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Quark Model of Hadrons

• In the early 1960’s, many new strongly-interacting particles (hadrons) were discovered, all apparently

as ‘fundamental’ as the familiar proton, neutron and π-meson.

• In 1964, Gell-Mann and Zweig (independently) noticed that the quantum numbers of

all the known hadrons corresponded to those of collections of 2 or 3 spin one-

half, fractionally-charged constituents, called quarks by Gell-Mann (Nobel Prize 1969).
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– Zweig (unpublished CERN preprint) called them ‘aces’.

– Quarks were regarded as ‘mathematical’ entities because they were not seen individually.

– Also they seemed to violate the spin-statistics theorem: some hadrons corresponded to totally

symmetric combinations of 3 identical quarks.
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Colour

• Han and Nambu (1965, also Greenberg) solved the spin-statistics problem by proposing that quarks

have a new “colour” degree of freedom which can take 3 values (red, green, blue), with respect to

which the ‘symmetrical’ quark states are antisymmetric. Associated symmetry group SU(3).

– Originally thought of as a global symmetry,

qa → q
′
a = Uab qb

where a = 1, 2, 3 and the symmetry transformations are represented by constant (i.e. space-time

independent) 3×3 unitary matrices U , which mix the colours while preserving the normalization.

– Observed states qq̄, qqq are colour singlets.

– It was necessary to postulate that non-singlet states (q, qq, (qq̄)8, . . . ) are forbidden.

• The notion of quarks as ‘real’ rather than ‘mathematical’ constituents of hadrons was considered

quite implausible . . . until amazing experimental data started arriving from the new Stanford Linear

Accelerator Centre (SLAC).
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Deep inelastic electron scattering

• The SLAC experiments (1967) probed the structure of the proton by scattering high-energy electrons

• Useful dimensionless variables are:

x =
−q2

2p · q
=

Q2

2M(E − E′)
, y =

q · p

k · p
= 1−

E′

E

where Q2 = −q2 > 0, M = proton mass, and energies refer to target rest frame.

• Elastic scattering has x = 1. Deep inelastic scattering (DIS) means Q2 ÀM2 and x < 1.
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• Structure functions Fi(x,Q
2) parametrise target structure as ‘seen’ by virtual photon:

d2σ

dxdy
=

8πα2ME

Q4

[(

1 + (1− y)2

2

)

2xF1 + (1− y)(F2 − 2xF1)− (M/2E)xyF2

]

• Bjorken limit is Q2 →∞ and p · q →∞ with x fixed. In this limit structure functions were found

to obey approximate Bjorken scaling (1969), i.e. they depend only on dimensionless variable x:

Fi(x,Q
2
) −→ Fi(x)

• Although Q2 varies by two orders of magnitude, in first approximation data lie on universal curve.
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Implications of Bjorken scaling

• Bjorken scaling implies that virtual photon is scattered by pointlike constituents – partons (Feynman,

1969) — otherwise structure functions would depend on ratio Q/Q0, with 1/Q0 a length scale

characterizing size of constituents.

• Quantitative study over the next few years established that these pointlike partons had spin one-half

and fractional charges, consistent with those expected for the quarks of Gell-Mann and Zweig.

– However, the quark were found to carry only about one-half of the momentum of the target proton

– The other half must be carried by strongly-interacting, neutral, bosonic constituents. . .

• Modern data show weak (logarithmic) scaling violation, understood as a calculable higher-order effect.
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Yang-Mills theory

• Back in 1954, Yang & Mills had shown that one could extend the notion of local gauge invariance

from the Abelian U(1) symmetry group of QED:

ψe(x)→ ψ
′
e(x) = U(x)ψe(x)

where U(x) = eiφ(x), to a non-Abelian symmetry group:

ψa(x)→ ψ
′
a(x) = Uab(x)ψb(x)

where a = 1, . . .N and U(x) ∈ SU(N) is a space-time dependent N×N unitary matrix, which mixes

the N states ψa while preserving the normalization.

– As in QED, gauge invariance then requires the existence of a vector gauge field

– Quanta of the gauge field would be massless spin-1 particles, analogous to the photon,

communicating long-range forces

• In 1954, this did not fit with the properties of either strong or weak nuclear interactions. So Yang-Mills

theory was ignored.

• Even QED was regarded as a sick theory (see later), and quantum field theory went out of fashion for

about 15 years. . .
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AND THEN . . .

• The SLAC results prompted renewed interest in a field theory of the strong interactions of pointlike

quarks.

• Fritzsch & Gell-Mann (1971, also Weinberg) proposed that the strong interaction is an SU(3)

Yang-Mills gauge theory: Quantum ChromoDynamics.

– Quanta of the colour field (gluons) would communicate the strong force between quarks

– Gluon exchange forces would be attractive in colour singlet states

– Gluons could also carry the ‘missing momentum’ of the proton

• But why should quarks behave like almost-free particles in DIS?

• And why should colour non-singlet states be forbidden?
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Quantum Chromodynamics

• QCD is an SU(3) gauge field theory: quarks come in 3 “colours” (a = 1, 2, 3) and the gauge

transformations are represented by 3×3 unitary matrices U , which mix the colours while preserving

the normalization:

qa(x)→ q
′
a(x) = Uab(x) qb(x)

Uab(x) = e
it·θ(x)

t · θ ≡

8
∑

A=1

t
A
θ
A

where θA are 8 real parameters and tA, the generators of SU(3), are the 8 linearly independent 3× 3

traceless hermitian matrices.

– Conventional normalization is Tr (tAtB) = 1
2δAB

– The theory is non-Abelian, i.e., successive gauge transformations do not commute: [tA, tB] =

ifABCtC where the structure constants of the gauge group, fABC, are totally antisymmetric.

– t · t = CF I where CF = 4
3 is the “quark colour charge squared”

–
∑

A,B f
ABCfABD = CA δCD where CA = 3 is the “gluon colour charge squared”
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• The QCD Lagrangian density is

LQCD = −1
4F

A
µνF

Aµν
+
∑

flavours f

q̄
f
a [iγ

µ
(Dµ)ab −mf δab] q

f
b

– Gluon field strength tensor FA
µν = ∂µA

A
ν − ∂νA

A
µ − gSf

ABCAB
µA

C
ν

– Covariant derivative (Dµ)ab = ∂µ δab + igS (t ·Aµ)ab
– AA

µ are the gluon fields (A = 1, . . . , 8)

– gS is the QCD coupling; by analogy with QED we define αS ≡ g
2
S/4π

• The third term in the gluon field strength tensor is essential for gauge invariance of LQCD. Notice

that it would vanish for an Abelian (commuting) gauge group (fABC = 0).

• As a consequence of this term, there are 3-gluon and 4-gluon self-interactions:

p r

qA,

C,

B,

µ
ν

λ

B,A,

C, D,

µ ν

λ ρ
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Effective Charge

• In QED the observed electron charge is distance-dependent (⇒ momentum transfer dependent) due

to vacuum polarization:
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• The one-loop vacuum polarization diagram

is log-divergent and can be regularized by introducing a cut-off Λ.
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• Then the observed coupling at momentum transfer qµ is

q q

α(q
2
) = αbare

(

1 +
α

3π
ln
q2

Λ2
+ · · ·

)

Thus

q
2 dα

dq2
=
α2

3π
+ · · · ≡ βQED(α)

where the QED β-function βQED(α) > 0. At one-loop order, we find

∫ α(Q2)

1/137

dα

α2
=

1

3π

∫ Q2

m2
e

dq2

q2
=

1

3π
ln
Q2

m2
e

⇒ α(Q
2
) =

1

137− 1
3π ln

Q2

m2
e

• Therefore α→∞ at Q2 = e411πm2
e and is not defined at higher scales (shorter distances).

• This led to the view (Landau, 1954) that QED is not a well-defined theory, and more generally to a

lack of confidence in quantum field theory, which lasted for about 15 years.
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Asymptotic Freedom

• In QCD there are additional contributions from gluon self-interaction:

gf

f

q

q g

As a consequence, the β-function changes. Now

αS(q
2
) = αS,bare

(

1 +
nf

6π
αS ln

q2

Λ2
−

11

12π
CAαS ln

q2

Λ2
− · · ·

)

where nf is the number of quark flavours. Hence βQCD(αS) = β0α
2
S − · · · where

β0 =
1

12π
(2nf − 11CA) < 0

• The gluonic contribution to the vacuum polarization reverses the sign of the β-function, so that the

strong coupling αS decreases at large q
2 (short distances). This is called asymptotic freedom. It

implies that quarks behave as (almost) free particles at short distances, and perturbation theory can

be used for hard processes, i.e. processes involving large momentum transfers, such as DIS.
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Non-Abelian Vacuum Polarization

E

∇ ·E = g δ3(r) + g (A ·E −A ·E)
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Non-Abelian Vacuum Polarization

E

A

∇ ·E = g (A ·E −A ·E)
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Non-Abelian Vacuum Polarization

E

A

E

∇ ·E = g (A ·E −A ·E)
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Non-Abelian Vacuum Polarization

E

A

E

∇ ·E = g δ3(r) + g (A ·E −A ·E)
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The Vacuum as a Magnetic Medium

• In a dielectric, screening of the effective charge corresponds to ε > 1, anti-screening to ε < 1.

• Since εµ = 1 for the vacuum, anti-screening implies magnetic susceptibility χ = µ − 1 > 0, i.e. a

paramagnetic vacuum.

• Vacuum polarization due to quanta of spin S gives a vacuum susceptibility proportional to

(−1)
2S

[

(2S)
2
−

1

3

]

Thus S = 0 and 1
2 give diamagnetic (screening) contributions, but gauge bosons give anti-screening.

• The existence of large numbers of new spin-0 and/or spin-12 particles at higher energies could modify

or even destroy asymptotic freedom.

– This is exactly what happens in supersymmetric extensions of the Standard Model.
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History of Asymptotic Freedom

1954 Yang & Mills study vector field theory with non-Abelian gauge invariance.

1965 Vanyashin & Terentyev compute vacuum polarization due to a massive charged vector field. In our

notation, they found

β0 =
1

12π

(

−
21

2
= −11 +

1

2

)

– The 1
2 comes from longitudinal polarization states (absent for massless gluons)

– They concluded that this result “. . . seems extremely undesirable”.

1969 Khriplovich correctly computes the one-loop β-function in SU(2) Yang-Mills theory using the Coulomb

gauge

β0 =
CA

12π
(−12 + 1 = −11)

– In Coulomb gauge the anti-screening (–12) is due to an instantaneous Coulomb interaction

– He did not make a connection with strong interactions

1971 ’t Hooft correctly computes the one-loop β-function for SU(3) gauge theory but does not publish it.

– He wrote it on the blackboard at a conference

– His supervisor (Veltman) told him it wasn’t interesting

– ’t Hooft & Veltman received the 1999 Nobel Prize for proving the renormalizability of QCD (and

the whole Standard Model).
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1972 Fritzsch & Gell-Mann propose that the strong interaction is an SU(3) gauge theory, later named QCD

by Gell-Mann

1973 Gross & Wilczek, and independently Politzer, compute and publish the 1-loop β-function for QCD

β0 =
1

12π
(2nf − 11CA)

⇒ 2004 Nobel Prize (now that ’t Hooft has one anyway . . . )

1974 Caswell & Jones compute the 2-loop β-function for QCD

1980 Tarasov, Vladimirov & Zharkov compute the 3-loop β-function for QCD

1997 van Ritbergen, Vermaseren & Larin compute the 4-loop β-function for QCD

(∼ 50, 000 Feynman diagrams)

“. . . We obtained in this way the following result for the 4-loop beta function in the MS-scheme:

q
2∂as

∂q2
= −β0a

2
s − β1a

3
s − β2a

4
s − β3a

5
s +O(a

6
s)

where as = αS/4π and . . .
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β0 =
11

3
CA −

4

3
TFnf

β1 =
34

3
C

2
A − 4CFTFnf −

20

3
CATFnf

β2 =
2857

54
C

3
A + 2C

2
FTFnf −

205

9
CFCATFnf

−
1415

27
C

2
ATFnf +

44

9
CFT

2
Fn

2
f +

158

27
CAT

2
Fn

2
f

β3 = C
4
A

(

150653

486
−

44

9
ζ3

)

+ C
3
ATFnf

(

−
39143

81
+

136

3
ζ3

)

+C
2
ACFTFnf

(

7073

243
−

656

9
ζ3

)

+ CAC
2
FTFnf

(

−
4204

27
+

352

9
ζ3

)

+46C
3
FTFnf + C

2
AT

2
Fn

2
f

(

7930

81
+

224

9
ζ3

)

+ C
2
FT

2
Fn

2
f

(

1352

27
−

704

9
ζ3

)

+CACFT
2
Fn

2
f

(

17152

243
+

448

9
ζ3

)

+
424

243
CAT

3
Fn

3
f +

1232

243
CFT

3
Fn

3
f

+
dabcdA dabcdA

NA

(

−
80

9
+

704

3
ζ3

)

+ nf
dabcdF dabcdA

NA

(

512

9
−

1664

3
ζ3

)

+n
2
f

dabcdF dabcdF

NA

(

−
704

9
+

512

3
ζ3

)
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Here ζ is the Riemann zeta-function (ζ3 = 1.202 · · · ) and the colour factors for SU(N) are

TF =
1

2
, CA = N, CF =

N2 − 1

2N
,
dabcdA dabcdA

NA

=
N2(N2 + 36)

24
,

dabcdF dabcdA

NA

=
N(N2 + 6)

48
,
dabcdF dabcdF

NA

=
N4 − 6N2 + 18

96N2

Substitution of these colour factors for N = 3 yields the following numerical results for QCD:

β0 ≈ 11− 0.66667nf

β1 ≈ 102− 12.6667nf

β2 ≈ 1428.50− 279.611nf + 6.01852n
2
f

β3 ≈ 29243.0− 6946.30nf + 405.089n
2
f + 1.49931n

3
f
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QCD Running Coupling

• We have q2dαS
dq2

= βQCD(αS)

• Hence
∫ αS(Q

2)

αS(µ
2)

dαS

βQCD(αS)
=

∫ Q2

µ2

dq2

q2
= ln

Q2

µ2

• In lowest order, βQCD(αS) = −β0α
2
S and thus

1

αS(Q2)
−

1

αS(µ2)
= β0 ln

Q2

µ2

⇒ αS(Q
2
) =

αS(µ
2)

1 + αS(µ2)β0 ln(Q2/µ2)

• We had to introduce a dimensionful parameter µ to specify the boundary conditions. Alternatively,

we can define ΛQCD (not to be confused with the cut-off Λ introduced earlier) as the scale at which

the (perturbative) solution diverges . . .
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1

αS(Q2)
− 0 = β0 ln

Q2

Λ2
QCD

⇒ αS(Q
2
) =

1

β0 ln(Q2/Λ2
QCD)

αs

Λ2

?

Q22
ZmQCD

0.118

• Experimentally the fundamental scale of QCD is

ΛQCD ' 210± 40 MeV
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• Measurements at different scales show clear evidence that αS does run:

QCD

O(α  )
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• Using the formula for the running of αS, measurements at different scales can be expressed as

measurements of αS(M
2
Z):

jets & shapes 161 GeV 

jets & shapes 172 GeV 

0.08 0.10 0.12 0.14

α  (Μ  )s Z

τ-decays  [LEP]

xF   [ν -DIS]
F   [e-, µ-DIS]

Υ decays

 Γ(Z  --> had.) [LEP]

e  e  [σ     ]+
had

_
e  e  [jets & shapes 35 GeV]+ _

σ(pp --> jets)

pp --> bb X

0

QQ + lattice QCD

DIS [GLS-SR]

2

3

pp, pp --> γ X

DIS [Bj-SR]

e  e  [jets & shapes 58 GeV]+ _

jets & shapes [HERA]

jets & shapes 133 GeV

e  e  [jets & shapes 22 GeV]+ _

e  e  [jets & shapes 44 GeV]+ _

e  e  [σ     ]+
had

_

jets & shapes 183 GeV

DIS [pol. strct. fctn.]

jets & shapes 189 GeV

e  e  [scaling. viol.]+ _

jets & shapes 91.2 GeV [LEP]
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• Non-perturbative (lattice) studies of QCD indicate that force between two colour charges (e.g. quarks)

becomes constant at large distances, corresponding to a linear potential.

• It follows that quarks (and gluons) cannot be observed as isolated objects and exist only in colour-singlet

bound states. Thus QCD explains quark confinement.

q q

q q q q
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Grand Unification

• The complete Standard Model covariant derivative is

D
µ
= ∂

µ
+ igS t ·A

µ
+ ig I ·W

µ
+ ig

′
Y B

µ

where extra terms represent the SU(2) and U(1) electroweak gauge field interactions.

• We would like to write this as

D
µ
= ∂

µ
+ igGUTT ·X

µ

where gGUT is coupling of a Grand Unified Theory with gauge fields X
µ
α, and the gauge group G is a

simple Lie group with generators Tα.

– Definition: A simple Lie group is one with no invariant subalgebras,

i.e. no A such that Xα ∈ A implies [Xα, Xβ] ∈ A for all Xβ ∈ G.

– Theorem: G is simple iff

TrR(TαTβ) = NRδαβ

where TrR represents a sum over all states in a representation R of G and NR is a number

characteristic of the representation R.
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• For R = a Standard Model generation, e.g. u, d, e− and νe, we have

TrR(t3t3) = TrR(t8t8) = TrR(I3I3) = 2 , TrR(Y
2
) =

10

3

• Hence for grand unification we require

gGUT = gS = g =

√

5

3
g

′

• However, this should hold at the GUT energy scale, not at present energies. . .
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Running of Standard Model Couplings

• Setting α3 =
g2S
4π , α2 =

g2

4π , α1 =
5
3
g′2

4π , we have (ignoring Higgs contributions)

q
2dαi

dq2
= −

α2
i

π

(

11

12
C1 −

1

3
C2

)

where

Tr (T
A
T
B
) = C1δAB (gauge bosons)

Tr (tatb) = C2δab (fundamental fermions)

• For SU(N), C1 = N , C2 = nf/2, and for ng generations we therefore find (now including Higgs

contributions)

q
2dα3

dq2
= −

α2
3

π

(

11

4
−

1

3
ng

)

q
2dα2

dq2
= −

α2
2

π

(

11

6
−

1

3
ng −

1

24

)

q
2dα1

dq2
= −

α2
1

π

(

−
1

3
ng −

1

40

)

.
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• Then running couplings almost meet at scale ∼ 1016 GeV.
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• Adding supersymmetric partners for all Standard Model particles gives much better unification,

provided superpartner masses are not more than ∼ 1 TeV⇒ Large Hadron Collider

α−1
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−1α SM
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Conclusion: How to Win the Nobel Prize in Physics

• Discover or predict something important

• Understand its significance

• Publish first

• Be ≤ 3

• For theorists: be confirmed by experiment

• Live long enough

N.B. All are necessary, but not sufficient!

Thanks to Marek Karliner for many helpful suggestions & references
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Iosif Khriplovich Gerhard ’t Hooft
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