

Heavy physics contributions to neutrinoless double beta decay from QCD

Nicolas Garron

University of Cambridge, HEP seminar, 19th of October, 2018

CalLat (California Lattice)

red = postdoc and blue = grad student

- Jülich: Evan Berkowitz
- LBL/UCB: Davd Brantley, Chia Cheng (Jason) Chang, Thosrsten Kurth, Henry Monge-Camacho, André Walker-Loud
- NVIDIA: K Clark
- Liverpool: Nicolas Garron
- JLab: Balint Joó
- Rutgers: Chris Monahan
- North Carolina: Amy Nicholson
- City College of New York: Brian Tiburzi
- RIKEN/BNL: Enrico Rinaldi
- LLNL: Pavlos Vranas

• Observation of Neutrino oscillations, accumulation of evidences since the late 60's: solar ν , atmospheric ν , ν beam,

2015 Nobel prize in physics: Kajita and McDonald

- \Rightarrow Neutrinos have non-zero mass
- \Rightarrow Deviation from the Standard Model

- Observation of Neutrino oscillations, accumulation of evidences since the late 60's: solar ν , atmospheric ν , ν beam,
 - 2015 Nobel prize in physics: Kajita and McDonald
 - \Rightarrow Neutrinos have non-zero mass
 - \Rightarrow Deviation from the Standard Model
- Mass hierarchy and mixing pattern remain a puzzle

In particular, what is the nature of the neutrino mass, Dirac or Majorana ?

- Observation of Neutrino oscillations, accumulation of evidences since the late 60's: solar ν , atmospheric ν , ν beam,
 - 2015 Nobel prize in physics: Kajita and McDonald
 - \Rightarrow Neutrinos have non-zero mass
 - \Rightarrow Deviation from the Standard Model
- Mass hierarchy and mixing pattern remain a puzzle In particular, what is the nature of the neutrino mass, Dirac or Majorana ?
- Experimental searches for neutrinoless double β decay $(0\nu\beta\beta)$ If measured \rightarrow Majorana particle, probe of new physics, ... Huge experimental effort

■ *β*-decay

 $n \longrightarrow p + e^- + \bar{\nu}_e$

• and a ν_e can be absorbed in the process

 $\nu_e + n \longrightarrow p + e^-$

• so that if $\nu_e = \bar{\nu}_e$ it is possible to have

 $n + n \longrightarrow p + p + e^{-} + e^{-}$

 \Rightarrow Neutrinoless double beta decay

Neutrinoless double β decay: $n + n \longrightarrow p + p + e^- + e^-$

- $0\nu\beta\beta$ violates Lepton-number conservation \Rightarrow New Physics
- Can be related to leptogensis and Matter-Antimatter asymmetry
- Can probe the absolute scale of neutrino mass (or of new physics)
- Related to dark matter ?
- Worldwide experimental effort

- Completed experiments:
 - Gotthard TPC
 - Heidelberg-Moscow, ⁷⁶Ge detectors (1997–2001)
 - IGEX, ⁷⁶Ge detectors (1999–2002)^[17]
 - NEMO, various isotopes using tracking calorimeters (2003-2011)
 - Cuoricino, ¹³⁰Te in ultracold TeO₂ crystals (2003–2008)^[18]
- Experiments taking data as of November 2017:
 - COBRA, ¹¹⁶Cd in room temperature CdZnTe crystals
 - CUORE, ¹³⁰Te in ultracold TeO₂ crystals
 - EXO, a ¹³⁶Xe and ¹³⁴Xe search
 - GERDA, a ⁷⁶Ge detector
 - KamLAND-Zen, a ¹³⁶Xe search. Data collection from 2011.^[18]
 - MAJORANA, using high purity ⁷⁶Ge p-type point-contact detectors.^[19]
 - XMASS using liquid Xe
- Proposed/future experiments:
 - CANDLES, ⁴⁸Ca in CaF₂, at Kamioka Observatory
 - MOON, developing ¹⁰⁰Mo detectors
 - AMoRE, ¹⁰⁰Mo enriched CaMoO₄ crystals at YangYang underground laboratory^[20]
 - nEXO, using liquid ¹³⁶Xe in a time projection chamber ^[21]
 - LEGEND, Neutrinoless Double-beta Decay of ⁷⁶Ge.
 - LUMINEU, exploring ¹⁰⁰Mo enriched ZnMoO₄ crystals at LSM, France.
 - NEXT, a Xenon TPC. NEXT-DEMO ran and NEXT-100 will run in 2016.
 - SNO+, a liquid scintillator, will study ¹³⁰Te
 - SuperNEMO, a NEMO upgrade, will study ⁸²Se
 - TIN.TIN, a ¹²⁴Sn detector at INO

(source: Wikipedia)

- $0\nu\beta\beta$ violates Lepton-number conservation \Rightarrow New Physics
- Can be related to leptogensis and Matter-Antimatter asymmetry
- Can probe the absolute scale of neutrino mass (or of new physics)
- Related to dark matter ?
- Worldwide experimental effort
- Relating possible experimental signatures to New-Physics model requires the knowledge of QCD contributions

Computing the full process is very ambitious

- Different scales, different interactions
- Multi-particles in initial and final states
- Nucleon \Rightarrow Signal-to-noise problem

Very hard task in Lattice QCD

gА	

The axial coupling of the nucleon

[C Chang, A Nicholson, E Rinaldi, E Berkowitz, NG, D Brantley, H Monge-Camacho, C Monahan, C Bouchard, M Clark, B Joó, T Kurth, K Orginos, P Vranas, A Walker-Loud]

Nature 558 (2018) no.7708

$0\nu\beta\beta$ and EFT

Process can be mediated by light or heavy particle

- E.g. light ν_L or heavy ν_R through seesaw mechanism
- Or heavy "New-Physics" particle

Process can be mediated by light or heavy particle

- E.g. light ν_L or heavy ν_R through seesaw mechanism
- Or heavy "New-Physics" particle
- Naively, one expects the long-distance contribution of a light neutrino to dominate over the short-distance contribution of a heavy particle
- But the long-range interaction requires a helicity flip and its proportional to the mass of the light neutrino
- \Rightarrow Relative size of the different contributions depend on the New Physics model

Process can be mediated by light or heavy particle

- E.g. light ν_L or heavy ν_R through seesaw mechanism
- Or heavy "New-Physics" particle
- Naively, one expects the long-distance contribution of a light neutrino to dominate over the short-distance contribution of a heavy particle
- But the long-range interaction requires a helicity flip and its proportional to the mass of the light neutrino
- \Rightarrow Relative size of the different contributions depend on the New Physics model
- Standard seesaw $m_l \sim M_D^2/M_R \ll m_h \sim M_R$

$0\nu\beta\beta$ and EFT

Consider "heavy" particles contributions, integrate out heavy d.o.f.

Consider "heavy" particles contributions, integrate out heavy d.o.f.

EFT framework, see e.g. [Prézeau, Ramsey-Musolf, Vogel '03], the LO contributions are $\pi^- \longrightarrow \pi^+ + e^- + e^-$

- $\blacksquare n \longrightarrow p + \pi^+ + e^- + e^-$
- $\blacksquare n + n \longrightarrow p + p + e^- + e^-$

Consider "heavy" particles contributions, integrate out heavy d.o.f.

EFT framework, see e.g. [Prézeau, Ramsey-Musolf, Vogel '03], the LO contributions are $\pi^- \longrightarrow \pi^+ + e^- + e^-$

 $\blacksquare n \longrightarrow p + \pi^+ + e^- + e^-$

$$\blacksquare n + n \longrightarrow p + p + e^- + e^-$$

In this work we focus on the $\pi^- \longrightarrow \pi^+$ matrix elements

- On the lattice, compute the Matrix elements of $\pi^- \longrightarrow \pi^+$ transitions
- Extract the LEC through Chiral fits
- Use the LEC in the EFT framework to estimate a physical amplitude

Lattice Computation of $\pi^- \rightarrow \pi^+$ matrix elements

4-quark operators

We only consider light valence quarks q = u, d

the operators of interest are

$$\mathcal{O}_{1+}^{++} = \left(\bar{q}_L \tau^+ \gamma^\mu q_L\right) \left[\bar{q}_R \tau^+ \gamma_\mu q_R\right]$$

$$\mathcal{O}_{2+}^{++} = \left(\bar{q}_R \tau^+ q_L\right) \left[\bar{q}_R \tau^+ q_L\right] + \left(\bar{q}_L \tau^+ q_R\right) \left[\bar{q}_L \tau^+ q_R\right]$$

$$\mathcal{O}_{3+}^{++} = \left(\bar{q}_L \tau^+ \gamma^\mu q_L\right) \left[\bar{q}_L \tau^+ \gamma_\mu q_L\right] + \left(\bar{q}_R \tau^+ \gamma^\mu q_R\right) \left[\bar{q}_R \tau^+ \gamma_\mu q_R\right]$$

4-quark operators

We only consider light valence quarks q = u, d

the operators of interest are

$$\mathcal{O}_{1+}^{++} = \left(\bar{q}_L \tau^+ \gamma^\mu q_L\right) \left[\bar{q}_R \tau^+ \gamma_\mu q_R\right]$$
$$\mathcal{O}_{2+}^{++} = \left(\bar{q}_R \tau^+ q_L\right) \left[\bar{q}_R \tau^+ q_L\right] + \left(\bar{q}_L \tau^+ q_R\right) \left[\bar{q}_L \tau^+ q_R\right]$$
$$\mathcal{O}_{3+}^{++} = \left(\bar{q}_L \tau^+ \gamma^\mu q_L\right) \left[\bar{q}_L \tau^+ \gamma_\mu q_L\right] + \left(\bar{q}_R \tau^+ \gamma^\mu q_R\right) \left[\bar{q}_R \tau^+ \gamma_\mu q_R\right]$$

and the colour partner

$$\mathcal{O}_{1+}^{'++} = \left(\bar{q}_L \tau^+ \gamma^\mu q_L\right] \left[\bar{q}_R \tau^+ \gamma_\mu q_R\right)$$
$$\mathcal{O}_{2+}^{'++} = \left(\bar{q}_L \tau^+ q_L\right] \left[\bar{q}_L \tau^+ q_L\right) + \left(\bar{q}_R \tau^+ q_R\right] \left[\bar{q}_R \tau^+ q_R\right)$$

where () [] \equiv color unmix and (] [) \equiv color unmix

4-quark operators (II)

In a slightly more human readable way

$$\begin{aligned} \mathcal{O}_{1+}^{++} &= \left(\bar{q}_L \tau^+ \gamma^\mu q_L\right) \left[\bar{q}_R \tau^+ \gamma_\mu q_R\right] \\ \mathcal{O}_{2+}^{++} &= \left(\bar{q}_R \tau^+ q_L\right) \left[\bar{q}_R \tau^+ q_L\right] + \left(\bar{q}_L \tau^+ q_R\right) \left[\bar{q}_L \tau^+ q_R\right] \\ \mathcal{O}_{3+}^{++} &= \left(\bar{q}_L \tau^+ \gamma^\mu q_L\right) \left[\bar{q}_L \tau^+ \gamma_\mu q_L\right] + \left(\bar{q}_R \tau^+ \gamma^\mu q_R\right) \left[\bar{q}_R \tau^+ \gamma_\mu q_R\right] \end{aligned}$$

The colour unmix are

$$\mathcal{O}_{3+}^{++} \sim \gamma_{L}^{\mu} \times \gamma_{L}^{\mu} + \gamma_{R}^{\mu} \times \gamma_{R}^{\mu} \longrightarrow VV + AA$$

$$\begin{array}{lll} \mathcal{O}_{1+}^{++} & \sim & \gamma_L^{\mu} \times \gamma_R^{\mu} \longrightarrow VV - AA \\ \mathcal{O}_{2+}^{++} & \sim & P_L \times P_L + P_R \times P_R \longrightarrow SS + PP \end{array}$$

4-quark operators (II)

In a slightly more human readable way

$$\begin{aligned} \mathcal{O}_{1+}^{++} &= \left(\bar{q}_L \tau^+ \gamma^\mu q_L\right) \left[\bar{q}_R \tau^+ \gamma_\mu q_R\right] \\ \mathcal{O}_{2+}^{++} &= \left(\bar{q}_R \tau^+ q_L\right) \left[\bar{q}_R \tau^+ q_L\right] + \left(\bar{q}_L \tau^+ q_R\right) \left[\bar{q}_L \tau^+ q_R\right] \\ \mathcal{O}_{3+}^{++} &= \left(\bar{q}_L \tau^+ \gamma^\mu q_L\right) \left[\bar{q}_L \tau^+ \gamma_\mu q_L\right] + \left(\bar{q}_R \tau^+ \gamma^\mu q_R\right) \left[\bar{q}_R \tau^+ \gamma_\mu q_R\right] \end{aligned}$$

The colour unmix are

$$\begin{array}{lll} \mathcal{O}_{3+}^{++} & \sim & \gamma_L^{\mu} \times \gamma_L^{\mu} + \gamma_R^{\mu} \times \gamma_R^{\mu} \longrightarrow VV + AA \\ \\ \mathcal{O}_{1+}^{++} & \sim & \gamma_L^{\mu} \times \gamma_R^{\mu} \longrightarrow VV - AA \\ \\ \mathcal{O}_{2+}^{++} & \sim & P_L \times P_L + P_R \times P_R \longrightarrow SS + PP \end{array}$$

and the colour partner

$$\begin{array}{rcl} \mathcal{O}_{1+}^{'++} & \longrightarrow & (VV - AA)_{mix} \sim (SS - PP)_{unmix} \\ \mathcal{O}_{2+}^{'++} & \longrightarrow & (SS + PP)_{mix} \sim (SS + PP)_{unmix} + c(TT)_{unmix} \end{array}$$

Nicolas Garron (University of Liverpool)

$\pi^- \to \pi^+$ transition

- We have to compute the matrix elements (ME) of $\langle \pi^+ | {\cal O} | \pi^-
 angle$
- Since QCD conserves Parity, we only consider Parity even sector

- We have to compute the matrix elements (ME) of $\langle \pi^+ | \mathcal{O} | \pi^- \rangle$
- Since QCD conserves Parity, we only consider Parity even sector

The computation goes along the lines of $\Delta F = 2$ ME:

- Extract the bare ME by fitting 3p and 2p functions or ratios
- Non-Perturbative Renormalisation
- Global Fit, extrapolation to physical pion mass and continuum limit

- Lattice QCD is a discretised version of Euclidean QCD
- Well-defined regularisation of the theory
- Gauge invariant (Wilson) at finite lattice spacing
- Continuum Euclidean QCD is recovered in the lmit $a \rightarrow 0$

$$\langle O \rangle_{continuum} = \lim_{a \to 0} \lim_{V \to \infty} \langle O \rangle_{latt}$$

Allows for non-perturbative and first-principle determinations of QCD observables

Various steps of a Lattice computation (schematically)

 Generate gauge configurations (ensembles) ↔ gluons and sea quarks (or take already existing ones)

- Generate gauge configurations (ensembles) ↔ gluons and sea quarks (or take already existing ones)
- \blacksquare Compute fermion propagators \leftrightarrow valence quarks

- Generate gauge configurations (ensembles) ↔ gluons and sea quarks (or take already existing ones)
- Compute fermion propagators \leftrightarrow valence quarks
- \blacksquare Compute Wick contractions \leftrightarrow bare Green functions

- Generate gauge configurations (ensembles) ↔ gluons and sea quarks (or take already existing ones)
- Compute fermion propagators ↔ valence quarks
- \blacksquare Compute Wick contractions \leftrightarrow bare Green functions
- Determine Z factors (if needed) \leftrightarrow renormalised Green functions

- Generate gauge configurations (ensembles) ↔ gluons and sea quarks (or take already existing ones)
- Compute fermion propagators \leftrightarrow valence quarks
- Compute Wick contractions \leftrightarrow bare Green functions
- Determine Z factors (if needed) \leftrightarrow renormalised Green functions
- \blacksquare Continuum & physical pion mass extrapolations \leftrightarrow physical observables
Remarks

Different discretizations of the Dirac operators are possible: Wilson, staggered, Twisted-mass, etc.

One difficulty is to maintain the symmetries of the continuum lagrangian at finite lattice spacing,

 \Rightarrow choose the discretization adapted to the situation you want to describe

Remarks

Different discretizations of the Dirac operators are possible: Wilson, staggered, Twisted-mass, etc.

One difficulty is to maintain the symmetries of the continuum lagrangian at finite lattice spacing,

 \Rightarrow choose the discretization adapted to the situation you want to describe

In particular chiral symmetry is notoriously difficult to maintain

We consider here Domain-Wall fermions, a type of discretisation which respects chiral and flavour symmetry almost exactly.

The price to pay is a high numerical cost

This computation

The main features of our computation are:

- Mixed-action: Möbius Domain-Wall on $N_f = 2 + 1 + 1$ HISQ configurations
- 3 lattice spacings, pion mass down to the physical value

The main features of our computation are:

- Mixed-action: Möbius Domain-Wall on $N_f = 2 + 1 + 1$ HISQ configurations
- 3 lattice spacings, pion mass down to the physical value

As a consequence:

- Chiral-flavour symmetry maintained (in the valence sector)
- Lattice artefact of order $O(a^2)$
- Good control over the chiral behaviour, continuum limit, finite volume effects
- But non-unitary setup and flavour symmetry broken in the sea

The main features of our computation are:

- Mixed-action: Möbius Domain-Wall on $N_f = 2 + 1 + 1$ HISQ configurations
- 3 lattice spacings, pion mass down to the physical value

As a consequence:

- Chiral-flavour symmetry maintained (in the valence sector)
- Lattice artefact of order $O(a^2)$
- Good control over the chiral behaviour, continuum limit, finite volume effects
- But non-unitary setup and flavour symmetry broken in the sea
- I am not entering the *staggered* debate
- \blacksquare We take the mixed-action terms into account in the $\chi {\rm PT}$ expressions

The main features of our computation are:

- Mixed-action: Möbius Domain-Wall on $N_f = 2 + 1 + 1$ HISQ configurations
- 3 lattice spacings, pion mass down to the physical value

As a consequence:

- Chiral-flavour symmetry maintained (in the valence sector)
- Lattice artefact of order $\mathcal{O}(a^2)$
- Good control over the chiral behaviour, continuum limit, finite volume effects
- But non-unitary setup and flavour symmetry broken in the sea
- I am not entering the *staggered* debate
- \blacksquare We take the mixed-action terms into account in the $\chi {\rm PT}$ expressions

In addition we perform the renormalisation non-perturbatively Only perturbative errors come from the conversion to $\overline{\rm MS}$

HISQ gauge configuration parameters										
abbr.	$N_{\rm cfg}$	volume	$\sim a$ [fm]	m_l/m_s	$\sim m_{\pi_5}$ [MeV]	$\sim m_{\pi_5} L$				
a15m400	1000	$16^3 \times 48$	0.15	0.334	400	4.8				
a15m350	1000	$16^3 \times 48$	0.15	0.255	350	4.2				
a15m310	1960	$16^3 \times 48$	0.15	0.2	310	3.8				
a15m220	1000	$24^3 \times 48$	0.15	0.1	220	4.0				
a15m130	1000	$32^3 \times 48$	0.15	0.036	130	3.2				
a12m400	1000	$24^3 \times 64$	0.12	0.334	400	5.8				
a12m350	1000	$24^3 \times 64$	0.12	0.255	350	5.1				
a12m310	1053	$24^3 \times 64$	0.12	0.2	310	4.5				
a12m220S	1000	$24^3 \times 64$	0.12	0.1	220	3.2				
a12m220	1000	$32^3 \times 64$	0.12	0.1	220	4.3				
a12m220L	1000	$40^3 \times 64$	0.12	0.1	220	5.4				
a12m130	1000	$48^3 \times 64$	0.12	0.036	130	3.9				
a09m400	1201	$32^3 \times 64$	0.09	0.335	400	5.8				
a09m350	1201	$32^3 \times 64$	0.09	0.255	350	5.1				
a09m310	784	$32^3 \times 96$	0.09	0.2	310	4.5				
a09m220	1001	$48^3\times96$	0.09	0.1	220	4.7				

The setup (II)

For this analysis we only consider

	$m_\pi \sim 310~{ m MeV}$		$m_\pi \sim 220~{ m MeV}$		$m_\pi \sim 130~{ m MeV}$	
<i>a</i> (fm)	V	$m_{\pi}L$	V	$m_{\pi}L$	V	$m_{\pi}L$
0.15	$16^{3} \times 48$	3.78	$24^{3} \times 48$	3.99		
0.12			$24^{3} \times 64$	3.22		
0.12	$24^{3} \times 64$	4.54	$32^{3} \times 64$	4.29	$48^3 imes 64$	3.91
0.12			$40^3 imes 64$	5.36		
0.09	$32^{3} \times 96$	4.50	$48^3 imes 96$	4.73		

Bare results

Define usual 2p and 3p functions

$$C_{\pi}(t) = \sum_{\mathbf{x}} \sum_{\alpha} \langle \alpha | \Pi^{+}(t, \mathbf{x}) \Pi^{-}(0, \mathbf{0}) | \alpha \rangle$$
$$= \sum_{n} \frac{|Z_{n}^{\pi}|^{2}}{2E_{n}^{\pi}} \left(e^{-E_{n}^{\pi}t} + e^{-E_{n}^{\pi}(T-t)} \right) + \cdots$$

where $z_n^{\pi} = \langle \Omega | \Pi^+ | n \rangle$, $\Omega = vaccum$ and

$$C_i^{\mathrm{3pt}}(t_f,t_i) = \sum_{\mathbf{x},\mathbf{y},lpha} \langle lpha | \Pi^+(t_f,\mathbf{x}) \mathcal{O}_i(0,\mathbf{0}) \Pi^+(t_i,\mathbf{y}) | lpha
angle$$

Bare results

Define usual 2p and 3p functions

$$C_{\pi}(t) = \sum_{\mathbf{x}} \sum_{\alpha} \langle \alpha | \Pi^{+}(t, \mathbf{x}) \Pi^{-}(0, \mathbf{0}) | \alpha \rangle$$
$$= \sum_{n} \frac{|z_{n}^{\pi}|^{2}}{2E_{n}^{\pi}} \left(e^{-E_{n}^{\pi}t} + e^{-E_{n}^{\pi}(T-t)} \right) + \cdots$$

where $z_n^{\pi} = \langle \Omega | \Pi^+ | n \rangle$, $\Omega = vaccum$ and

$$C_i^{3 ext{pt}}(t_f, t_i) = \sum_{\mathbf{x}, \mathbf{y}, lpha} \langle lpha | \Pi^+(t_f, \mathbf{x}) \mathcal{O}_i(0, \mathbf{0}) \Pi^+(t_i, \mathbf{y}) | lpha
angle$$

for example fit ratio such as

$$egin{array}{rcl} \mathcal{R}_i(t) &\equiv & C_i^{
m 3pt}(t,T-t)/\left(C_\pi(t)C_\pi(T-t)
ight) \ &\longrightarrow & rac{a^4\langle\pi|\mathcal{O}_{i+}^{++}|\pi
angle}{(a^2z_0^\pi)^2}+\dots \end{array}$$

Bare results

Example of results for $a \simeq 0.12$ fm , near physical pion mass ensemble

Non Perturbative Renormalisation (NPR)

A few words on the renormalisation

First step: remove the divergences

Non-perturbative Renormalisation à la Rome-Southampton [Martinelli et al '95]

$$Q^{\textit{lat}}_i(a)
ightarrow Q^{MOM}_i(\mu,a) = Z(\mu,a)_{ij} Q^{\textit{lat}}_j(a)$$

and take the continuum limit

$$Q_i^{MOM}(\mu,0) = \lim_{a^2 \to 0} Q_i^{MOM}(\mu,a)$$

Second step: Matching to $\overline{\rm MS}$, done in perturbation theory [Sturm et al., Lehner and Sturm, Gorbahn and Jäger, Gracey, ...]

$$Q_i^{MOM}(\mu,0)
ightarrow Q_i^{\overline{ ext{MS}}}(\mu) = (1+r_1lpha_{\mathcal{S}}(\mu)+r_2lpha_{\mathcal{S}}(\mu)^2+\ldots)_{ij}Q_j^{MOM}(\mu,0)$$

Consider a quark bilinear $O_{\Gamma} = \bar{\psi}_2 \Gamma \psi_1$

Define

 $\mathsf{\Pi}(x_2,x_1) = \langle \psi_2(x_2) \mathcal{O}_{\mathsf{\Gamma}}(0) \overline{\psi}_1(x_1) \rangle = \langle S_2(x_2,0) \mathsf{\Gamma} S_1(0,x_1) \rangle$

In Fourier space $S(p) = \sum_{x} S(x, 0)e^{ip.x}$

 $\Pi(p_2,p_1) = \langle S_2(p_2) \Gamma S_1(p_1)^{\dagger}) \rangle$

Consider a quark bilinear $O_{\Gamma} = \bar{\psi}_2 \Gamma \psi_1$

Define

 $\Pi(x_2, x_1) = \langle \psi_2(x_2) O_{\Gamma}(0) \overline{\psi}_1(x_1) \rangle = \langle S_2(x_2, 0) \Gamma S_1(0, x_1) \rangle$

In Fourier space $S(p) = \sum_{x} S(x, 0)e^{ip.x}$

 $\Pi(p_2,p_1) = \langle S_2(p_2) \Gamma S_1(p_1)^{\dagger}) \rangle$

Amputated Green function

 $\Lambda(p_2, p_1) = \langle S_2(p_2)^{-1} \rangle \langle S_2(p_2) \Gamma S_1(p_1)^{\dagger} \rangle \rangle \langle (S_2(p_1)^{\dagger^{-1}}) \rangle$

Consider a quark bilinear $O_{\Gamma} = \bar{\psi}_2 \Gamma \psi_1$

Define

 $\Pi(x_2,x_1) = \langle \psi_2(x_2) O_{\Gamma}(0) \overline{\psi}_1(x_1) \rangle = \langle S_2(x_2,0) \Gamma S_1(0,x_1) \rangle$

In Fourier space $S(p) = \sum_{x} S(x, 0)e^{ip.x}$

 $\Pi(p_2,p_1) = \langle S_2(p_2) \Gamma S_1(p_1)^{\dagger}) \rangle$

Amputated Green function

 $\Lambda(p_2, p_1) = \langle S_2(p_2)^{-1} \rangle \langle S_2(p_2) \Gamma S_1(p_1)^{\dagger} \rangle \rangle \langle (S_2(p_1)^{\dagger^{-1}}) \rangle$

Rome Southampton original scheme (RI-MOM), $p_1 = p_2 = p$ and $\mu = \sqrt{p^2}$

$$Z(\mu, a) imes \lim_{m o 0} \operatorname{Tr}(\Gamma \Lambda(p, p))_{\mu^2 = p^2} = \operatorname{Tree}$$

Remarks

• Can be generalised to the four-quark operator mixing case

Remarks

- Can be generalised to the four-quark operator mixing case
- Non-perturbative off-shell and massless scheme(s)
- Requires gauge fixing (unlike Schrödinger Functional)

Remarks

- Can be generalised to the four-quark operator mixing case
- Non-perturbative off-shell and massless scheme(s)
- Requires gauge fixing (unlike Schrödinger Functional)

Note that the choice of projector and kinematics is not unique In particular, SMOM scheme

$$p_1 \neq p_2$$
 and $p_1^2 = p_2^2 = (p_1 - p_2)^2$

Can use *q* as projector

Remarks

- Can be generalised to the four-quark operator mixing case
- Non-perturbative off-shell and massless scheme(s)
- Requires gauge fixing (unlike Schrödinger Functional)

Note that the choice of projector and kinematics is not unique In particular, SMOM scheme

$$p_1 \neq p_2$$
 and $p_1^2 = p_2^2 = (p_1 - p_2)^2$

Can use *q* as projector

In principle the results should agree after conversion to $\overline{\rm MS},$ and extrapolation to the continuum limit

Renormalisation basis of the $\Delta F = 2$ operators

As for BSM neutral meson mixing one needs to renormalise 5 operators ,

(27,1)
$$O_1^{\Delta S=2} = \gamma_\mu \times \gamma_\mu + \gamma_\mu \gamma_5 \times \gamma_\mu \gamma_5$$

$$\begin{array}{lll} (8,8) & \left\{ \begin{array}{l} O_2^{\Delta s=2} &=& \gamma_\mu \times \gamma_\mu - \gamma_\mu \gamma_5 \times \gamma_\mu \gamma_5 \\ O_3^{\Delta s=2} &=& 1 \times 1 - \gamma_5 \times \gamma_5 \end{array} \right. \\ (6,\overline{6}) & \left\{ \begin{array}{l} O_4^{\Delta s=2} &=& 1 \times 1 + \gamma_5 \times \gamma_5 \\ O_5^{\Delta s=2} &=& \sigma_{\mu\nu} \times \sigma_{\mu\nu} \end{array} \right. \end{array}$$

So the renormalisation matrix has the form

$$\mathcal{Z}^{\Delta S=2}=\left(egin{array}{cccc} \mathcal{Z}_{11} & & & \ & \mathcal{Z}_{22} & \mathcal{Z}_{23} & & \ & \mathcal{Z}_{32} & \mathcal{Z}_{33} & & \ & & & \mathcal{Z}_{44} & \mathcal{Z}_{45} & \ & & & & \mathcal{Z}_{54} & \mathcal{Z}_{55} \end{array}
ight)$$

More details on NPR

- Setup is the similar to RBC-UKQCD
 In particular we follow [Arthur & Boyle '10]
- We implement momentum sources [Gockeler et al '98] to achieve high stat. accuracy
- Non exceptional kinematic with symmetric point $p_1^2 = p_2^2 = (p_2 p_1)^2$

to suppress IR contaminations [Sturm et al', RBC-UKQCD '09 '10]

Choice of SMOM scheme

Orientation of the momenta kept fixed

$$p_1 = \frac{2\pi}{L}[n, 0, n, 0]$$
 $p_2 = \frac{2\pi}{L}[0, n, n, 0]$

 \Rightarrow Well defined continuum limit

Choice of SMOM scheme

Orientation of the momenta kept fixed

$$p_1 = \frac{2\pi}{L}[n, 0, n, 0]$$
 $p_2 = \frac{2\pi}{L}[0, n, n, 0]$

 \Rightarrow Well defined continuum limit

• We chose γ_{μ} projectors, for example

$$P^{(\gamma_{\mu})} \quad \leftrightarrow \quad \gamma_{\mu} imes \gamma_{\mu} + \gamma_{\mu} \gamma_{5} imes \gamma_{\mu} \gamma_{5}$$

 \Rightarrow Z factor of a four quark operator O in the scheme $(\gamma_{\mu}, \gamma_{\mu})$ defined by

$$\lim_{m \to 0} \left. \frac{Z_O^{(\gamma_\mu, \gamma_\mu)}}{Z_V^2} \frac{P^{(\gamma_\mu)} \left\{ \Lambda_O \right\}}{\left(P^{(\gamma_\mu)} \left\{ \Lambda_V \right\} \right)^2} \right|_{\mu^2 = p^2} = Tree$$

Note that this defines an off-shell massless scheme

Step-scaling

Rome-Southampton method requires a *windows*

 $\Lambda^2_{QCD} \ll \mu^2 \ll (\pi/a)^2$

• And our lattice spacings are $a^{-1} \sim 2.2, 1.7, 1.3 GeV$

Step-scaling

Rome-Southampton method requires a windows

 $\Lambda^2_{QCD} \ll \mu^2 \ll (\pi/a)^2$

And our lattice spacings are $a^{-1} \sim 2.2, 1.7, 1.3 GeV$

we follow [Arthur & Boyle '10] and [Arthur, Boyle, NG, Kelly, Lytle '11] and define

$$\sigma(\mu_2,\mu_1) = \lim_{a^2 \to 0} \lim_{m \to 0} \left[(P\Lambda(\mu_2,a))^{-1} P\Lambda(\mu_1,a) \right] = \lim_{a^2 \to 0} Z(\mu_2,a) Z(\mu_1,a)^{-1}$$

Step-scaling

Rome-Southampton method requires a windows

 $\Lambda^2_{QCD} \ll \mu^2 \ll (\pi/a)^2$

And our lattice spacings are $a^{-1} \sim 2.2, 1.7, 1.3 GeV$

we follow [Arthur & Boyle '10] and [Arthur, Boyle, NG, Kelly, Lytle '11] and define

$$\sigma(\mu_2,\mu_1) = \lim_{a^2 \to 0} \lim_{m \to 0} \left[(P\Lambda(\mu_2,a))^{-1} P\Lambda(\mu_1,a) \right] = \lim_{a^2 \to 0} Z(\mu_2,a) Z(\mu_1,a)^{-1}$$

• We use 3 lattice spacings to compute $\sigma(2 \text{ GeV}, 1.5 \text{ GeV})$ but only the two finest to compute $\sigma(3 \text{ GeV}, 2 \text{ GeV})$ and get

 $Z(3 \text{ GeV}, a) = \sigma(3 \text{ GeV}, 2 \text{ GeV}) \sigma(2 \text{ GeV}, 1.5 \text{ GeV}) Z(1.5 \text{ GeV}, a)$

Intermezzo: the importance of SMOM schemes

based on RBC-UKQCD 2010-now

... [NG Hudspith Lytle'16], [Boyle NG Hudspith Lehner Lytle '17] [...Kettle, Khamseh, Tsang 17-18]

BSM kaon mixing - Results

- \blacksquare The Green functions might suffer from IR poles, $\sim 1/p^2,$ or $\sim 1/m_\pi^2$ which can pollute the signal
- In principle these poles are suppressed at high μ but they appear to be quite important at $\mu\sim$ 3 GeV for some quantities which allow for pion exchanges
- The traditional way is to "subtract " these contamination by hand

- \blacksquare The Green functions might suffer from IR poles, $\sim 1/p^2,$ or $\sim 1/m_\pi^2$ which can pollute the signal
- In principle these poles are suppressed at high μ but they appear to be quite important at $\mu\sim$ 3 GeV for some quantities which allow for pion exchanges
- The traditional way is to "subtract " these contamination by hand
- However these contaminations are highly suppressed in a SMOM scheme, with non-exceptional kinematics
- We argue that this pion pole subtractions is not-well under control and that schemes with exceptional kinematics should be discarded

BSM kaon mixing - Results

BSM kaon mixing - Results

Better MOM schemes ?

More MOM schemes

Renormalisation scale is μ , given by the choice of kinematics

Original RI-MOM scheme

$$p_1=p_2$$
 and $\mu^2\equiv p_1^2=p_2^2$

But this lead to "exceptional kinematics' and bad IR poles

More MOM schemes

Renormalisation scale is μ , given by the choice of kinematics

Original RI-MOM scheme

$$p_1 = p_2$$
 and $\mu^2 \equiv p_1^2 = p_2^2$

But this lead to "exceptional kinematics' and bad IR poles

then RI-SMOM scheme

$$p_1 \neq p_2$$
 and $\mu^2 \equiv p_1^2 = p_2^2 = (p_1 - p_2)^2$

Much better IR behaviour [Sturm et al., Lehner and Sturm, Gorbahn and Jäger, Gracey, ...]

More MOM schemes

Renormalisation scale is μ , given by the choice of kinematics

Original RI-MOM scheme

 $\textit{p}_1=\textit{p}_2$ and $\mu^2\equiv\textit{p}_1^2=\textit{p}_2^2$

But this lead to "exceptional kinematics' and bad IR poles

then RI-SMOM scheme

$$p_1 \neq p_2$$
 and $\mu^2 \equiv p_1^2 = p_2^2 = (p_1 - p_2)^2$

Much better IR behaviour [Sturm et al., Lehner and Sturm, Gorbahn and Jäger, Gracey, ...] We are now studying a generalisation (see also [Bell and Gracey])

$$p_1
eq p_2$$
 and $\mu^2\equiv p_1^2=p_2^2,~~(p_1-p_2)^2=\omega\mu^2$ where $\omega\in[0,4]$

Note that $\omega = 0 \leftrightarrow RI - MOM$ and $\omega = 1 \leftrightarrow RI - SMOM$

In collaboration with [...,Cahill, Gorbahn, Gracey, Perlt , Rakow, ...]

Nicolas Garron (University of Liverpool)

Back to $0\nu\beta\beta$: Physical results

Chiral extrapolations

With

$$\Lambda_{\chi} = 4\pi F_{\pi} , \qquad \qquad \epsilon_{\pi} = \frac{m_{\pi}}{\Lambda_{\chi}} ,$$

we find in the continuum at NLO (β_i and c_i are free parameters)

$$\begin{split} O_1 &= \frac{\beta_1 \Lambda_{\chi}^4}{(4\pi)^2} \bigg[1 + \frac{7}{3} \epsilon_{\pi}^2 \ln(\epsilon_{\pi}^2) + c_1 \epsilon_{\pi}^2 \bigg] \\ O_2 &= \frac{\beta_2 \Lambda_{\chi}^4}{(4\pi)^2} \bigg[1 + \frac{7}{3} \epsilon_{\pi}^2 \ln(\epsilon_{\pi}^2) + c_2 \epsilon_{\pi}^2 \bigg] \\ \frac{O_3}{\epsilon_{\pi}^2} &= \frac{\beta_3 \Lambda_{\chi}^4}{(4\pi)^2} \bigg[1 + \frac{4}{3} \epsilon_{\pi}^2 \ln(\epsilon_{\pi}^2) + c_3 \epsilon_{\pi}^2 \bigg] \end{split}$$

Chiral extrapolations

With

$$\Lambda_{\chi} = 4\pi F_{\pi} , \qquad \qquad \epsilon_{\pi} = \frac{m_{\pi}}{\Lambda_{\chi}} ,$$

we find in the continuum at NLO (β_i and c_i are free parameters)

$$\begin{split} O_1 &= \frac{\beta_1 \Lambda_{\chi}^4}{(4\pi)^2} \bigg[1 + \frac{7}{3} \epsilon_{\pi}^2 \ln(\epsilon_{\pi}^2) + c_1 \epsilon_{\pi}^2 \bigg] \\ O_2 &= \frac{\beta_2 \Lambda_{\chi}^4}{(4\pi)^2} \bigg[1 + \frac{7}{3} \epsilon_{\pi}^2 \ln(\epsilon_{\pi}^2) + c_2 \epsilon_{\pi}^2 \bigg] \\ \frac{O_3}{\epsilon_{\pi}^2} &= \frac{\beta_3 \Lambda_{\chi}^4}{(4\pi)^2} \bigg[1 + \frac{4}{3} \epsilon_{\pi}^2 \ln(\epsilon_{\pi}^2) + c_3 \epsilon_{\pi}^2 \bigg] \end{split}$$

In practice, these expressions are modified to incorporate a^2 , mixed-action effects and finite volume effects

Extrapolations to the physical point

Extrapolations to the physical point

Extrapolations to the physical point

"Pion bag parameter"

We define $B_{\pi} = O_3 / (\frac{8}{3} m_{\pi}^2 F_{\pi}^2)$

Physical results

 $1-2\sigma$ agreement with [V. Cirigliano, W. Dekens, M. Graesser, E. Mereghetti 1701.01443] where they use an estimate from SU(3) χ PT

but the uncertainty decreases from 20-40% to 5-8%

Physical results

 $1-2\sigma$ agreement with [V. Cirigliano, W. Dekens, M. Graesser, E. Mereghetti 1701.01443] where they use an estimate from $SU(3)~\chi{\rm PT}$

but the uncertainty decreases from 20-40% to 5-8%

```
and B_{\pi} = 0.430(16)[0.432(16)]
```

low value, far from 1 as anticipated for example by [Pich & de Rafael]

Conclusions

Conclusions and outlook

- First computation of heavy contributions to $0\nu\beta\beta$, the $\langle \pi^+|O|\pi^-\rangle$ MEs
- Accepted by PRL [A. Nicholson, E. Berkowitz, H. Monge-Camacho, D. Brantley, N.G., C.C. Chang, E. Rinaldi, M.A. Clark, B. Joo, T. Kurth, B. Tiburzi, P. Vranas, A. Walker-Loud] arXiv:1805.02634

Conclusions and outlook

- First computation of heavy contributions to $0\nu\beta\beta$, the $\langle \pi^+|O|\pi^-\rangle$ MEs
- Accepted by PRL [A. Nicholson, E. Berkowitz, H. Monge-Camacho, D. Brantley, N.G., C.C. Chang, E. Rinaldi, M.A. Clark, B. Joo, T. Kurth, B. Tiburzi, P. Vranas, A. Walker-Loud] arXiv:1805.02634

Our computation features

- Good Chiral symmetry
- Non-perturbative renormalisation
- Physical pion masses, three lattice spacings

As for BSM neutral meson meson mixing, chiral symmetry and SMOM schemes are crucial !

Conclusions and outlook

There is still some work to do:

- Compute contributions within nuclei $\langle N | O | N \rangle$
- Other unknown short-distance contributions
- Long-distance contributions ?

Backup

ØА

Insertion of the axial current between two nucleon state,

$$\langle N(p')|\overline{\psi}\gamma_{\mu}\gamma_{5}\psi|N(p)
angle = \overline{u}(p')\left[\gamma_{\mu}\gamma_{5}G_{A}(q^{2}) + \gamma_{5}rac{q_{\mu}}{2m_{N}}G_{P}(q^{2})
ight]\overline{u}(p)$$

where q is the momentum transfer q = p' - p

The nucleon axial coupling is then

$$g_A = G_A(0)$$

 g_A is the strength at which the nucleon couples to the axial current

g_A the Nucleon axial coupling

Nuclear β decay: $n \longrightarrow p + e^- + \bar{\nu}_e$

 \rightarrow Well-measured experimentally $g_A = 1.2723(23)$ error < 0.2%

A problem on the lattice

- It should be a relatively "simple" quantity
- But turned out to be a long standing puzzle
- Can we believe in lattice results for nucleons ?
- Or is there a problem with QCD ?

A problem on the lattice

Summary plot from [Martha Constantinou @ Lat2014]

Our computation

With CalLat (California Lattice) Collaboration

- Möbius fermions on $N_f = 2 + 1 + 1$ HISQ ensembles \Rightarrow Chiral symmetry
- 3 lattice spacings $a \sim 0.15, 0.012, 0.09$ fm, several volumes
- Multiple pion mass and physical pion mass on a ~ 0.15, 0.012 ensembles

 \Rightarrow Good control over Chiral/cont./ infinite Vol. extrapolations

Our computation

Main improvements (compared to recent computations)

- New method to extract the signal "kills" the noise problem
- Chiral fermions, so dominant Lattice artefacts are a² and a⁴
- Non-perturbative renormalisation $Z_A/Z_V = 1$

$$g_A = rac{Z_A}{Z_V} \left(rac{g_A}{g_V}
ight)^{\mathrm{bare}}$$

 $g_A^{QCD} = 1.271(13)$ $g_A^{PDG} = 1.2723(23)$ [Chang, Nicholson, Rinaldi, Berkowitz, N.G., Brantley, Monge-Camacho, Monahan, Bouchard, Clark, Joó, Kurth, Orginos, Vranas, Walker-Loud]

Published in Nature 558 (2018) no.7708

Nicolas Garron (University of Liverpool)

Error budget

$g_A = 1.2711(103)^{\mathrm{s}}(39)^{\chi}(15)^{\mathrm{a}}(19)^{\mathrm{v}}(04)^{\mathrm{I}}(55)^{\mathrm{M}}$

where the errors are statistical (s), chiral (χ), continuum (a), infinite volume (v), isospin breaking (I) and model-selection (M)

To be compare to the experimental value $g_A = 1.2723(23)$