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In this section...

Motivation for study

The strong nuclear force

Stable nuclei

Binding energy & nuclear mass (SEMF)

Spin & parity

Nuclear size (scattering, muonic atoms, mirror nuclei)

Nuclear moments (electric, magnetic)
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Introduction
Nuclear processes play a fundamental role in the physical world:

Origin of the universe

Creation of chemical elements

Energy of stars

Constituents of matter; influence properties of atoms

Nuclear processes also have many practical applications:

Uses of radioactivity in research, health and industry, e.g. NMR, radioactive dating.

Various tools for the study of materials, e.g. Mössbauer, NMR.

Nuclear power and weapons.
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The Nuclear Force

Consider the pp interaction, Range ∼ ℏ/mπc ∼ 1fm

π0

p

p

p

p

Hadron level

≡

Quark-gluon level

Pion vs. gluon exchange is similar to the Coulomb potential vs. van der Waals’ force in QED.

The treatment of the strong nuclear force between nucleons is a many-body
problem in which

quarks do not behave as if they were completely independent.

nor do they behave as if they were completely bound.

The nuclear force is not yet calculable in detail at the quark level and can only
be deduced empirically from nuclear data.
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Stable Nuclei

Stable nuclei do not decay by the strong interaction.
They may transform by β and α emission (weak or electromagnetic) with long
lifetimes.

Characteristics

Light nuclei tend to have N=Z .
Heavy nuclei have more neutrons, N > Z .

Most have even N and/or Z .
Protons and neutrons tend to form pairs
(only 8/284 have odd N and Z ).

Certain values of Z and N exhibit larger
numbers of isotopes and isotones.
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Binding Energy

Binding Energy is the energy required to split a nucleus into its constituents.

Mass of nucleus m(N ,Z ) = Zmp + Nmn - B

Binding energy is very important: gives information on

forces between nucleons

stability of nucleus

energy released or required in nuclear decays or reactions

Relies on precise measurement of nuclear masses (mass spectrometry).

Used less in this course, but important nonetheless.

Separation Energy of a nucleon is the energy required to remove a single nucleon from a

nucleus.
e.g. n: B(AZX )− B(A−1

Z X ) = m(A−1
Z X ) +m(n)−m(AZX )

p: B(AZX )− B(A−1
Z−1X

′) = m(A−1
Z−1X

′) +m(1H)−m(AZX )
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Binding Energy Binding Energy per nucleon

Key Observations
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Nuclear mass The liquid drop model

Atomic mass: M(A,Z ) = Z (mp +me) + (A− Z )mn −B
Nuclear mass: m(A,Z ) = Zmp + (A− Z )mn −B

Liquid drop model
Approximate the nucleus as a sphere with a uniform interior
density, which drops to zero at the surface.

Liquid Drop

Short-range intermolecular
forces.

Density independent of drop
size.

Heat required to evaporate
fixed mass independent of drop
size.

Nucleus

Nuclear force short range.

Density independent of nuclear
size.

B/A ∼ constant.
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Nuclear mass The liquid drop model

Predicts the binding energy as: B = aVA− aSA
2/3 − acZ

2

A1/3

aVA

Volume term
Strong force between nucleons increases B and reduces mass
by a constant amount per nucleon.
Nuclear volume ∼ A

−aSA
2/3

Surface term
Nucleons on surface are not as strongly bound ⇒ decreases B .
Surface area ∼ R2 ∼ A2/3

−acZ
2

A1/3

Coulomb term
Protons repel each other ⇒ decreases B .
Electrostatic P.E. ∼ Q2/R ∼ Z 2/A1/3

But there are problems. Does not account for

N ∼ Z

Nucleons tend to pair up; even N , Z favoured
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Nuclear mass The Fermi gas model

Fermi gas model: assume the nucleus is a Fermi gas, in which confined
nucleons can only assume certain discrete energies in accordance with the Pauli
Exclusion Principle.
Addresses problems with the liquid drop model with additional terms:

−aA
(N − Z )2

A

Asymmetry term Nuclei tend to have N ∼ Z .
Kinetic energy of Z protons and N neutrons is minimised if N=Z . The

greater the departure from N=Z , the smaller the binding energy.

Correction scaled down by 1/A, as levels are more closely spaced as A

increases.

+δ(A)

Pairing term Nuclei tend to have even Z , even N .
Pairing interaction energetically favours the formation of pairs of like

nucleons (pp, nn) with spins ↑↓ and symmetric spatial wavefunction.

The form is simply empirical.

δ(A) = +aPA
−3/4 N ,Z even-even

= −aPA
−3/4 N ,Z odd-odd

= 0 N ,Z even-odd
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Nuclear mass The semi-empirical mass formula

Putting all these terms
together, we have
various contributions to
B/A:

Nuclear mass is well described by the semi-empirical mass formula

m(A,Z ) = Zmp + (A− Z )mn − B

B = aVA− aSA
2/3 − acZ

2

A1/3
− aA

(N − Z )2

A
+ δ(A)

with the following coefficients (in MeV) obtained by fitting to data

aV = 15.8, aS = 18.0, aC = 0.72, aA = 23.5, aP = 33.5
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Nuclear Spin

The nucleus is an isolated system and so has a well defined nuclear spin

Nuclear spin quantum number J |J | =
√

J(J + 1) ℏ = 1

mJ = −J , − (J − 1), ..., J − 1, J .

Nuclear spin is the sum of the individual nucleons total angular momentum, ji ,

J⃗ =
∑
i

j⃗i , j⃗i = L⃗i + S⃗i

j − j coupling always applies because of strong spin-orbit interaction (see later)

where the total angular momentum of a nucleon is the sum of its intrinsic spin
and orbital angular momentum

intrinsic spin of p or n is s = 1/2
orbital angular momentum of nucleon is integer

A even → J must be integer
A odd → J must be 1/2 integer

All nuclei with even N and even Z have J = 0.
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Nuclear Parity

All particles are eigenstates of parity P̂ |Ψ⟩ = P |Ψ⟩, P = ±1

Label nuclear states with the nuclear spin and parity quantum numbers.
Example: 0+ (J = 0, parity even), 2− (J = 2, parity odd)

The parity of a nucleus is given by the product of the parities of all the
neutrons and protons

P =

(∏
i

Pi

)
(−1)L for ground state nucleus, L = 0

The parity of a single proton or neutron is P = (+1)(−1)L

intrinsic P = +1 (3 quarks) nucleon L is important

For an odd A, the parity is given by the unpaired p or n. (Nuclear Shell Model)

Parity is conserved in nuclear processes (strong interaction).

Parity of nuclear states can be extracted from experimental measurements,
e.g. γ transitions.
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Nuclear Size
The size of a nucleus may be determined using two sorts of interaction:

Electromagnetic Interaction gives the charge distribution of protons
inside the nucleus, e.g.

electron scattering

muonic atoms

mirror nuclei

Strong Interaction gives matter distribution of protons and neutrons inside
the nucleus. Sample nuclear and charge interactions at the same time ⇒ more
complex, e.g.

α particle scattering (Rutherford)

proton and neutron scattering

Lifetime of α particle emitters (see later)

π-mesic X-rays.

⇒ Find charge and matter radii EQUAL for all nuclei.
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Nuclear Size Electron scattering

Use electron as a probe to study deviations from a
point-like nucleus.

Electromagnetic Interaction

γ

e− e−

Ze

e

Nucleus, Z protons
Coulomb potential V (r⃗) = −Zα

r

Born Approximation
dσ

dΩ
=

E 2

(2π)2

∣∣∣∣∫ e−i q⃗.r⃗V (r⃗) d3r⃗

∣∣∣∣2
q⃗ = p⃗i − p⃗f is the momentum transfer

Rutherford Scattering dσ

dΩ
=

Z 2α2

4E 2 sin4 θ/2

To measure a distance of ∼1 fm, need large energy (ultra-relativistic)

E = 1
λ = 1 fm−1 ∼ 200 MeV ℏc = 197 MeV.fm

Prof. Tina Potter 13. Basic Nuclear Properties 15



Nuclear Size Scattering from an extended nucleus

But the nucleus is not point-like!
V (r⃗) depends on the distribution of charge in nucleus.

Potential energy of electron
due to charge dQ

dV = − e dQ

4π
∣∣∣r⃗ − r⃗ ′

∣∣∣
where dQ = Zeρ(r⃗ ′) d3r⃗ ′

ρ(r⃗ ′) is the charge distribution (normalised to 1)

V (r⃗) =

∫
− e2Zρ(r⃗ ′)

4π
∣∣∣r⃗ − r⃗ ′

∣∣∣ = −Zα

∫
ρ(r⃗ ′)∣∣∣r⃗ − r⃗ ′

∣∣∣ d3r⃗ ′ α =
e2

4π

This is just a convolution of the pure Coulomb potential Zα/r with the
normalised charge distribution ρ(r).
Hence we can use the convolution theorem to help evaluate the matrix element
which enters into the Born Approximation.
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Nuclear Size Scattering from an extended nucleus

Matrix Element Mif =

∫
eiq⃗r⃗V (r⃗) d3r⃗ = −Zα

∫
eiq⃗r⃗

r
d3r⃗

∫
ρ(r⃗)eiq⃗r⃗ d3r⃗

Rutherford scattering F (q2)

Hence,
dσ

dΩ
=

(
dσ

dΩ

)
point

∣∣F (q2)∣∣2
where F (q2) =

∫
ρ(r⃗)eiq⃗r⃗ d3r⃗ is called the Form Factor and is the fourier

transform of the normalised charge distribution.

Spherical symmetry, ρ = ρ(r), a simple calculation (similar to our treatment of
the Yukawa potential) shows that

F (q2) =

∫ ∞

0

ρ(r)
sin qr

qr
4πr 2 dr ; ρ(r) =

1

2π2

∫ ∞

0

F (q2)
sin qr

qr
q2 dq

So if we measure cross-section, we can infer F (q2) and get the charge
distribution by Fourier transformation.
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Nuclear Size Modelling charge distribution

Use nuclear diffraction to measure
scattering, and find the charge
distribution inside a nucleus is well
described by the Fermi parametrisation.

ρ(r) =
ρ(0)

1 + e(r−R)/s

Fit this to data to determine parameters R and s.

R is the radius at which ρ(r) = ρ(0)/2

Find R increases with A: R = r0A
1/3 r0 ∼ 1.2 fm.

s is the surface width or skin thickness over which ρ(r) falls from
90%→10%.

Find s is is approximately the same for all nuclei (s ∼ 2.5 fm); governed by
the range of the strong nuclear interaction
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Nuclear Size Modelling charge distribution

Fits to e− scattering data
show the Fermi
parametrisation models
nuclear charge distributions
well.

Shows that all nuclei have
roughly the same density in
their interior.

Radius ∼ R0A
1/3 with

R0 ∼ 1.2 fm ⇒ consistent
with short-range saturated
forces.
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Nuclear Size Muonic Atoms

Muons can be brought to rest in matter and trapped
in orbit → probe EM interactions with nucleus.
The large muon mass affects its orbit, mµ ∼ 207 me

Bohr radius, r ∝ 1/Zm
Hydrogen atom with electrons: r = a0 ∼ 53, 000 fm

with muons: r ∼ 285 fm
Lead (Z = 82) with muons: r ∼ 3 fm Inside nucleus!

Energy levels, E ∝ Z 2m
Rapid transitions to lower energy levels ∼ 10−9s
Factor of 2 effect seen from nuclear size in muonic lead
Transition energy (2P3/2→1S1/2) : 16.41 MeV (Bohr theory) vs 6.02 MeV (measured)

Muon lifetime, τµ ∼ 2µs
Decays via µ− → e− + ν̄e + νµ – Plenty of time spent in 1s state.

Zeffective and E are changed relative to electrons.
Measure X-ray energies → nuclear radius.
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Nuclear Size Mirror Nuclei

11
5 B

11
6 C

Different nuclear masses from p-n difference and the
different Coulomb terms.

m(A,Z ) = Zmp + (A− Z )mn −
[
aVA− aSA

2/3−acZ
2

A1/3
− aA

(N − Z )2

A
+ δ(A)

]
For the atomic mass difference, don’t forget the electrons!

M(A,Z + 1)−M(A,Z ) = ∆Ec +mp +me −mn

where ∆Ec =
3
5
Aα
R (see Question 33)

Probe the atomic mass difference between two mirror
nuclei by observing β+ decay spectra (3-body decay).

11
6 C → 11

5 B + e+ + νe (p → n + e+ + νe)

M(A,Z + 1)−M(A,Z ) = 2me + Emax mν ∼ 0

where Emax is the maximum kinetic energy of the positron.

Relate mass difference to ∆Ec
and extract the nuclear radius R =

3Aα

5

[
1

Emax −mp +mn +me

]
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Nuclear Shape

The shape of nuclei can be inferred from measuring their electromagnetic
moments.

Nuclear moments give information about the way magnetic moment and
charge is distributed throughout the nucleus.

The two most important moments are:

Electric Quadrupole Moment Q

Magnetic Dipole Moment µ

Prof. Tina Potter 13. Basic Nuclear Properties 22



Nuclear Shape Electric Moments

Electric moments depend on the charge distribution inside the nucleus.

Parameterise the nuclear shape using a multipole expansion of the external
electric field or potential

V (r) =
1

4π

∫
ρ(r⃗ ′)∣∣∣r⃗ − r⃗ ′

∣∣∣ d3r⃗ ′
where ρ(r⃗ ′) d3r⃗ ′ = Ze and r(r ′) = distance to observer (charge element) from origin.

∣∣∣r⃗ − r⃗ ′
∣∣∣ = [r 2 + r ′2 − 2rr ′ cos θ

]1/2 ⇒ ∣∣∣r⃗ − r⃗ ′
∣∣∣−1

= r−1

[
1 +

r ′2

r 2
− 2

r ′

r
cos θ

]−1/2

∣∣∣r⃗ − r⃗ ′
∣∣∣−1

= r−1

[
1− 1

2

(
r ′2

r 2
− 2

r ′

r
cos θ

)
+

3

8

(
r ′2

r 2
− 2

r ′

r
cos θ

)2

+ ...

]
∼ r−1

[
1 +

r ′

r
cos θ +

1

2

r ′2

r 2
(
3 cos2 θ − 1

)
+ ...

]
r ′ ≪ r ⇒ expansion in powers of r ′r ; or equivalently Legendre polynomials

V (r) =
1

4πr

[
Ze +

1

r

∫
r ′ cos θρ(r ′) d3r⃗ ′ +

1

2r 2

∫
r ′2(3 cos θ − 1)ρ(r ′) d3r⃗ ′ + ...

]
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Nuclear Shape Electric Moments

Let r define z-axis, z = r ′ cos θ

V (r) =
1

4πr

[
Ze +

1

r

∫
zρ(r ′) d3r⃗ ′ +

1

2r 2

∫
(3z2 − r ′2)ρ(r ′) d3r⃗ ′ + ...

]
Quantum limit: ρ(r ′) = Ze.

∣∣∣ψ(r⃗ ′)∣∣∣2
The electric moments are the coefficients of each successive power of 1/r

E0 moment
∫
Ze.ψ∗ψ d3r⃗ ′ = Ze charge

No shape information

E1 moment
∫
ψ∗zψ d3r⃗ ′ electric dipole

Always zero since ψ have definite parity

|ψ(r⃗)|2 = |ψ(−r⃗)|2

E2 moment
∫

1
eψ

∗(3z2 − r ′2)ψ d3r⃗ ′ electric quadrupole
First interesting moment!
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Nuclear Shape Electric Moments

Electric Quadrupole Moment Q =
1

e

∫
(3z2 − r 2)ρ(r⃗) d3r⃗

Units: m2 or barns (though sometimes the factor of e is left in)

If spherical symmetry, z̄2 = 1
3r̄

2 ⇒ Q = 0

Q = 0 Spherical nucleus. All J = 0 nuclei have Q = 0.

Large Q Highly deformed nucleus. e.g. Na
Two cases:
Prolate spheroid

Q > 0
Oblate spheroid

Q < 0 Aside.
Radium-224 is pear-shaped, Ne-20 is a snowman!
Non-zero quadrupole and octupole moments.
(ISOLDE, CERN, 2013), (LHCb, CERN, 2025)
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Nuclear Shape Magnetic Moments

Nuclear magnetic dipole moments arise from

intrinsic spin magnetic dipole moments of
the protons and neutrons

circulating currents (motion of the protons)

The nuclear magnetic dipole moment can be written as

µ⃗ =
µN
ℏ
∑
i

[
gLL⃗ + gs s⃗

]
summed over all p, n

where µN = eℏ/2mp is the Nuclear Magneton.

or µ = gJµNJ where J total nuclear spin quantum number

gJ nuclear g -factor (analogous to Landé g -factor in atoms)

gJ may be predicted using the Nuclear Shell Model (see later), and
measured using magnetic resonance (see Advanced Quantum course).

All even-even nuclei have µ = 0 since J = 0
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Summary

Nuclear binding energy – short range saturated forces

Semi-empirical Mass Formula – based on liquid drop model + simple
inclusion of quantum effects

m(A,Z ) = Zmp + (A− Z )mn − B

B = aVA− aSA
2/3 − acZ

2

A1/3
− aA

(N − Z )2

A
+ δ(A)

Nuclear size from electron scattering, muonic atoms, and mirror nuclei.
Constant density; radius ∝ A1/3

Nuclear spin, parity, electric and magnetic moments.

Problem Sheet: q.31-33

Up next...
Section 14: The Structure of Nuclei
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