
Event Generation with
Neural Nets
Matthew D. Klimek

Cornell Univ.
Korea Univ.

Work with M. Perelstein
 180?.xxxxx

Cambridge Seminar
27 April 2018

The general problem of MC integration/generation

Particle physics model → predictions of (differential) cross sections.

We can compare models to data by generating simulated data sets.

Simulated data:
➢ a set of points in phase space (events)
➢ distributed according to the probability density function (pdf) given

by the (normalized) differential cross section.

Since the differential cross sections are typically complicated functions,
Monte Carlo techniques are the only feasible way of handling these
operations.

The basic technique

In the simplest case:
➢ Sample the domain of the function uniformly
➢ Sum the function values at the N random points.

Estimates of the integral and the error are then obtained as:

For event generation, random points are drawn and the function is used
to decide the probability of keeping the event (unweighting).

Probability of keeping event:

The basic technique

The error is large if the function is highly variable:

If the function is highly peaked and variable, the unweighting efficiency
will also be low:

Accurate integration/generation becomes computationally expensive.

Physical cross sections are often highly variable/peaked in some regions of
phase space: on-shell resonances, collinear singularities, etc.

Solution: Importance Sampling

Importance Sampling

Sample the function most often in the places where its values are
largest.

➢ For integration: Concentrate samples on the regions that contribute
most to the integral

➢ For generation: Draw points preferentially from regions which should
have the most points.

Implemented as an algorithm to build a function which:
➢ is easily sampled, and
➢ approximates the target function.

VEGAS

VEGAS (G.P. Lepage, J.Comp.Phys. 1978), is an importance sampling
technique still in use today:

➢ Approximate the function by a set of bins of containing equal amounts of the
integral of the function.

➢ To sample the function: simply choose a random bin; then sample uniformly
within that bin.

➢ Adaptively choose bin edges to best match the function:

Sample the function as prescribed Sub-divide bins proportional to function
weight contained

Merge to obtain original number of bins

VEGAS as ML
VEGAS is a form of machine learning.

The algorithm goes through a training
process where it is allowed to adjust the
location of the bin edges, in order to decrease
the variance in the number of points that
land in each bin.

It builds a map from a sampling space
(over which points are drawn uniformly)
onto the target space (where the density of
points approximates the desired function)
in a piecewise-linear way (fill bins uniformly).

The training adjusts the values of the
map at fixed discrete points.

sampling space

Target space
(function domain)

Bins (evenly spaced
= equal probability)

Piecewise-linear: fill
each bin uniformly

VEGAS as ML

What if we could extend this to adjust the map at every point?

We would need a map that is:
➢ defined in terms of some adjustable parameters
➢ capable of approximating any smooth map.

Universal approximation theorem: Given any continuous function f(x) on
the N-cube, and any ᷧ > 0, f(x) can be approximated by a function F(x)

where

and A is a ~non-linear function.

This is the basis of artificial neural nets.

Choose a measure of statistical distance between the true and
induced: Kullbeck-Leibler divergence, which is zero for two
distributions f and g only when f = g and is positive otherwise.

General Approach First suggested by Bendavid 1707.00028, applied only to
Gaussian functions

Neural Net

Sampling space
(uniformly populated) Domain of target function

(non-uniform distribution
induced by Jacobian of NN)

d-cube
d-cube

The algorithm should adjust NN so that the DKL
between 1/Jac(NN) and the differential cross
section is minimized (ideally to zero).

NN Basics Each hidden node takes a linear
combination of the inputs, specified by
the weights w1

i plus a constant bias
b1, and transforms it by some
non-linear activation function A.

The weights and biases together
comprise the parameters of the net.

x1

x2

w
11

NN Basics Each hidden node takes a linear
combination of the inputs, specified by
the weights w1

i plus a constant bias
b1, and transforms it by some
non-linear activation function A.

The weights and biases together
comprise the parameters of the net.

The output layer is
similar, but its activation
function should be
chosen to map any real
number onto the desired
output range.

x1

x2

w
11

NN Basics

Loss function: a measure of how
far the the net is from the desired
behavior (KL divergence for us).

Each hidden node takes a linear
combination of the inputs, specified by
the weights w1

i plus a constant bias
b1, and transforms it by some
non-linear activation function A.

The weights and biases together
comprise the parameters of the net.

The output layer is
similar, but its activation
function should be
chosen to map any real
number onto the desired
output range.

Train by adjusting each parameter proportionally
to the gradient of the loss function w.r.t. that
parameter (gradient descent).

x1

x2

w
11

Our basic implementation

➢ Same number of input and output nodes (Rd → Rd).
➢ Number of hidden nodes and hidden layers to be determined by studying

performance.
➢ Loss function will be K-L divergence of the net’s Jacobian with respect to the

target differential cross section, as described earlier.

We consider two candidates for the activation functions:

“Exponential Linear Unit” with α = 1: or Sinh:

Choice of coordinates
Example: 3-body
decay in Dalitz
(invariant mass)
coordinates.

In principle, any choice of coordinates on phase space
could be used, but many choices present difficulties in
practice.

In many coordinate systems, the physical region of
phase space has some non-trivial shape.

The net would need to learn:

➢ the correct distribution within the physical region
➢ but also where the boundary is, and to not

populate anything outside (unphysical events).

However, the net is made of smooth functions so such
behavior is not possible.

Choice of coordinates
Solution: use coordinates in which the physical region is a unit hypercube,
and an output function that maps Rn onto it.
Then all possible outputs of the net are guaranteed to be physical.

Example: Define qi ∈ [0,1] to interpolate between the minimum and
maximum possible invariant masses of the system composed of particles
{i+1, …, n}.

Rescale all relative angles to the range [0,1].

Output layer considerations

The internal layers of the NN may return any real
values, so the output layer should contain a final
function that maps onto the unit interval.

A common choice of output function is the
Sigmoid, but it approaches 0 and 1 exponentially
slowly, making it very hard to populate the edges
of phase space. Sigmoid

For the sigmoid output function,
we use a sinh activation function.

The asymptotically exponential
behavior of these functions
cancels and allows good reach to
the edges 0 and 1.

Output layer considerations

We also investigated a function with faster
asymptotic behavior:

➢ Always takes values in [0,1]
➢ Approaches limiting values rapidly
➢ Approximately linear between [0,1]
➢ p controls how sharp the edges are

p = 50

For this “custom”
activation function which
approaches 0 and 1
rapidly, a traditional ELU
activation function is
sufficient.

Complete setup

➢ Implemented in MXNet 1.1.0 with Python 2.7 interface.
➢ Various numbers of hidden nodes and layers tested, as well as

different activation/output functions.
➢ Physics input: simply type analytical expression for the differential

cross section into the code, or provide a function that python can call.
(Easy to interface with Feynman diagram calculator.)

➢ Training:
○ Draw a sample of 100 uniform random points.
○ Feed through the NN.
○ Compute the KL divergence between the NN output and the target diff. cross section.
○ Try to minimize KL divergence by adjusting the NN parameters according to the

gradient of the KL divergence (gradient descent).

➢ Train until value of KL divergence stabilizes.
○ (How close to 0 does it get?)

3-body Dalitz, constant matrix element

➢ 2-dimensional phase space. Parametrize with:
○ m23 and ᶚ, the angle between p2 and p1 in the m23 rest frame.
○ Phase space is flat in ᶚ.
○ Both variables can be shifted/scaled to lie in a unit square.

Training results with 3
layers of 64 nodes. Training
to stability takes ~1 minute
on a very old laptop.

Training epochs (100 points each)

Lo
g1

0
K

L
di

ve
rg

en
ce

 (l
os

s)
Sinh/Sigmoid
ELU/Custom activation
Bendavid 1707.00028

This is in fact more than is needed for this simple example. 3
layers of 4 nodes, or one layer of 16 nodes is sufficient and
training takes ~seconds. See forthcoming paper.

M = sqrt(s) = 1 GeV
m1 = 0.1 GeV
m2 = 0.2 GeV
m3 = 0.3 GeV

3-body Dalitz

Density of events generated by trained network vs. true distribution:

qi

(c
os

 ᷔ
 +

 1
) /

 2

qi

(c
os

 ᷔ
 +

 1
) /

 2

NN true

3-body Dalitz

Is the NN output by itself consistent with the desired true distribution?

qi

(c
os

 ᷔ
 +

 1
) /

 2

NN

No: p-value ~ 10-4

But a NN is a universal approximator. What
happened?

The parameter space of the NN is very high
dimensional, and there are many local minima
of the loss function (KL divergence.)

In general, one lands in a local minimum which
is a good, but not great, approximation to the
desired function.

Not a result of over-training: new samples are
drawn for each training epoch.

3-body Dalitz
What to do about errors from
“pretty good” false minima?

qi

(c
os

 ᷔ
 +

 1
) /

 2

NN

➢ Unweighting: NN is already pretty good
so unweighting is quite efficient

➢ Average: each false minimum is a
~random deviation from the right answer.
Train multiple times with different
random seeds and combine results:

qi

(c
os

 ᷔ
 +

 1
) /

 2

p = O(1)
with no
unweighting
(100%
efficiency)

NN average 10x

3-body Dalitz with intermediate resonance

We can include a matrix
element along with phase
space:

3-body decay via an
intermediate resonance
with mass 0.75 GeV.

qi

(c
os

 ᷔ
 +

 1
) /

 2

p = O(1)

NN average 10x

Contrast with VEGAS (rectangular grid)

For multi-dimensional integrals,
VEGAS needs any sharp feature to be
aligned with a grid axis.

What about matrix elements that have
multiple, non-orthogonal sharp
features? (E.g. multiple resonances)

This is currently handled with
multi-channel integration:

Define multiple grids, each aligned
with one feature, and sample from all.

Potential slow, and relative
weights among grids must be tuned. qi

(c
os

 ᷔ
 +

 1
) /

 2

Contrast with VEGAS (rectangular grid)

Our Neural Net approach has no
intrinsic axes.

x1

x2

w
11

Each node is free to
rotate to a new
coordinate system.

The Neural Net handles
features well in any coordinate
system.
Indeed it learns what the most
interesting coordinates are.

qi
(c

os
 ᷔ

 +
 1

) /
 2

Resonance in an
invariant mass not
parametrized by q.

The NN also has no trouble
handling singularities such as are
present in gluon emission from
quarks. (Singularities at quark
momentum fraction x = 1.)

An appropriate kinematic cut can
be specified in the code.

qqg

x 2
x1

NN average 10x

Cut on quark momentum fraction
(minimum gluon energy):
 x < 0.999

Summary

➢ Neural Networks allow a continuum implementation of the classic
VEGAS phase space integrator/generator.

➢ Proper choices of network architecture allow typical physical
scenarios to be handled accurately and quickly.

➢ We have presented several prototypical physical scenarios that can be
handled by this method.

➢ Averaging a set of neural nets gives a MC generator that can provide
unweighted events with O(1) efficiency.

