doubly heavy tetraquarks should be stable to strong decays.

Carlson et al. PRD37 744 (1988); Eichten and Quigg 1707.09575

For a heavy-light meson-like system of doubly charm baryons

$$\frac{M(\Xi_{QQ}^*) - M(\Xi_{QQ})}{M(V_Q) - M(PS_Q)} \rightarrow \frac{3}{4}$$

Brambilla et al hep-ph/0506065

Data : Brown et al 1409.0497

Figure : Lewis CHARM-2018

$\bar{b}\bar{b}ud$ and $\bar{b}\bar{b}ls$ tetraquarks on lattice

Francis et al. 1607.05214

Study of pseudovector doubly bottom tetraquarks on $N_f = 2 + 1$ PACS-CS lattices Correlation matrices out of tetraquark as well as meson-meson interpolators Binding energies : $\Delta E_{\bar{b}\bar{b}ud} = 189(10)$ MeV and $\Delta E_{\bar{b}\bar{b}us} = 98(7)$ MeV

Other existing lattice calculations :

Bicudo et al. 1510.03441, Leskovec et al. 1904.04197

Doubly heavy tetraquarks from L2

Junnarkar, Mathur & MP (ILGTI) 1810.12285

- Extensive study of quark mass dependence on binding energies of doubly heavy tetraquarks.
- Correlation matrices out of tetraquark as well as meson-meson interpolators.
- Binding energies from difference in the lowest non-interacting levels.

Summary doubly heavy tetraquarks $(J^P = 1^+)$

1810.12285 (ILGTI, This work), 1607.05214 (Francis),

1707.09575 (Eichten and Quigg) 1707.07666 (Karliner and Rosner),

1510.03441 (Bicudo), 1709.01417 (HSC, Cheung), 1904.04197 (Leskovec).

Summary

- Discussed exploratory investigation of excited Ω_c baryon spectrum. Highlighted predictions for the quantum numbers of LHCb discovered excited Ω_c baryons.
- Summarized lattice QCD predictions for singly and doubly charm baryons. Compared lattice results with experimental values.
- Presented precision lattice QCD predictions/postdictions for masses of charmed-bottom hadron ground states. Predictions compared with other existing lattice estimates and postdictions compared with the respective experimental values and other lattice results.
- Beyond conventional hadrons : Promising platforms to study. Doubly heavy tetra-quarks: possibly deeply bound states. Discussed our study on m_q dependence of these binding energies. Ongoing investigations for $bc\bar{u}\bar{d}$ tetraquarks.

Thank you...

Spin identification : $J > \frac{3}{2}$ (L1)

- For example, a continuum operator $O = [ccc \otimes (\frac{3}{2}^+)_S^1 \otimes D_{L=2,S}^{[2]}]^{J=\frac{5}{2}}$. Projects on to $\frac{5}{2}^+$.
- In the continuum, $\langle 0|O|\frac{5}{2}^+\rangle = Z$.
- On lattice, O gets subduced over two lattice irreps H_g and G_{2g} .
- Then

$$\langle 0|O_{H_g}|^{5^+}_2 \rangle = Z_1 \alpha$$
 & $\langle 0|O_{G_{2g}}|^{5^+}_2 \rangle = Z_2 \beta$

where α and β are the Clebsch-Gordan coefficients.

• If "close" to the continuum, then $Z ~\sim~ Z_1 ~\sim~ Z_2.$

Summarv

Overlap factors (Z) across multiple irreps : $5/2^+$ (L1)

Errors in predictions for *bc* hadrons (L2)

- Wall sources to reduce statistical errors. All well below percent level.
- Discretization errors : Largest found to be in Ξ_{bc} , \sim 6 MeV.
- Scale setting : Independently calibrate the lattice using Ω baryon. This work : a = 0.1192(14), 0.0877(10) and 0.0582(5) fm. MILC(r_1) : a = 0.1207(11), 0.0888(8) and 0.0582(5) fm. Largest errors to be ~ 6 MeV.
- Chiral extrapolation : Robust with different extrapolation forms.
- Uncertainties in NRQCD : missing higher order terms, $O(\alpha^2 \nu^4)$ and $O(\alpha \nu^6)$. ~ 4 MeV for mesons
 - \sim 5, 5 and 6 MeV for *bcq*, *bcc* and *bbc* baryons respectively.
- Other sources : Quark mass mis-tuning, unphysical sea quark mass effects, electromagnetism, isospin breaking effects and absence of dynamical bottom quarks collectively to be within few MeV.

Mathur, MP, Mondal 1806.04151

Summary

Ξ_{bc} baryon chiral extrapolation (L2)

On the coarse lattice. Chiral extrapolation form $A + m_{\pi}^2 B$.

Mathur, MP, Mondal 1806.04151

Charmed-bottom hadrons from lattice QCD