Precision in EFT studies for top-quark physics

Eleni Vryonidou CERN TH

Based on arXiv: 1601.08193, 1607.05330 and 1708.00460 and ongoing work

European Commission

Cambridge 06/10/17

Outline

- Introduction to the EFT
- EFT in top quark physics
 - Precision calculations in the EFT
- EFT in the top-Higgs sector
 - Constraining dimension-6 operators

LHC: the story so far

Model-dependent

SUSY, 2HDM...

New particles

Model-Independent

simplified models,EFT

New Interactions of SM particles

anomalous couplings, EFT

Model-dependent

SUSY, 2HDM...

New particles

Model-Independent

simplified models,EFT

New Interactions of SM particles

anomalous couplings, EFT

Deviations in tails

Model-dependent

SUSY, 2HDM...

New particles

Model-Independent

simplified models,EFT

New Interactions of SM particles

anomalous couplings, EFT

Model-dependent

SUSY, 2HDM...

New particles

Model-Independent

simplified models,EFT

New Interactions of SM particles

anomalous couplings, EFT

Model-dependent

SUSY, 2HDM...

New particles

Model-Independent

simplified models,EFT

New Interactions of SM particles

anomalous couplings, EFT

SMEFT

BSM? New Interactions of SM particles

$$\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$$

• 59(3045) operators at dim-6: Buchmuller, Wyler Nucl.Phys. B268 (1986) 621-653

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{arphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu \nu} W^{I \mu \nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Grzadkowski et al arxiv:1008.4884

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	ating	
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right.$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(q_{p}^{lpha j} ight) ight]$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[\left(q_{p}^{\alpha}\right)\right]$	$(j)^T C q_r^{\beta}$	$\left[(q_s^{\gamma m})^T C l_t^n \right]$
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{lphaeta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}$	$\left[(q_p^{\alpha j})^T\right]$	$\left[Cq_r^{\beta k} \right] \left[(q_s^{\gamma m})^T Cl_t^n \right]$
$Q_{lequ}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight.$	Cu_r^{β}	$\left[(u_s^\gamma)^T C e_t\right]$

Top quark interactions

VS

SMEFT

$$\begin{split} O^{(3)}_{\varphi Q} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O^{(1)}_{\varphi Q} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W^{I}_{\mu\nu} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \end{split}$$

Anomalous couplings

$$\mathcal{L}_{ttZ} = e\bar{u}(p_t) \left[\gamma^{\mu} \left(C_{1,V}^Z + \gamma_5 C_{1,A}^Z \right) + \frac{i\sigma^{\mu\nu} q_{\nu}}{m_Z} \left(C_{2,V}^Z + i\gamma_5 C_{2,A}^Z \right) \right] v(p_{\bar{t}}) Z_{\mu}$$

- SMEFT:
 - Gauge invariant
 - Higher-order corrections: renormalisable order by order in 1/Λ

$$\mathcal{O}(\alpha_s) + \mathcal{O}\left(\frac{1}{\Lambda^2}\right) + \mathcal{O}\left(\frac{\alpha_s}{\Lambda^2}\right) + \cdots$$

- Complete description-respecting SM symmetries \checkmark
- Model Independent

SMEFT in processes with tops

Rich phenomenology:

$$\begin{split} O_{\varphi Q}^{(3)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A} , \\ O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \end{split}$$

see for example: Aguilar-Saavedra (arXiv:0811.3842) Zhang and Willenbrock (arXiv:1008.3869) +four-fermion operators +non-top operators (mixing)

$$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi\right) (\bar{Q} \gamma^{\mu} \tau^I Q)$$

$$O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi\right) (\bar{Q} \gamma^{\mu} Q)$$

$$O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi\right) (\bar{t} \gamma^{\mu} t)$$

$$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W_{\mu\nu}^I$$

$$O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu}$$

$$O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A,$$

$$O_{t\phi} = y_t^3 \left(\phi^{\dagger} \phi\right) (\bar{Q} t) \tilde{\phi}$$
for example: Aquilar-Servedra (arYiv:0811.3842)

see for example: Aguilar-Saavedra (arXiv:0811.3842) Zhang and Willenbrock (arXiv:1008.3869) +four-fermion operators +non-top operators (mixing)

هوهوهو

000000

000000

000000

Summe

 Z/γ

$$\begin{split} O_{\varphi Q}^{(3)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A} , \\ O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \end{split}$$
for example: Aguilar-Saavedra (arXiv:0811.3842)

see for example: Aguilar-Saavedra (arXiv:0811.3842) Zhang and Willenbrock (arXiv:1008.3869) +four-fermion operators +non-top operators (mixing)

$$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$$

$$O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q)$$

$$O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t)$$

$$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I}$$

$$O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu}$$

$$O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A,$$

$$O_{t\phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi}$$
see for example: Aguilar-Saavedra (arXiv:0811.3842)
Zhang and Willenbrock (arXiv:1008.3869)
+four-fermion operators

+non-top operators (mixing)

see

E.Vryonidou

 Z/γ

000000

$$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$$

$$O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q)$$

$$O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t)$$

$$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I}$$

$$O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu}$$

$$O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A,$$

$$O_{t\phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi}$$
efor example: Aguilar-Saavedra (arXiv:0811.3842)
Zhang and Willenbrock (arXiv:1008.3869)
+ four-fermion operators
+ non-top operators (mixing)

E.Vryonidou

see

 Z/γ

$$\begin{array}{l} O^{(3)}_{\varphi Q} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O^{(1)}_{\varphi Q} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W^{I}_{\mu\nu} \\ O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu} , \\ O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu} , \\ O_{t\phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ \end{array}$$
efor example: Aguilar-Saavedra (arXiv:0811.3842) \\ Zhang and Willenbrock (arXiv:1008.3869) \\ + four-fermion operators \\ + non-top operators (mixing) \end{array}

E.Vryonidou

see

$$\begin{array}{c} O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^I \varphi \right) (\bar{Q} \gamma^{\mu} \tau^I Q) \\ O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{t W} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W_{\mu\nu}^I \\ O_{t B} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{t G} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A , \\ O_{t \phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ \end{array}$$
see for example: Aguilar-Saavedra (arXiv:0811.3842) \\ Thang and Willenbrock (arXiv:1008.3869) \\ + four-fermion operators \\ + non-top operators (mixing) \end{array}

$$\begin{array}{c} O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^I \varphi \right) (\bar{Q} \gamma^{\mu} \tau^I Q) \\ O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W_{\mu\nu}^I \\ O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A , \\ O_{t\phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \end{array}$$
see for example: Aguilar-Saavedra (arXiv:0811.3842) \\ Zhang and Willenbrock (arXiv:1008.3869) \\ + four-fermion operators \\ + non-top operators (mixing) \end{array}

$$\begin{array}{c} O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^I Q \right) \\ O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{t W} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W_{\mu\nu}^I \\ O_{t B} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{t G} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A , \\ O_{t \phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ \end{array}$$
see for example: Aguilar-Saavedra (arXiv:0811.3842) \\ Zhang and Willenbrock (arXiv:1008.3869) \\ + four-fermion operators \\ + non-top operators (mixing) \end{array}

Operators entering various processes: Global approach needed

Towards global fits

EFT only makes sense if we follow a global approach First work towards global fits: Buckley et al arxiv:1506.08845 and 1512.03360 (N)NLO SM + LO EFT

Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.	Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.			individual
Top pair pro	duction							ā		
Total cross-s	ections:			Differential cro	oss-sections	£		C_G		
ATLAS	7	lepton+jets	1406.5375	ATLAS	7	$p_T(t), M_{t\bar{t}}, y_{t\bar{t}} $	1407.0371	<u>ā</u> 33		
ATLAS	7	dilepton	1202.4892	CDF	1.96	$M_{t\bar{t}}$	0903.2850	U_{uG}		
ATLAS	7	lepton+tau	1205.3067	CMS	7	$p_T(t), M_{t\bar{t}}, y_t, y_{t\bar{t}}$	1211.2220	\bar{c}^1		
ATLAS	7	lepton w/o b jets	1201.1889	CMS	8	$p_T(t), M_{t\bar{t}}, y_t, y_{t\bar{t}}$	1505.04480	C_{u}		
ATLAS	7	lepton w/ b jets	1406.5375	Dø	1.96	$M_{t\bar{t}}, p_T(t), y_t $	1401.5785	\bar{C}^2		
ATLAS	7	tau+jets	1211.7205					$C_{\bar{u}}$	- I -	
ATLAS	7	$t\bar{t}, Z\gamma, WW$	1407.0573	Charge asymn	netries:			ā1		
ATLAS	8	dilepton	1202.4892	ATLAS	7	A_{C} (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1311.6742	$C_{\tilde{d}}$		
CMS	7	all hadronic	1302.0508	CMS	7	$A_{\rm C}$ (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1402.3803	$\bar{\sigma}^2$		
CMS	7	dilepton	1208.2761	CDF	1.96	$A_{\rm FB}$ (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1211.1003	$C_{\overline{d}}$		
CMS	7	lepton+jets	1212.6682	Dø	1.96	$A_{\rm FB}$ (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1405.0421	<u>ā</u> 33		
CMS	7	lepton+tau	1203.6810					C_{uW}		
CMS	7	tau+jets	1301.5755	Top widths:		-		ā		
CMS	8	dilepton	1312.7582	DØ	1.96	Γ _{top}	1308.4050	C_t		
$CDF + D\emptyset$	1.96	Combined world average	1309.7570	CDF	1.96	Γ _{top}	1201.4156	<u>ā</u> 3		
Single top p	roduction			W-boson helic	ity fraction	S:		$C_{\phi q}$		
ATLAS	7	t-channel (differential)	1406.7844	ATLAS	7		1205.2484	-33		
CDF	1.96	s-channel (total)	1402.0484	CDF	1.96		1211.4523	C_{uB}^{ss}	i ⊢	• • • •
CMS	7	t-channel (total)	1406.7844	CMS	7		1308.3879	ā		
CMS	8	t-channel (total)	1406.7844	Dø	1.96		1011.6549	$C_{\phi u}$		• •
Dø	1.96	s-channel (total)	0907.4259					ā1		
DØ	1.96	t-channel (total)	1105.2788					$C_{\phi q}^{\star}$		▶ • ••••
Associated p	roduction			Run II data						
ATLAS	7	$t\bar{t}\gamma$	1502.00586	CMS	13	$t\bar{t}$ (dilepton)	1510.05302	1	0.5	
ATLAS	8	$t\bar{t}Z$	1509.05276					-1	-0.5	0 0.5
CMS	8	$t\bar{t}Z$	1406.7830							$\bar{C}_{i} = C_{i} v^{2} / \Lambda^{2}$
										$C_i = C_i c_j / h$

Tevatron and LHC data

Cross-sections and distributions

Use SMEFT to parametrise and look for deviations from SM predictions

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

> Use the best SM predictions QCD/EW corrections

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

Use the best SM predictions QCD/EW corrections

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

Need for precision calculations Automated tools for the EFT

Need for precision also in SMEFT

Use the best SM predictions QCD/EW corrections

How can we improve the EFT predictions?

- SMEFT@NLO
 - Mixing between operators: anomalous dimension matrix: Jenkins et al arXiv:1308.2627,1310.4838, Alonso et al. 1312.2014
 - Additional operators at NLO: e.g. chromomagnetic dipole in single top

Recent progress:

- top pair production: Franzosi and Zhang (arxiv:1503.08841)
- single top production: C. Zhang (arxiv:1601.06163)
- ttZ/γ: O. Bylund, F. Maltoni, I. Tsinikos, EV, C. Zhang (arXiv:1601.08193)
- ttH: F. Maltoni, EV, C. Zhang (arXiv:1607.05330)

All automated within MadGraph5_aMC@NLO R2+UV counterterms: NLOCT Degrande (arxiv:1406.3030)

In practice

UFO model with UV+R2 counterterms Import to MG5_aMC@NLO Proceed as in SM case

MG5_aMC>import model TEFT
MG5_aMC>generate p p > t t~ z EFT=1 [QCD]
MG5_aMC>output
MG5_aMC>launch

Results:Implementation allows theFixed order NLO $\sigma = \sigma_{SM} + \sum_{i} \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \leq j} \frac{1 \text{TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij}$ NLO+PS with MC@NLO $\sigma = \sigma_{SM} + \sum_{i} \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \leq j} \frac{1 \text{TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij}$

interference interference between operators, squared

In practice

Behind the scenes E.Vryonidou 14

In practice

UFO model with UV+R2 counterterms Import to MG5_aMC@NLO Proceed as in SM case

MG5_aMC>import model TEFT
MG5_aMC>generate p p > t t~ z EFT=1 [QCD]
MG5_aMC>output
MG5_aMC>launch

Results:Implementation allows theFixed order NLO $\sigma = \sigma_{SM} + \sum_{i} \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \leq j} \frac{1 \text{TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij}$ NLO+PS with MC@NLO $\sigma = \sigma_{SM} + \sum_{i} \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \leq j} \frac{1 \text{TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij}$

interference interference between operators, squared

First example: top-pair production

LHC14

[-0.56, 0.61]

[-0.39, 0.43]

single top production

 $O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$ $O_{tW} = y_t g_W (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I}$ $O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A}$ $O_{qQ,rs}^{(3)} = (\bar{q}_r \gamma_{\mu} \tau^{I} q_s) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$

One four-fermion contributing at $1/\Lambda^2$

NLO corrections:

- Impact on distributions
- Impact on limits

Top-pair+Z

Top-pair+Z

$13 \mathrm{TeV}$	\mathcal{O}_{tG}	$\mathcal{O}^{(3)}_{\phi Q}$	$\mathcal{O}_{\phi t}$	\mathcal{O}_{tW}
$\sigma_{i,LO}^{(1)}$	$286.7^{+38.2\%}_{-25.5\%}$	$78.3^{+40.4\%}_{-26.6\%}$	$51.6^{+40.1\%}_{-26.4\%}$	$-0.20(3)^{+88.0\%}_{-230.0\%}$
$\sigma^{(1)}_{i,NLO}$	$310.5^{+5.4\%}_{-9.7\%}$	$90.6^{+7.1\%}_{-11.0\%}$	$57.5^{+5.8\%}_{-10.3\%}$	$-1.7(2)^{+31.3\%}_{-49.1\%}$
K-factor	1.08	1.16	1.11	8.5
$\sigma^{(2)}_{ii,LO}$	$258.5^{+49.7\%}_{-30.4\%}$	$2.8(1)^{+39.7\%}_{-26.9\%}$	$2.9(1)^{+39.7\%}_{-26.7\%}$	$20.9^{+44.3\%}_{-28.3\%}$
$\sigma^{(2)}_{ii,NLO}$	$244.5^{+4.2\%}_{-8.1\%}$	$3.8(3)^{+13.2\%}_{-14.4\%}$	$3.9(3)^{+13.8\%}_{-14.6\%}$	$24.2^{+6.2\%}_{-11.2\%}$

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{(\Lambda/1\text{TeV})^2} \sigma_i^{(1)} + \sum_{i \leq j} \frac{C_i C_j}{(\Lambda/1\text{TeV})^4} \sigma_{ij}^{(2)}$$

- Different k-factors for different operators
- Small contribution from O_{tW} and O_{tB} at O(1/Λ²) but large at O(1/Λ⁴): Does this make sense in the context of the EFT?
 To be checked on a case-by-case basis

$$\begin{split} & \left\{ \begin{array}{l} & \left\{ \right\} \right\} \right\} \right\} \right\} \right\} \\ & \left\{ \begin{array}{l} & \left\{ \begin{array}{l} & \left\{ \right\} \right\} \right\} \right\} \\ & \left\{ \begin{array}{l} & \left\{ \begin{array}{l} & \left\{ \right\} \right\} \right\} \right\} \right\} \\ & \left\{ \begin{array}{l} & \left\{ \right\} \right\} \right\} \\ & \left\{ \begin{array}{l} & \left\{ \right\} \right\} \right\} \\ & \left\{ \begin{array}{l} & \left\{ \right\} \right\} \right\} \\ & \left\{ \right\} \right\} \\ & \left\{ \begin{array}{l} & \left\{ \right\} \right\} \right\} \\ & \left\{ \right\} \right\} \\ & \left\{ \begin{array}{l} & \left\{ \right\} \right\} \\ & \left\{ \right\} \right\} \\ & \left\{ \right\} \right\} \\ & \left\{ \right\} \\ & \left\{ \right\} \\ & \left\{ \right\} \right\} \\ & \left\{ \right\} \\ & \left\{ \right\} \\ & \left\{ \right\} \right\} \\ & \left\{ \right\} \\ & \left\{ \right\} \\ & \left\{ \right\} \right\} \\ & \left\{ \right\} \\ & \left\{ \right\} \\ & \left\{ \right\} \right\} \\ & \left\{ \right\} \right\} \\ & \left\{ \right\} \\ &$$

Bylund et al arXiv:1601.08193

Differential distributions for tt+V

arXiv:1601.08193

Some considerations

- Theory uncertainties:
 - SM: factorisation and renormalisation scale, PDF uncertainties
 - EFT: as in SM but also EFT scale $c(\mu)$, running and mixing
 - EFT expansion: dimension-8 operators
- Validity of the EFT expansion: $E < \Lambda$, report limits as a function of the max scale • probed: Contino et al arXiv:1604.06444
- $1/\Lambda^2$ vs $1/\Lambda^4$ contributions
 - $1/\Lambda^2$ suppressed due to helicity: Azatov et al arXiv:1607.05236
 - $1/\Lambda^4$ can be large for loosely constrained operator coefficients/strongly coupled theories

$$C_i^2 \frac{E^4}{\Lambda^4} > C_i \frac{E^2}{\Lambda^2} > 1 > \frac{E^2}{\Lambda^2}$$

EFT condition satisfied but $O(1/\Lambda^4)$ large for large

- Range of Wilson coefficients:
 Operator coefficients
 - The theory: perturbativity, unitarity, linear or non-linear EFT, UV completion
 - The experimental limits: Think about and use as many processes as possible

A sensitivity study

arXiv:1601.08193

E.Vryonidou

 $\sigma(t\bar{t}\gamma)$ [fb]

Top operators in loops: HZ in gluon fusion

10% of the SM NNLO HZ cross section

Gluon-fusion contribution to HZ production affected by the operators changing gtt, ttZ and ttH Additional information

[fb]	SM		\mathcal{O}_{tG}	$\mathcal{O}_{\phi Q}^{(1)}$
		$\sigma_i^{(1)}$	$34.6^{+35.2\%}_{-24.5\%}$	$5.91^{+36.4\%}_{-24.9\%}$
12D-V	02 6+34.3%	$\sigma_{ii}^{(2)}$	$6.09^{+39.2\%}_{-26.1\%}$	$0.182^{+40.2\%}_{-26.6\%}$
13164	93.0 _{23.8%}	$\sigma_i^{(1)}/\sigma_{SM}$	$0.370\substack{+0.7\%\\-0.9\%}$	$0.0631^{+1.6\%}_{-1.5\%}$
		$\sigma_{ii}^{(2)}/\sigma_i^{(1)}$	$0.176^{+2.9\%}_{-2.1\%}$	$0.0309^{+2.8\%}_{-2.2\%}$

No contributions from the electroweak dipole operators due to charge conjugation invariance

22

HZ in gluon fusion

E.Vryonidou

Englert et al arXiv:1603.05304

ttH in the EFT

ttH@NLO

 $(O_{t\phi}, O_{\phi G}, O_{tG})$

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q} t \right) \tilde{\phi} \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{split}$$

dim-5

 σ

 $O_{tG} O_{\phi G} O_{t\phi}$

dim-4

$$\frac{dC_i(\mu)}{d\log\mu} = \frac{\alpha_s}{\pi} \gamma_{ij} C_j(\mu) \qquad \gamma = \begin{pmatrix} -2 & 16 & 8\\ 0 & -7/2 & 1/2\\ 0 & 0 & 1/3 \end{pmatrix}$$

Alonso et al. arxiv:1312.2014

Higher-dimension operators mix into lowerdimension ones

Setup allows computation of:

E.Vryonidou

dim-6

$$= \sigma_{\rm SM} + \sum_{i} \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \le j} \frac{1 \text{TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij}.$$

interference with SM interference between operators, squared contributions

Cross-section results (1)

	$13 \mathrm{TeV}$	σ NLO	К	
-	σ_{SM}	$0.507_{-0.048-0.000-0.008}^{+0.030+0.000+0.007}$	1.09	
	$\sigma_{t\phi}$	$-0.062\substack{+0.006+0.001+0.001\\-0.004-0.001-0.001}$	1.13	
	$\sigma_{\phi G}$	$0.872^{+0.131+0.037+0.013}_{-0.123-0.035-0.016}$	1.39	
	σ_{tG}	$0.503_{-0.046-0.003-0.008}^{+0.025+0.001+0.007}$	1.07	
	$\sigma_{t\phi,t\phi}$	$0.0019\substack{+0.0001+0.0001+0.0000\\-0.0002-0.0000-0.0000}$	1.17	
	$\sigma_{\phi G,\phi G}$	$1.021_{-0.178-0.085-0.029}^{+0.204+0.096+0.024}$	1.58	
	$\sigma_{tG,tG}$	$0.674\substack{+0.036+0.004+0.016\\-0.067-0.007-0.019}$	1.04	
	$\sigma_{t\phi,\phi G}$	$-0.053\substack{+0.008+0.003+0.001\\-0.008-0.004-0.001}$	1.42	
	$\sigma_{t\phi,tG}$	$-0.031^{+0.003+0.000+0.000}_{-0.002-0.000-0.000}$	1.10	
	$\sigma_{\phi G,tG}$	$0.859^{+0.127+0.021+0.017}_{-0.126-0.020-0.022}$	1.37	
σ	$= \sigma_{\rm SM} +$	$-\sum_{i} \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i} \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i$	$\frac{\mathrm{eV}^4}{4}C_iC_j$	σ_{ij}

 $i \leq j$

- Different K-factors for different operators, different from the SM
- Large 1/Λ⁴ contribution for the chromomagnetic operator
- Constraints from top pair production: ctG=[-0.42,0.30] Franzosi and Zhang arxiv:1503.08841
- Global approach needed to consistently extract information on coefficients within the SMEFT framework

i

Cross-section results (2)

$13{ m TeV}$	σ NLO	$\sigma/\sigma_{\rm SM}$ NLO	Κ		
$\sigma_{ m SM}$	$0.507\substack{+0.030+0.000+0.007\\-0.048-0.000-0.008}$	$1.000\substack{+0.000+0.000+0.000\\-0.000-0.000-0.000}$	1.09	First systematic study of uncertaintie	es:
$\sigma_{t\phi}$	$-0.062\substack{+0.006+0.001+0.001\\-0.004-0.001-0.001}$	$-0.123\substack{+0.001+0.001+0.000\\-0.001-0.002-0.000}$	1.13	• 1) Scale and PDF uncertainties: Similar to SM	
$\sigma_{\phi G}$	$0.872\substack{+0.131+0.037+0.013\\-0.123-0.035-0.016}$	$1.722\substack{+0.146+0.073+0.004\\-0.089-0.068-0.005}$	1.39	 Reduced scale and PDF 	
σ_{tG}	$0.503\substack{+0.025+0.001+0.007\\-0.046-0.003-0.008}$	$0.991\substack{+0.004+0.003+0.000\\-0.010-0.006-0.001}$	1.07	uncertainties in the ratio over the	SM
$\sigma_{t\phi,t\phi}$	$0.0019\substack{+0.0001+0.0001+0.0000\\-0.0002-0.0000-0.0000}$	$0.0037\substack{+0.0001+0.0002+0.0000\\-0.0000-0.0001-0.0000}$	1.17	 2) EFT scale uncertainties 	
$\sigma_{\phi G,\phi G}$	$1.021\substack{+0.204+0.096+0.024\\-0.178-0.085-0.029}$	$2.016\substack{+0.267+0.190+0.021\\-0.178-0.167-0.027}$	1.58	$\sigma_i(\mu_0;\mu) = \Gamma_{ji}(\mu,\mu_0)\sigma_j(\mu)$.	
$\sigma_{tG,tG}$	$0.674\substack{+0.036+0.004+0.016\\-0.067-0.007-0.019}$	$1.328\substack{+0.011+0.008+0.014\\-0.038-0.014-0.018}$	1.04	$\sigma_{ij}(\mu_0;\mu) = \Gamma_{ki}(\mu,\mu_0)\Gamma_{lj}(\mu,\mu_0)\sigma_{kl}(\mu)$	
$\sigma_{t\phi,\phi G}$	$-0.053\substack{+0.008+0.003+0.001\\-0.008-0.004-0.001}$	$-0.105\substack{+0.006+0.006+0.000\\-0.009-0.007-0.000}$	1.42	$\Gamma_{ij}(\mu,\mu_0) = \exp\left(\frac{-2}{\beta_0}\log\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\gamma_{ij}\right)$	
$\sigma_{t\phi,tG}$	$-0.031\substack{+0.003+0.000+0.000\\-0.002-0.000-0.000}$	$-0.061\substack{+0.000+0.000+0.000\\-0.000-0.001-0.000}$	1.10	Cross-sections evaluated at a different	
$\sigma_{\phi G,tG}$	$0.859\substack{+0.127+0.021+0.017\\-0.126-0.020-0.022}$	$1.691\substack{+0.137+0.042+0.013\\-0.097-0.039-0.017}$	1.37	scale ($\mu_0/2$, $2\mu_0$) taking into account	
3) C	$/\Lambda^2$ expansion			operator mixing and running	
$\sigma = \sigma_{\rm SM}$	$M + \sum_{i} \frac{C_i^{\text{dim6}}}{(\Lambda/1\text{TeV})^2} \sigma_i^{\text{(dim6)}}$	$\Gamma^{(6)} = \sum_{i < j} \frac{C_i^{\dim 6} C_j^{\dim 6}}{(\Lambda/1 \text{TeV})^4} \sigma_{ij}^{(d)}$	im6)	Included	
+ 2	$\sum_{i} \frac{C_i^{\text{dim8}}}{(\Lambda/1 \text{TeV})^4} \sigma_i^{(\text{dim8})} +$	O (Λ ^{−6}). Needs	dim	-8 operators (Not included here)	
'rvonic	dou	Contin	o et	al arXiv:1604.0644	27

A study of RG effects

Comparison of exact NLO with LO improved by 1-loop RG running

Differential distributions for ttH

NLO: smaller uncertainties, non-flat K-factors

Different shapes for different operators for the squared terms

Maltoni, EV, Zhang arXiv:1607.05330

single top+Higgs in the EFT

operator	tHjinter	tHjsquare
$\mathcal{O}_{\phi W}$	0.00693	0.00439
$\mathcal{O}_{\phi D}$	-0.0012	0.0000091
$\mathcal{O}_{\phi WB}$	0.00319	0.000150
$\mathcal{O}_{t\phi}$	-0.00105	0.000485
\mathcal{O}_{tW}	0.00872	0.0108
${\cal O}^{(3)}_{\phi dQL}$	-0.000449	0.000552
$\mathcal{O}^{(3)}_{\phi dq}$	-0.00169	0.00233

$$\mathcal{O}_{\phi D} = \left(\phi^{\dagger} D_{\mu} \phi\right)^{\dagger} \left(\phi^{\dagger} D^{\mu} \phi\right)$$
$$\mathcal{O}_{\phi W} = \left(\phi^{\dagger} \phi - \frac{v^{2}}{2}\right) W_{i}^{\mu \nu} W_{\mu \nu}^{i}$$
$$\mathcal{O}_{\phi W B} = \left(\phi^{\dagger} W^{\mu \nu} \phi\right) B_{\mu \nu}$$

$$\mathcal{O}_{t\phi} = \left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)\bar{Q}_L t_R \tilde{\phi}$$

$$\mathcal{O}_{tW} = Q_L \sigma_{\mu\nu} W^{\mu\nu} t_R \phi$$
$$\mathcal{O}^{(3)}_{\phi dq} = i \left(\phi^{\dagger} i \overleftrightarrow{D}^i_{\mu} \phi \right) \bar{q}_L \gamma^{\mu} \sigma^i q_L$$
$$\mathcal{O}^{(3)}_{\phi dQ_L} = i \left(\phi^{\dagger} i \overleftrightarrow{D}^i_{\mu} \phi \right) \bar{Q}_L \gamma^{\mu} \sigma^i Q_L$$

NLO QCD computation including all operators in progress: Degrande, Maltoni, Mimasu, EV, Zhang

Top and Higgs

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q} t \right) \tilde{\phi} \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{split}$$

See also Degrande et al. arXiv:1205.1065 Grojean et al. arXiv:1312.3317 Azatov et al arXiv:1608.00977

Use with 1) ttH and 2) H, H+j to break degeneracy between operators and extract maximal information on these operators

Maltoni, EV, Zhang: arXiv:1607.05330

Breaking the degeneracy between $O_{\varphi G}$ and $O_{t\varphi}$

Degrande et al 1205.1065

Use ttH

E.Vryonidou

Use boosted Higgs

SMEFT in single Higgs production

SMEFT in Higgs production

E.Vryonidou

Deutschmann, Duhr, Maltoni, EV arXiv:1708.00460

SMEFT in Higgs production

E.Vryonidou

Deutschmann, Duhr, Maltoni, EV arXiv:1708.00460

Harder tails from dim-6 operators: Boosted analysis

E.Vryonidou

Maltoni, EV, Zhang: arXiv:1607.05330

An application: Constraints on the Wilson coefficients

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q} t \right) \tilde{\phi} \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{split}$$

Toy χ² fit for illustrative purposes using: single H, ttH Run I and Run II results Impact of the 3 operators also included in Higgs decays

	Individual	Marginalised	C_{tG} fixed	
$C_{t\phi}/\Lambda^2 \; [{ m TeV}^{-2}]$	[-3.9, 4.0]	[-14, 31]	[-12,20]	
$C_{\phi G}/\Lambda^2 \; [\text{TeV}^{-2}]$	[-0.0072, -0.0063]	[-0.021, 0.054]	[-0.022, 0.031]	90/00.1
$C_{tG}/\Lambda^2 \; [\text{TeV}^{-2}]$	[-0.68, 0.62]	[-1.8, 1.6]		

- Individual limit on C_{tG} comparable to the one from top pair production-room to improve with ttH measurement in run II
- Including the chromomagnetic operator leaves much more space to the other two operators

typically C_{tG}=0 in Higgs analyses

Need for global analysis

Constraints using two-operator fits

SMEFT in HH

Previously thought of as:

Chromomagnetic operator is also contributing

 $O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu}$

Needs to be taken into account in the context of a global EFT analysis for HH How much does this operator contribute to HH?

SMEFT in HH

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q} t \right) \tilde{\phi} \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{split}$$

^{0.3}	1/σ _i dσ _i /dm _{hh} [bin ⁻¹] HH produ	uction SM 0	0.18	1/σ _{ii} dσ _{ii} /dm _{hh} [bin ⁻¹] ΗΗ production SM —		13 TeV	σ/σ_{SM} LO
0.25		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.16		-	σ_{SM}	$1.000\substack{+0.000+0.000\\-0.000-0.000}$
0.2		0	0.12			$\sigma_{t\phi}$	$0.227\substack{+0.00114+0.0116\\-0.000918-0.0101}$
0.15		Q 0			9	$\sigma_{\phi G}$	$-47.3_{-6.14-4.42}^{+6.18+3.707}$
0.05		o cent		L	- amcent	σ_{tG}	$-1.356\substack{+0.0271+0.161\\-0.0225-0.051}$
0		o gg			adGraph!	$\sigma_{t\phi,t\phi}$	$0.0293^{+0.000727+0.0031}_{-0.000584-0.0026}$
0.6 9.0.5	Relative scale uncertainties	ei	0.6		ž	$\sigma_{\phi G,\phi G}$	$2856.2^{+743.3+552}_{-628.5-425}$
Ver central V			03 02 01 01			$\sigma_{tG,tG}$	$1.940\substack{+0.0650+0.198\\-0.0477-0.493}$
-0.1 -0.2 -0.2 -0.3 -14	<u></u>	<u></u>	02			$\sigma_{t\phi,\phi G}$	$-11.83^{+1.39+1.42}_{-1.41-1.77}$
12 WS 8 6 4		er the SM	10			$\sigma_{t\phi,tG}$	$-0.340\substack{+0.000238+0.064\\-0.000438-0.047}$
Ratio ove 5 4 10 ove 11 11 11						$\sigma_{\phi G,tG}$	$147.5^{+20.83+20.7}_{-18.86-31.4}$
-ã E	300 400 500 600 700 800 900 100 muu [GeV]	0 1100 1200	0.1 300 400 500 600	700 800 900 1000 1100 12 m _{HH} [GeV]	00		

Experimental HH analyses with EFT interpretation need to consider: C_{tG} , $C_{\phi G}$, $C_{t\phi}$, C_{H} , C_{6}

Results of previous HH EFT pheno studies

Prospects for HL-LHC

Goertz et al arxiv:1410.3471 focussing on bbtt

model	$L=600~{\rm fb^{-1}}$	$L=3000~{\rm fb^{-1}}$
c_6 -only	$c_6 \in (-0.5, 0.8)$	$c_6 \in (-0.4, 0.4)$
full	$c_6\gtrsim -1.3$	$c_6\gtrsim -1.2$
$c_6-c_t-c_ au-c_b$	$c_6\gtrsim -2.0$	$c_6 \in (-1.8, 2.3)$

Similarly in Azatov et al. arxiv:1502.00539 focussing on $bb\gamma\gamma$

Prospect	s for c ₆ :		
L	HC_{14}	HL-LHC	FCC_{100}
[—]	1.2, 6.1]	$[-1.0, 1.8] \cup [3.5, 5.1]$	[-0.33, 0.29]
3	$00{ m fb}^{-1}$	$3\mathrm{ab^{-1}}$	$3\mathrm{ab^{-1}}$

How will OtG affect the HH EFT analyses?

- Precise knowledge of other Wilson coefficients will be needed to bound c₆ as the bound gets closer to SM
- Differential distributions will also be necessary
 E.Vryonidou

$$O_{t\phi} = y_t^3 \left(\phi^{\dagger}\phi\right) \left(\bar{Q}t\right) \tilde{\phi},$$

$$O_{\phi G} = y_t^2 \left(\phi^{\dagger}\phi\right) G_{\mu\nu}^A G^{A\mu\nu},$$

$$O_{tG} = y_t g_s (\bar{Q}\sigma^{\mu\nu}T^A t) \tilde{\phi} G_{\mu\nu}^A,$$

$$O_6 = -\lambda (\phi^{\dagger}\phi)^3 \qquad \kappa_{\lambda} = 1 - c_H \frac{3v^2}{2\Lambda^2} + c_6 \frac{v^2}{\Lambda^2},$$

$$O_H = \frac{1}{2} (\partial_{\mu}(\phi^{\dagger}\phi))^2$$

Approximate constraints from single Higgs (e.g. Butter et al arxiv:1604.03105) and top pair production (Franzosi and Zhang arxiv:1503.08841)

How will OtG affect the HH EFT analyses?

- Precise knowledge of other Wilson coefficients will be needed to bound c₆ as the bound gets closer to SM
- Differential distributions will also be necessary
 E.Vryonidou

$$O_{t\phi} = y_t^3 \left(\phi^{\dagger}\phi\right) \left(\bar{Q}t\right) \tilde{\phi},$$

$$O_{\phi G} = y_t^2 \left(\phi^{\dagger}\phi\right) G_{\mu\nu}^A G^{A\mu\nu},$$

$$O_{tG} = y_t g_s (\bar{Q}\sigma^{\mu\nu}T^A t) \tilde{\phi} G_{\mu\nu}^A$$

$$O_6 = -\lambda (\phi^{\dagger}\phi)^3 \qquad \kappa_{\lambda} = 1 - c_H \frac{3v^2}{2\Lambda^2} + c_6 \frac{v^2}{\Lambda^2}$$

$$O_H = \frac{1}{2} (\partial_{\mu}(\phi^{\dagger}\phi))^2$$
5 parameters

Approximate constraints from single Higgs (e.g. Butter et al arxiv:1604.03105) and top pair production (Franzosi and Zhang arxiv:1503.08841)

How to extract maximal information?

$$egin{aligned} O_{t\phi} &= y_t^3 \left(\phi^\dagger \phi
ight) \left(ar{Q} t
ight) ar{\phi} \ O_{\phi G} &= y_t^2 \left(\phi^\dagger \phi
ight) G^A_{\mu
u} G^{A \mu
u} \end{aligned}$$

Combination:

- inclusive H
- boosted Higgs
- ttH
- HH
- off-shell Higgs

Azatov et al arXiv:1608.00977

Outlook

- SMEFT a consistent way to look for new interactions
- Higher-order corrections needed to match SM precision and experimental accuracy
- Progress in top-quark processes: pair production, single top, tt+V, tt+H as well as loop-induced processes
- QCD corrections important both for total cross-sections and distributions: SM k-factors are not enough
- Global fits results already available: important to include NLO predictions where available and to combine Higgs and top results to extract maximal information

Thank you for your attention