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� Jülich: Evan Berkowitz

� LBL/UCB: Davd Brantley, Chia Cheng (Jason) Chang, Thosrsten Kurth,
Henry Monge-Camacho, André Walker-Loud
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Introduction

� Observation of Neutrino oscillations, accumulation of evidences since the late
60’s: solar ν, atmospheric ν, ν beam, . . . .

2015 Nobel prize in physics: Kajita and McDonald

⇒ Neutrinos have non-zero mass

⇒ Deviation from the Standard Model

� Mass hierarchy and mixing pattern remain a puzzle

In particular, what is the nature of the neutrino mass, Dirac or Majorana ?

� Experimental searches for neutrinoless double β decay (0νββ)

If measured → Majorana particle, probe of new physics, . . .

Huge experimental effort
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Neutrinoless double beta decay

� β-decay
n −→ p + e− + ν̄e

� and a νe can be absorbed in the process

νe + n −→ p + e−

� so that if νe = ν̄e it is possible to have

n + n −→ p + p + e− + e−

⇒ Neutrinoless double beta decay
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Neutrinoless double beta decay

Neutrinoless double β decay: n + n −→ p + p + e− + e−
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Neutrinoless double beta decay

� 0νββ violates Lepton-number conservation ⇒ New Physics

� Can be related to leptogensis and Matter-Antimatter asymmetry

� Can probe the absolute scale of neutrino mass (or of new physics)

� Related to dark matter ?

� Worldwide experimental effort
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Neutrinoless double beta decay

� 0νββ violates Lepton-number conservation ⇒ New Physics

� Can be related to leptogensis and Matter-Antimatter asymmetry

� Can probe the absolute scale of neutrino mass (or of new physics)

� Related to dark matter ?

� Worldwide experimental effort

� Relating possible experimental signatures to New-Physics model requires the
knowledge of QCD contributions
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Neutrinoless double beta decay

Computing the full process is very ambitious

� Different scales, different interactions

� Multi-particles in initial and final states

� Nucleon ⇒ Signal-to-noise problem

Very hard task in Lattice QCD
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gA
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The axial coupling of the nucleon

Nuclear β decay: n −→ p + e− + ν̄e

we find

gQCD
A = 1.271(13)

vs experiment

gPDG
A = 1.2723(23)

[C Chang, A Nicholson, E Rinaldi, E Berkowitz, NG, D Brantley, H Monge-Camacho, C Monahan,

C Bouchard, M Clark, B Joó, T Kurth, K Orginos, P Vranas, A Walker-Loud]

Nature 558 (2018) no.7708

Nicolas Garron (University of Liverpool) heavy physics contributions to 0νββ 9 / 49



0νββ and EFT
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0νββ and EFT

Process can be mediated by light or heavy particle

� E.g. light νL or heavy νR through seesaw mechanism

� Or heavy “New-Physics” particle

� Naively, one expects the long-distance contribution of a light neutrino to
dominate over the short-distance contribution of a heavy particle

� But the long-range interaction requires a helicity flip

and its proportional to the mass of the light neutrino

⇒ Relative size of the different contributions depend on the New Physics model

� Standard seesaw ml ∼ M2
D/MR � mh ∼ MR
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0νββ and EFT

Consider “heavy” particles contributions, integrate out heavy d.o.f.

EFT framework, see e.g. [Prézeau, Ramsey-Musolf, Vogel ’03], the LO contributions are

� π− −→ π+ + e− + e−

� n −→ p + π+ + e− + e−

� n + n −→ p + p + e− + e−

In this work we focus on the π− −→ π+ matrix elements
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0νββ and EFT

� On the lattice, compute the Matrix elements of π− −→ π+ transitions

� Extract the LEC through Chiral fits

� Use the LEC in the EFT framework to estimate a physical amplitude
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Lattice Computation of π− → π+ matrix elements
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4-quark operators

We only consider light valence quarks q = u, d

the operators of interest are

O++
1+ =

(
q̄Lτ

+γµqL
) [

q̄Rτ
+γµqR

]
O++

2+ =
(
q̄Rτ

+qL
) [

q̄Rτ
+qL

]
+
(
q̄Lτ

+qR
) [

q̄Lτ
+qR

]
O++

3+ =
(
q̄Lτ

+γµqL
) [

q̄Lτ
+γµqL

]
+
(
q̄Rτ

+γµqR
) [

q̄Rτ
+γµqR

]

and the colour partner

O′++
1+ =

(
q̄Lτ

+γµqL
] [
q̄Rτ

+γµqR
)

O′++
2+ =

(
q̄Lτ

+qL
] [
q̄Lτ

+qL
)

+
(
q̄Rτ

+qR
] [
q̄Rτ

+qR
)

where () [] ≡ color unmix and (] [) ≡ color unmix
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4-quark operators (II)

In a slightly more human readable way

O++
1+ =

(
q̄Lτ

+γµqL
) [

q̄Rτ
+γµqR

]
O++

2+ =
(
q̄Rτ

+qL
) [

q̄Rτ
+qL

]
+
(
q̄Lτ

+qR
) [

q̄Lτ
+qR

]
O++

3+ =
(
q̄Lτ

+γµqL
) [

q̄Lτ
+γµqL

]
+
(
q̄Rτ

+γµqR
) [

q̄Rτ
+γµqR

]
The colour unmix are

O++
3+ ∼ γµL × γ

µ
L + γµR × γ

µ
R −→ VV + AA

O++
1+ ∼ γµL × γ

µ
R −→ VV − AA

O++
2+ ∼ PL × PL + PR × PR −→ SS + PP

and the colour partner

O′++
1+ −→ (VV − AA)mix ∼ (SS − PP)unmix

O′++
2+ −→ (SS + PP)mix ∼ (SS + PP)unmix + c(TT )unmix
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π− → π+ transition

� We have to compute the matrix elements (ME) of 〈π+|O|π−〉

� Since QCD conserves Parity, we only consider Parity even sector

The computation goes along the lines of ∆F = 2 ME:

� Extract the bare ME by fitting 3p and 2p functions or ratios

� Non-Perturbative Renormalisation

� Global Fit, extrapolation to physical pion mass and continuum limit

Nicolas Garron (University of Liverpool) heavy physics contributions to 0νββ 17 / 49



π− → π+ transition

� We have to compute the matrix elements (ME) of 〈π+|O|π−〉

� Since QCD conserves Parity, we only consider Parity even sector

The computation goes along the lines of ∆F = 2 ME:

� Extract the bare ME by fitting 3p and 2p functions or ratios

� Non-Perturbative Renormalisation

� Global Fit, extrapolation to physical pion mass and continuum limit

Nicolas Garron (University of Liverpool) heavy physics contributions to 0νββ 17 / 49



Lattice QCD in a nutshell
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Lattice QCD in a nutshell

� Lattice QCD is a discretised version of Euclidean QCD

� Well-defined regularisation of the theory

� Gauge invariant (Wilson) at finite lattice spacing

� Continuum Euclidean QCD is recovered in the lmit a→ 0

〈O〉continuum = lim
a→0

lim
V→∞

〈O〉latt

Allows for non-perturbative and first-principle determinations of QCD observables

Nicolas Garron (University of Liverpool) heavy physics contributions to 0νββ 19 / 49



Lattice QCD in a nutshell

Various steps of a Lattice computation (schematically)

� Generate gauge configurations (ensembles) ↔ gluons and sea quarks

(or take already existing ones)

� Compute fermion propagators ↔ valence quarks

� Compute Wick contractions ↔ bare Green functions

� Determine Z factors (if needed) ↔ renormalised Green functions

� Continuum & physical pion mass extrapolations ↔ physical observables
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Remarks

Different discretizations of the Dirac operators are possible: Wilson, staggered,
Twisted-mass, etc.

One difficulty is to maintain the symmetries of the continuum lagrangian at finite
lattice spacing,

⇒ choose the discretization adapted to the situation you want to describe

In particular chiral symmetry is notoriously difficult to maintain

We consider here Domain-Wall fermions, a type of discretisation which respects
chiral and flavour symmetry almost exactly.

The price to pay is a high numerical cost
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This computation
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The setup

The main features of our computation are:

� Mixed-action: Möbius Domain-Wall on Nf = 2 + 1 + 1 HISQ configurations

� 3 lattice spacings, pion mass down to the physical value

As a consequence:

� Chiral-flavour symmetry maintained (in the valence sector)

� Lattice artefact of order O(a2)

� Good control over the chiral behaviour, continuum limit, finite volume effects

� But non-unitary setup and flavour symmetry broken in the sea

� I am not entering the staggered debate

� We take the mixed-action terms into account in the χPT expressions

In addition we perform the renormalisation non-perturbatively
Only perturbative errors come from the conversion to MS
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The setup (II)

For this analysis we only consider

mπ ∼ 310 MeV mπ ∼ 220 MeV mπ ∼ 130 MeV
a(fm) V mπL V mπL V mπL
0.15 163 × 48 3.78 243 × 48 3.99
0.12 243 × 64 3.22
0.12 243 × 64 4.54 323 × 64 4.29 483 × 64 3.91
0.12 403 × 64 5.36
0.09 323 × 96 4.50 483 × 96 4.73
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Bare results

Define usual 2p and 3p functions

Cπ(t) =
∑
x

∑
α

〈α|Π+(t, x)Π−(0, 0)|α〉

=
∑
n

|zπn |2
2Eπn

(
e−E

π
n t + e−E

π
n (T−t)

)
+ · · ·

where zπn = 〈Ω|Π+|n〉, Ω = vaccum and

C 3pt
i (tf , ti ) =

∑
x,y,α

〈α|Π+(tf , x)Oi (0, 0)Π+(ti , y)|α〉

for example fit ratio such as

Ri (t) ≡ C 3pt
i (t,T − t)/ (Cπ(t)Cπ(T − t))

−→ a4〈π|O++
i+ |π〉

(a2zπ0 )2
+ . . .
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Bare results

6 8 10 12 14 16 18 20 22

t

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

R
i(t

)

R′1 R2 R1 R3 R′2

Example of results for a ' 0.12 fm , near physical pion mass ensemble
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Non Perturbative Renormalisation (NPR)
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A few words on the renormalisation

First step: remove the divergences

Non-perturbative Renormalisation à la Rome-Southampton [Martinelli et al ’95]

Q lat
i (a)→ QMOM

i (µ, a) = Z (µ, a)ijQ
lat
j (a)

and take the continuum limit

QMOM
i (µ, 0) = lim

a2→0
QMOM

i (µ, a)

Second step: Matching to MS, done in perturbation theory [Sturm et al., Lehner

and Sturm, Gorbahn and Jäger, Gracey, . . . ]

QMOM
i (µ, 0)→ QMS

i (µ) = (1 + r1αS(µ) + r2αS(µ)2 + . . .)ijQ
MOM
j (µ, 0)
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The Rome Southampon method [Martinelli et al ’95]

Consider a quark bilinear OΓ = ψ̄2Γψ1

Define
Π(x2, x1) = 〈ψ2(x2)OΓ(0)ψ̄1(x1)〉 = 〈S2(x2, 0)ΓS1(0, x1)〉

In Fourier space S(p) =
∑

x S(x , 0)e ip.x

Π(p2, p1) = 〈S2(p2)ΓS1(p1)†)〉

Amputated Green function

Λ(p2, p1) = 〈S2(p2)−1〉〈S2(p2)ΓS1(p1)†)〉〈(S2(p1)†
−1

)〉

Rome Southampton original scheme (RI-MOM), p1 = p2 = p and µ =
√

p2

Z (µ, a)× lim
m→0

Tr(ΓΛ(p, p))µ2=p2 = Tree
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The Rome Southampon method [Martinelli et al ’95]

Consider a quark bilinear OΓ = ψ̄2Γψ1

Define
Π(x2, x1) = 〈ψ2(x2)OΓ(0)ψ̄1(x1)〉 = 〈S2(x2, 0)ΓS1(0, x1)〉

In Fourier space S(p) =
∑

x S(x , 0)e ip.x
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The Rome Southampon method [Martinelli et al ’95]

Remarks

� Can be generalised to the four-quark operator mixing case

� Non-perturbative off-shell and massless scheme(s)

� Requires gauge fixing (unlike Schrödinger Functional)

Note that the choice of projector and kinematics is not unique

� In particular, SMOM scheme

p1 6= p2 and p2
1 = p2

2 = (p1 − p2)2

� Can use q/ as projector

� In principle the results should agree after conversion to MS, and extrapolation
to the continuum limit
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Renormalisation basis of the ∆F = 2 operators

As for BSM neutral meson mixing one needs to renormalise 5 operators ,

(27, 1) O∆S=2
1 = γµ × γµ + γµγ5 × γµγ5

(8, 8)

{
O∆s=2

2 = γµ × γµ − γµγ5 × γµγ5

O∆s=2
3 = 1× 1 − γ5 × γ5

(6, 6)

{
O∆s=2

4 = 1× 1 + γ5 × γ5

O∆s=2
5 = σµν × σµν

So the renormalisation matrix has the form

Z∆S=2 =


Z11

Z22 Z23

Z32 Z33

Z44 Z45

Z54 Z55


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More details on NPR

� Setup is the similar to RBC-UKQCD

In particular we follow [Arthur & Boyle ’10]

� We implement momentum sources [Gockeler et al ’98] to achieve high stat.
accuracy

� Non exceptional kinematic with symmetric point p2
1 = p2

2 = (p2 − p1)2

s

d s

d

p1

p2

p2

p1

to suppress IR contaminations [Sturm et al’, RBC-UKQCD ’09 ’10]
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Choice of SMOM scheme

� Orientation of the momenta kept fixed

p1 =
2π

L
[n , 0 , n , 0] p2 =

2π

L
[0 , n , n , 0]

⇒ Well defined continuum limit

� We chose γµ projectors, for example

P(γµ) ↔ γµ × γµ + γµγ5 × γµγ5

⇒ Z factor of a four quark operator O in the scheme (γµ, γµ) defined by

lim
m→0

Z
(γµ,γµ)
O

Z 2
V

P(γµ) {ΛO}(
P(γµ) {ΛV }

)2

∣∣∣∣∣
µ2=p2

= Tree

� Note that this defines an off-shell massless scheme
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Step-scaling

� Rome-Southampton method requires a windows

Λ2
QCD � µ2 � (π/a)2

� And our lattice spacings are a−1 ∼ 2.2, 1.7, 1.3GeV

� we follow [Arthur & Boyle ’10] and [Arthur, Boyle, NG, Kelly, Lytle ’11] and define

σ(µ2, µ1) = lim
a2→0

lim
m→0

[
(PΛ(µ2, a))−1PΛ(µ1, a)

]
= lim

a2→0
Z (µ2, a)Z (µ1, a)−1

� We use 3 lattice spacings to compute σ(2 GeV, 1.5 GeV) but only the two

finest to compute σ(3 GeV, 2 GeV) and get

Z (3 GeV, a) = σ(3 GeV, 2 GeV)σ(2 GeV, 1.5 GeV)Z (1.5 GeV, a)
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Intermezzo: the importance of SMOM schemes

based on RBC-UKQCD 2010-now
. . . [NG Hudspith Lytle’16] , [Boyle NG Hudspith Lehner Lytle ’17] [. . . Kettle, Khamseh, Tsang 17-18]
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BSM kaon mixing - Results

0.4 0.5

=
+

+
=

+
=

0.65 0.85 0.7 0.9 0.4 0.6 0.8

ETM 12D

our average for =

RBC/UKQCD 12E

SWME 14C

SWME 15A

RBC/UKQCD 16

our average for = +

ETM 15

our average for = + +
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Pole subtraction

� The Green functions might suffer from IR poles, ∼ 1/p2, or ∼ 1/m2
π which can

pollute the signal

� In principle these poles are suppressed at high µ but they appear to be quite
important at µ ∼ 3 GeV for some quantities which allow for pion exchanges

� The traditional way is to “subtract “ these contamination by hand

� However these contaminations are highly suppressed in a SMOM scheme, with
non-exceptional kinematics

� We argue that this pion pole subtractions is not-well under control and that
schemes with exceptional kinematics should be discarded
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Pole subtraction

am ×10 -3
0 2 4 6 8

Λ
s
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b
,R

I
−
M
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P
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Pole subtraction

am ×10 -3
0 2 4 6 8

Λ
su
b
,(
γ
µ
)

P
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BSM kaon mixing - Results
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Better MOM schemes ?



More MOM schemes

Renormalisation scale is µ, given by the choice of kinematics

� Original RI-MOM scheme

p1 = p2 and µ2 ≡ p2
1 = p2

2

But this lead to “exceptional kinematics’ and bad IR poles

� then RI-SMOM scheme

p1 6= p2 and µ2 ≡ p2
1 = p2

2 = (p1 − p2)2

Much better IR behaviour [Sturm et al., Lehner and Sturm, Gorbahn and Jäger, Gracey, . . . ]

� We are now studying a generalisation (see also [Bell and Gracey ])

p1 6= p2 and µ2 ≡ p2
1 = p2

2 , (p1 − p2)2 = ωµ2 where ω ∈ [0, 4]

Note that ω = 0↔ RI −MOM and ω = 1↔ RI − SMOM

In collaboration with [...,Cahill, Gorbahn, Gracey, Perlt , Rakow, ... ]
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Back to 0νββ: Physical results
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Chiral extrapolations

With

Λχ = 4πFπ , επ =
mπ

Λχ
,

we find in the continuum at NLO (βi and ci are free parameters)

O1 =
β1Λ4

χ

(4π)2

[
1 +

7

3
ε2
π ln(ε2

π) + c1ε
2
π

]
O2 =

β2Λ4
χ

(4π)2

[
1 +

7

3
ε2
π ln(ε2

π) + c2ε
2
π

]
O3

ε2
π

=
β3Λ4

χ

(4π)2

[
1 +

4

3
ε2
π ln(ε2

π) + c3ε
2
π

]

In practice, these expressions are modified to incorporate a2, mixed-action effects
and finite volume effects
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Extrapolations to the physical point
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Extrapolations to the physical point
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“Pion bag parameter”

We define Bπ = O3/( 8
3m

2
πF

2
π)
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Physical results

RI/SMOM MS
Oi [GeV]4 µ = 3 GeV µ = 3 GeV

O1 −1.96(14)× 10−2 −1.94(14)× 10−2

O ′1 −7.21(53)× 10−2 −7.81(57)× 10−2

O2 −3.60(30)× 10−2 −3.69(31)× 10−2

O ′2 1.05(09)× 10−2 1.12(10)× 10−2

O3 1.89(09)× 10−4 1.90(09)× 10−4

1− 2σ agreement with [V. Cirigliano, W. Dekens, M. Graesser, E. Mereghetti 1701.01443]

where they use an estimate from SU(3) χPT

but the uncertainty decreases from 20− 40% to 5− 8%

and Bπ = 0.430(16)[0.432(16)]

low value, far from 1 as anticipated for example by [Pich & de Rafael]
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Conclusions
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Conclusions and outlook

� First computation of heavy contributions to 0νββ, the 〈π+|O|π−〉 MEs

� Accepted by PRL [A. Nicholson, E. Berkowitz, H. Monge-Camacho, D. Brantley, N.G., C.C. Chang,

E. Rinaldi, M.A. Clark, B. Joo, T. Kurth, B. Tiburzi, P. Vranas, A. Walker-Loud] arXiv:1805.02634

Our computation features

� Good Chiral symmetry

� Non-perturbative renormalisation

� Physical pion masses, three lattice spacings

As for BSM neutral meson meson mixing, chiral symmetry and SMOM schemes
are crucial !
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Conclusions and outlook

There is still some work to do:

� Compute contributions within nuclei 〈N|O|N〉

� Other unknown short-distance contributions

� Long-distance contributions ?
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Backup
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gA



gA the Nucleon axial coupling

Insertion of the axial current between two nucleon state,

〈N(p′)|ψγµγ5ψ|N(p)〉 = ū(p′)

[
γµγ5GA(q2) + γ5

qµ
2mN

GP(q2)

]
ū(p)

where q is the momentum transfer q = p′ − p

The nucleon axial coupling is then

gA = GA(0)

gA is the strength at which the nucleon couples to the axial current
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gA the Nucleon axial coupling

Nuclear β decay: n −→ p + e− + ν̄e

−→ Well-measured experimentally gA = 1.2723(23) error < 0.2%
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A problem on the lattice

� It should be a relatively “simple” quantity

� But turned out to be a long standing puzzle

� Can we believe in lattice results for nucleons ?

� Or is there a problem with QCD ?
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A problem on the lattice

Summary plot from [Martha Constantinou @ Lat2014]
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Our computation

With CalLat (California Lattice) Collaboration

� Möbius fermions on Nf = 2 + 1 + 1 HISQ ensembles
⇒ Chiral symmetry

� 3 lattice spacings a ∼ 0.15, 0.012, 0.09 fm, several volumes

� Multiple pion mass
and physical pion mass on a ∼ 0.15, 0.012 ensembles

⇒ Good control over Chiral/cont./ infinite Vol. extrapolations
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Our computation

Main improvements (compared to recent computations)

� New method to extract the signal “kills” the noise problem

� Chiral fermions, so dominant Lattice artefacts are a2 and a4

� Non-perturbative renormalisation ZA/ZV = 1

gA =
ZA

ZV

(
gA
gV

)bare
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Results
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Results
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Results
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Results

1.10 1.15 1.20 1.25 1.30 1.35

PDG17

this work

CLS17

ETMC17

PNDME16

ETMC15

†RQCD14

QCDSF13

†QCDSF13

CLS12

LHPC05

gQCD
A = 1.271(13) gPDG

A = 1.2723(23)
[Chang, Nicholson, Rinaldi, Berkowitz, N.G., Brantley, Monge-Camacho, Monahan, Bouchard, Clark, Joó,
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Error budget

gA = 1.2711(103)s(39)χ(15)a(19)v(04)I(55)M

where the errors are statistical (s), chiral (χ), continuum (a), infinite volume (v),
isospin breaking (I) and model-selection (M)

To be compare to the experimental value gA = 1.2723(23)
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