QUANTUM GRAVITY AS AN EFT, BLACK HOLE THERMODYNAMICS AND AN EXCURSION INTO THE ${\it CV}$

BASEM KAMAL EL-MENOUFI

DAMTP, Cambridge, 26/10/18

What is this talk about?

• Perhaps in quantum gravity we should start by ...

The question is: what is the question?

The question of this talk is ...

What is the infrared limit of quantum gravity?

• Why infrared ...

٠

We probe the IR. we understand QM and GR in the IR.

• How about the ultraviolet ...

Perhaps the IR limit can teach us lessons about the UV

Prelude

- Conceptual problem: Einstein told us that gravity is not a 'force'.
- Perhaps QG prompts us to
- BUT ... we observe a continuum space-time around us: 'small' fluctuations in the geometry should be amenable to quantization.
- Technical problem: QFT of the metric field is not re-normalizable.
- Is re-normalizability a principle of nature?
- Surely not ... New physics naturally manifests in non-renormalizable interactions.

Philosophy of effective theories

- All our theories are provisional only tested over a finite range of energies.
- New interactions and d.o.f appear as we probe higher energies.
- Why can we make predictions if we lack an ultimate description?
- Ultra-violet (UV) fluctuations look local when viewed at low energies.
- The UV either renormalize the parameters of the original Lagrangian or induce local interactions suppressed by a heavy scale. Appelquist & Carazzone
- Low-energy physics is shielded separation of scales.

EFT Recipe

- Identify the relevant d.o.f for the problem and their symmetries.
- Identify a counting parameter for the effective theory.
- Write down the most general local Lagrangian as an expansion in the counting parameter.
- Compute any observable to any desired accuracy.
- Wilson coefficients are subject to renormalization match or measure.
- The low-energy portion of the effective theory must be identical to that in the full theory.

QG in everyday life

- How much can we achieve with the EFT in everyday life?
- Ultimate power of EFTs: extract long-range physics that dominate observables at low energy - <u>non-analytic</u> functions in amplitudes.
- Leading correction to the Newtonian potential energy:

- In this example, Wilson coefficients do not play any role at long distance.
- This is genuine prediction of QG any UV completion must reproduce this result.

Beyond scattering amplitudes

- Utility of gravitational amplitudes is ultimately very limited.
- A systematic framework is needed to tackle problems in cosmology and black hole physics.
- The effective action of QG lies at the frontier it retains diffeomorphism invariance.
- How does the IR manifest in the effective action?

Non-locality

- Non-local effective actions offer the best pathway to capture quantum effects at long distance.
- QG is non-local in the IR.

Curvature expansion & form factors

- The BFM offers the natural set-up to compute the effective action in non-trivial background geometries.
- The one-loop result looks as follows:

•

٠

```
\Gamma[\bar{g}] = \Gamma_{\text{Local}}[c_i(\mu)] + \Gamma_{\text{n-Local}}[\mu]
```

- The local part is the local Lagrangian with renormalized constants.
- The non-local portion is parameter free and is dependent on the mass-less particle in the loop.

$$\Gamma_{\text{n-Local}}[\mu] = \int d^4x \sqrt{g} \left(\alpha R \log\left(\frac{\nabla^2}{\mu^2}\right) R + \beta R_{\mu\nu} \log\left(\frac{\nabla^2}{\mu^2}\right) R^{\mu\nu} + \gamma R_{\mu\nu\alpha\beta} \log\left(\frac{\nabla^2}{\mu^2}\right) R^{\mu\nu\alpha\beta} \right)$$

 Notice: the operator in the logarithm is the covariant d' Alembertian. The logarithm is an example of a 'form factor'.

Come on, that's not even causal!

- The logarithm is a genuine bi-local tensor distribution.
- Causality and reality are ensured using the in-in formalism.
- We compute expectation values not matrix elements.

$$\langle \mathcal{O}(t) \rangle = {}_{I} \langle \Phi(-\infty) | S^{\dagger}(\infty, -\infty) T \left[\mathcal{O}_{I}(t) S(\infty, -\infty) \right] | \Phi(-\infty) \rangle_{I}$$

• In an FRW background - ignore derivatives of the scale factor:

$$\mathfrak{L}(t-t') = \lim_{\epsilon \to 0} \left[\frac{\theta(t-t'-\epsilon)}{t-t'} + \delta(t-t') \left(\log(\mu\epsilon) + \gamma \right) \right] \text{ Donoghue, BKE ('14)}$$

· A short cut is to enforce retarded boundary conditions on the form factors.

App I: Singularity Avoidance

The quantum-corrected Friedmann equation becomes intero-differential.

٠

- Conformal SM leads to an UV-independent bounce below the Planck scale.
- Lesson: the system exhibits a 'quantum memory', and quantum effects build up over long times to become appreciable below the Planck scale.

App II: Black holes

• How about quantum corrections to black holes?

•

•

٠

- At second order in curvature, the Schwarzschild black hole does not receive any quantum correction!!
 - A highly non-trivial result given the previous statements claimed in the literature relying on loop effects around point mass sources. Duff ('74),
 - But Birkhoff theorem breaks down, and the field around a constant-density star is quantum corrected.

$$\delta g_{tt} = \frac{18\alpha l_{\rm P}^2}{R_S^2} \frac{r_h}{r}, \quad \delta g_{rr} = \frac{6\alpha l_{\rm P}^2}{r^2} \frac{r_h}{r}$$

Notice the power-law of the correction on the (tt) component. Only the fully covariant effective action could catch this.

App III: Grav. radiation

- The radiation field of a binary system receives a quantum correction.
- The non-local kernel is now more complicated:

•

•

•

•

$$\mathfrak{L}(x-x') = \lim_{\delta \to 0} \left[\frac{i}{\pi^2} \left(\frac{\Theta(t-t')\Theta((x-x')^2)}{((t-t'+i\delta)^2 - (\vec{x}-\vec{x'})^2)^2} - \frac{\Theta(t-t')\Theta((x-x')^2)}{((t-t'-i\delta)^2 - (\vec{x}-\vec{x'})^2)^2} \right) - \delta^{(4)}(x-x')\ln(\delta\mu)^2 \right]$$

Analytically, the best one can do is to look for *small* corrections to the quadropole radiation of GR

Sure! It's highly suppressed

$$\mathfrak{h}_{xx} = -\mathfrak{h}_{yy} = \frac{\kappa^4 \left(\beta + 4\gamma\right) \mu (d\omega_s)^2}{8\pi r^2} \left(2\omega_s \sin(2\omega_s t_r) - \frac{1}{r} \cos(2\omega_s t_r) \right)$$
$$\mathfrak{h}_{xy} = \mathfrak{h}_{yx} = -\frac{\kappa^4 \left(\beta + 4\gamma\right) \mu (d\omega_s)^2}{8\pi r^2} \left(\frac{1}{r} \sin(2\omega_s t_r) + 2\omega_s \cos(2\omega_s t_r) \right)$$

Notice that the Wilson coefficients of the NLO Lagrangian do not appear, similar to the Newtonian potential energy!

App IV: conformal anomaly and B fields BKE ('15)

Consider massless QED in curved space, the effective action is non-local and encapsulates the trace anomaly.

$$\Gamma_{anom.}[g,A] = S_{EM} - \frac{b_i e^2}{12} \int d^4x \sqrt{g} F_{\mu\nu} F^{\mu\nu} \frac{1}{\nabla^2} R$$

This is a starting point to investigate the mechanism of inflationary magnetogenesis.

•

٠

 Some partial success is achieved. Experimental bounds are achieved iff the reheating temperature is quite low:

 $T_{\rm RH} \leq 100 \, {
m GeV}$

Black Hole Thermodynamics

- Bekenstein suggested the analogy between black hole mechanics and the laws of thermodynamics is more profound.
- The discovery of Hawking radiation put black hole thermodynamics on a firm ground.

$$T_{\rm H} = \frac{\kappa}{2\pi} \qquad \qquad S_{\rm BH} = \frac{A}{4L_{\rm P}^2}$$

- What microscopic d.o.f give rise to BH entropy?
- Could we learn more from the macroscopic effective theory?
- This turns out to be a very fruitful direction!

UV

IR

Euclidean quantum gravity

- The Euclidean approach stands out as a self-consistent framework to study the thermal properties of black holes.
- Hawking and Gibbons ('77) gave a prescription for the partition function of quantum gravity:

$$Z(\beta) = \int \mathcal{D}\Psi \mathcal{D}g \, e^{-\mathcal{S}_E - \mathcal{S}_\partial}$$

- The Euclidean action contains the HGY boundary term.
- The metrics in the path integral are Euclidean, periodic in time and asymptote to the flat metric on $\mathbb{R}^3 \times S^1$ Gross et. al., ('83)
- Evaluated on the Euclidean section of Schwarzschild black hole, all thermodynamic relations are recovered.

Intro to Kerr-Schild geometries

- Surprise!! Further work uncovered a problem: the operator in the logarithm is not covariant does not appear in an expansion around flat space.
- Still, the action could be made covariant using 'counter-term' method leads to complicated structures. Domoghue, BKE ('15)
- Question: is there any background geometry where the effective action could be explicitly constructed?
- Kerr-Schild geometries offer the solution:

$$g_{\mu\nu} = \eta_{\mu\nu} + k_{\mu}k_{\nu}, \quad k \cdot k = 0, \quad \sqrt{g} = 1$$

This class of metrics cover all 4D black holes in Einstein's gravity!

Technology: non-local heat kernel

- Vilkovisky and collaborators developed a useful technique to compute non-local effective actions.
- The formalism uses the *heat kernel* as the central object.
- The heat kernel satisfies the heat diffusion equation:

•

٠

$$(\partial_s + \mathcal{D}_x)H(x, y; s) = 0, \quad H(x, y; 0) = \delta^{(d)}(x - y)$$

- The operator of interest is second order but otherwise arbitrary it depends on background fields including the metric.
- There exists a perturbative, non-covariant, method to solve the heat kernel:

Massless operator
$$\mathcal{D}=\partial^2+V$$
 'potential'

Perturbation theory contd.

Using the previous decomposition, the heat kernel is expressed as an expansion in the interaction V(x): Codello, Zanusso ('12)

$$H(s) = H_0(x) \times U(s), \quad U(s) = \operatorname{Texp}\left(-\int_0^1 dt \, H_0(-st) \times V \times H_0(st)\right)$$

- This is very similar to real time evolution operator in QFT notice that 'proper time' plays the role of (it).
- The flat space kernel plays the role of the propagator:

$$H_0(x,y;s) = \frac{i}{(4\pi s)^{d/2}} \exp\left[\frac{(x-y)^2}{4s}\right]$$

• It is not clear so far how to make the result covariant!

Prelude to curvature expansion

- How to retain covariance? write down the heat kernel as an expansion in curvatures.
- There are two ways to accomplish this: <u>non-linear completion</u> (as done before) vs. 'covariant perturbation theory'. Both procedures yield identical results.
- Covariance remains an issue for form factors (e.g. the logarithm).
- How useful is it to work with generic geometries? The KS geometry offers an example where the heat kernel can be computed exactly.
- The simplest operator is the covariant d' Alembertian. In KS:

$$V = \lambda \left(k^{\mu} k^{\nu} \partial_{\mu} \partial_{\nu} + \frac{1}{2} \partial_{\mu} (k^{\mu} k^{\nu}) \partial_{\nu} + \frac{1}{2} \partial_{\nu} (k^{\mu} k^{\nu}) \partial_{\mu} \right)$$

• Feynman rules for KS perturbation theory.

٠

Curvature expansion KS BKE ('16)

Not necessary

Introduce the curvature expansion:

٠

$$\mathcal{H}(s) = \frac{i}{(4\pi s)^{d/2}} \int d^d x \left[\mathcal{E}_0 + s \,\mathcal{G}_R(s\Box) \,R + s^2 \,R \,\mathcal{F}_R(s\Box) \,R + s^2 \,R_{\mu\nu} \,\mathcal{F}_{Ric}(s\Box) \,R^{\mu\nu} + s^2 \,R_{\mu\nu\alpha\beta} \,\mathcal{F}_{Riem}(s\Box) \,R^{\mu\nu\alpha\beta} + \mathcal{O}(R^3) \right]$$

• Through matching onto the diagrams, one can determine the form factors:

$$\mathcal{G}_R(s\Box) = \frac{1}{4}f(s\Box) + \frac{1}{2s\Box}[f(s\Box) - 1], \quad f(s\Box) = \int_0^1 d\sigma \, e^{-\sigma(1-\sigma)s\Box}$$

- This is a genuine curvature expansion no term proportional to $\Box R$
 - Now the effective action is immediate: $\Gamma_{\ln}[\bar{g}] = -\hbar \int d^4x \left(\alpha R \ln \left(\frac{\Box}{\mu^2} \right) R + \beta R_{\mu\nu} \ln \left(\frac{\Box}{\mu^2} \right) R^{\mu\nu} + \gamma R_{\mu\nu\alpha\beta} \ln \left(\frac{\Box}{\mu^2} \right) R^{\mu\nu\alpha\beta} + \Theta \ln \left(\frac{\Box}{\mu^2} \right) \Box R \right)$ KS spacetime

Effective action contd.

The coefficient of the logarithm tracks the divergences:

	α	β	γ	Θ
Scalar	5	-2	2	-6
Fermion	-5	8	7	_
U(1)boson	-50	176	-26	_
Graviton	430	-1444	424	

RG invariance is guaranteed:

•

•

•

$$c_{1}^{r}(\mu) = c_{1}^{r}(\mu_{\star}) - \alpha \ln\left(\frac{\mu^{2}}{\mu_{\star}^{2}}\right) \qquad c_{2}^{r}(\mu) = c_{2}^{r}(\mu_{\star}) - \beta \ln\left(\frac{\mu^{2}}{\mu_{\star}^{2}}\right)$$
$$c_{3}^{r}(\mu) = c_{3}^{r}(\mu_{\star}) - \gamma \ln\left(\frac{\mu^{2}}{\mu_{\star}^{2}}\right) \qquad c_{4}^{r}(\mu) = c_{4}^{r}(\mu_{\star}) - \Theta \ln\left(\frac{\mu^{2}}{\mu_{\star}^{2}}\right)$$

Lesson: It is perhaps much better (yet less economical) to break diff. and search for clever ways to obtain the effective action in fixed geometries.

Back to black holes!

Recall that a Schwarzschild black hole is a Kerr-Schild spacetime. Partition function of Euclidean path integral!

•

•

$$k_{\mu} = \sqrt{\frac{2GM}{r}} \left(1, \vec{x}/r\right)$$

The black hole appears as an extremal point of the Euclidean action, allowing for a semiclassical evaluation $\hbar \to 0$

$$\ln Z_0 = -\frac{\beta^2}{16\pi G}, \quad \beta = 8\pi G M$$

- All known thermodynamics is then derived the area law is recovered.
- The temperature is fixed by requiring no conical singularity in the Euclidean section.
- The Kerr-Schild Euclidean section is complex, but the metric is positive definite and no problem arises.

Partition function at one-loop BKE ('17)

- Analytic continuation of the EA in KS geometry yields the one-loop partition function accurate to second order in curvatures: $\Box \to -\Delta$
- Here one can impose thermal boundary conditions, but what is the log?

$$\ln\left(\frac{-\Delta}{\mu^2}\right) = -\int_0^\infty dm^2 \left[(-\Delta + m^2)^{-1} - (\mu^2 + m^2)^{-1}\right]$$

$$\mathfrak{L}(\vec{x} - \vec{x}') = -\frac{1}{2\pi} \lim_{\epsilon \to 0} \left[\mathcal{P}\left(\frac{1}{|\vec{x} - \vec{x}'|^3}\right) + 4\pi (\ln(\mu\epsilon) + \gamma_E - 1)\delta^{(3)}(\vec{x} - \vec{x}') \right]$$
Principal Value

 An explicit calculation, *not so simple*, gives the free energy correct up to one-loop:

$$F(\beta) = \frac{\beta}{16\pi G} - \frac{64\pi^2}{\beta} \left(c_3(\mu) + 2\Xi \ln(\mu\beta) \right) \quad \Xi = \frac{1}{11520\pi^2} \left(2N_s + 7N_f - 26N_V + 424 \right)$$

• The UV scale is not predicted from the EFT, determined by either matching onto the full theory or via a measurement: $c_3(\mu) = -2 \Xi \ln(\mu \beta_{QG})$

Thermodynamic stability

For an isolated system to be stable, the second law requires concavity of the entropy.
 For a stable system in contact with a reservoir, second law requires:

$$\frac{\partial^2 F}{\partial T^2} \le 0$$

- Let us apply this criterion to the free energy; two cases emerge.
- Case I: theory with a large number of gauge fields: $\Xi < 0$
- Stability is achieved at:

$$T_{\rm C} = \sqrt{\frac{90}{(26N_V - 7N_f - 2N_s - 424)}} T_{\rm P}$$

- Two remarkable features:
 - The black hole mass scales as $\sqrt{N_V}$ in Planck units
 - Insensitive to the UV scale: β_{QG}

Free energy develops a minimum!

٠

- The minimum corresponds to vanishing entropy interpretation?
- Is this hinting to a zero entropy *remnant*?

Missing corrections?

• How much should we trust this analysis?

٠

- In the large N limit, quantum gravity effects are subleading. MMC fields are one-loop exact.
- Only fourth-order invariants get renormalized at one-loop (RG fixed).
 - Higher curvature non-local operators appear in the partition function.

- Scaling arguments uncovers the contribution of this operator: $\bar{g}_{\mu\nu} \rightarrow \Lambda^2 \bar{g}_{\mu\nu}$
- Stability analysis is intact while entropy changes by an inconsequential constant.

Critique

Gross, Perry and Yaffe ('83) have analyzed the spectrum of gravitational fluctuations in Euclidean Schwarzschild.

•

•

•

They have found that TT metric perturbations possess a negative mode.

Where is the negative mode in my gravity result?

So far, no success in solving this issue. Perhaps I need to go third order in curvatures to extract the negative mode.

Linking the IR and UV

- Can we learn anything about the UV from these EFT computations?
- A central result of black hole thermodynamics is the area-law. What is the quantum correction?

$$S_{
m bh}=S_{
m BH}+64\pi^2\,\Xi\,\ln\left(rac{{\cal A}}{{\cal A}_{
m QG}}
ight)$$
 See Refs in BKE ('1 6)

 Bekenstein & Mukhanov proposed a quantization rule for the area of a black hole:

$$\mathcal{A}_n = \gamma_0 n L_{\rm P}^2, \quad n = 1, 2, \dots$$

Area quantization is present in LQG, although levels are not equidistant.

Linking the IR and UV contd.

 Let us demand that the exponential of black hole entropy yields the number of micro states defined and counted in your favorite UV theory:

$$g(n)=e^{S_{\mathrm{bh}}(n)}$$
 Hod ('04)

 The number of states must be an integer. Few steps reveal two quantization rules:

$$\begin{split} 2N_s + \frac{7}{2}N_f - 26N_V + 424 &= 180 \cdot l, \quad l \in \mathbb{N} \\ \hline \text{Related to c3} \quad \frac{\mathcal{A}_{\rm QG}}{L_{\rm P}^2} &= \frac{\gamma_0}{m^{1/l}}, \quad m \in \mathbb{N} \end{split}$$

Outlook

