SUSY vs UED Spins at the LHC

Bryan Webber, Cambridge Dresden MC Workshop, Jan 2006

- Spin correlations in SUSY and UED models
- Event and detector simulation

Conclusions

A Barr, hep-ph/0405052, hep-ph/0511115; T Goto et al, hep-ph/0406317; G Bhattacharya et al, hep-ph/0502031; M Battaglia et al, hep-ph/0502041; J Smillie & BW, hep-ph/0507170

Spin Correlations in SUSY & UED

- SUSY: new particles are superpartners q ↔ q̃, g ↔ g̃, l ↔ l̃, (γ, Z, ...) ↔ (χ̃⁰₁, χ̃⁰₂, ...)

 spins differ by one-half
- UED: new particles are KK excitations *q* ↔ *q*^{*}, *g* ↔ *g*^{*}, *l* ↔ *l*^{*}, (γ, Z, ...) ↔ (γ^{*}, Z^{*}, ...)

 spins are the same!
- Suppose masses have been measured: how could we distinguish?

need evidence on spins to be sure

SUSY and UED decay chains

• Process 1: $\{q, l^{\text{near}}, l^{\text{far}}\} = \{q_L, l_L^-, l_L^+\}$ or $\{\bar{q}_L, l_L^+, l_L^-\}$ or $\{q_L, l_R^+, l_R^-\}$ or $\{\bar{q}_L, l_R^-, l_R^+\}$;

• Process 2: $\{q, l^{\text{near}}, l^{\text{far}}\} = \{q_L, l_L^+, l_L^-\}$ or $\{\bar{q}_L, l_L^-, l_L^+\}$ or $\{q_L, l_R^-, l_R^+\}$ or $\{\bar{q}_L, l_R^+, l_R^-\}$.

Distinguishing Spins in Supersymmetric and Universal Extra Dimension Models at the Large Hadron Collider*

Jennifer M. Smillie¹ and Bryan R. Webber²

Cavendish Laboratory, University of Cambridge Madingley Road, Cambridge CB3 0HE, U.K.

hep-ph/0507170 = JHEP 10(2005)069

UED and **SUSY** mass spectra

• UED models tend to have quasi-degenerate spectra

γ^*	Z^*	q_L^*	l_R^*	l_L^*
501	536	598	505	515

Table 1: UED masses in GeV, for $R^{-1} = 500 \text{GeV}, \Lambda R = 20, m_h = 120 \text{GeV}, \overline{m}_h^2 = 0$ and vanishing boundary terms at cut-off scale Λ .

($M_n \sim n/R$ broken by boundary terms and loops, with low cutoff)

• SUSY spectra typically more hierarchical

$\widetilde{\chi}_1^0$	$\widetilde{\chi}_2^0$	\widetilde{u}_L	\widetilde{e}_R	\widetilde{e}_L
96	177	537	143	202

(high-scale universality)

Table 2: SUSY masses in GeV, forSPS point 1a.

Production cross sections (pb)

Masses	Model	$\sigma_{\rm all}$	σ_{q^*}	$\sigma_{ar{q}^*}$	f_q
UED	UED	253	163	84	0.66
UED	SUSY	28	18	9	0.65
SPS 1a	UED	433	224	80	0.74
SPS 1a	SUSY	55	26	11	0.70

 $\Rightarrow \sigma_{\text{UED}} \gg \sigma_{\text{SUSY}} \text{ for same masses (100 pb = 1/sec)}$ $\Rightarrow q^*/\bar{q}^* \sim 2 \Rightarrow \text{ charge asymmetry}$

$\stackrel{\bullet}{\rightarrow} \theta^* \text{ defined in } \widetilde{\chi}_2^0/Z^* \text{ rest frame}$ $\stackrel{\bullet}{\rightarrow} \theta, \phi \text{ defined in } \widetilde{l}/l^* \text{ rest frame}$

Invariant masses

•
$$ql^{near}$$
: $m_{ql}/(m_{ql})_{max} = \sin(\theta^*/2)$
• $l^{near}l^{far}$: $m_{ll}/(m_{ll})_{max} = \sin(\theta/2)$
• ql^{far} : $m_{ql}/(m_{ql})_{max} = \frac{1}{2} [(1-y)(1-\cos\theta^*\cos\theta) +$

 $+(1-y)(\cos\theta^*-\cos\theta)-2\sqrt{y}\sin\theta^*\sin\theta\cos\phi\Big]^{\frac{1}{2}}$

where
$$x = m_{Z^*}^2 / m_{q^*}^2$$
, $y = m_{l^*}^2 / m_{Z^*}^2$, $z = m_{\gamma^*}^2 / m_{l^*}^2$

Helicity dependence

• Process I (UED, transverse Z^* : $P_T/P_L = 2x$)

$\begin{array}{c|c} & & & & \\ \hline q_L & q^* & Z^* & \\ \hline l^* \end{array}$

 \blacksquare Both prefer high $(ql^-)^{near}$ invariant mass

ql^{near}mass distribution

UED and SUSY not distinguishable for UED masses

ql^{far} mass distribution

UED masses

Correlation weak but slightly enhances UED-SUSY difference

Jet + lepton mass distribution

Not resolvable for UED masses, maybe for SUSY masses
 Charge asymmetry due to quark vs antiquark excess

HERWIG Event Generator

- Most important SM & MSSM processes at LO
 - spin correlations included
 - parton showers at leading log (LL)
 - no showering from SUSY particles
- MC@NLO provides some SM processes at NLO
 - see S Frixione & BW, hep-ph/0506182 & refs therein
- UED model put in 'by hand' at present
- Interface to CHARYBDIS black hole generator

Dilepton mass distribution

$$\frac{dP^{UED}}{d\widehat{m}_{ll}} = \frac{4\widehat{m}_{ll}}{(2+y)(1+2z)} \left[y + 4z + (2-y)(1-2z)\widehat{m}_{ll}^2 \right]$$

•
$$y = m_{l^*}^2/m_{Z^*}^2$$
 and $z = m_{\gamma^*}^2/m_{l^*}^2$

• UED:
$$y = 0.92$$
 $z = 0.95$

• SPS Ia:
$$y = 0.65$$
 $z = 0.45$

Dilepton mass distribution (2)

➡ No sensitivity for these masses!

Dilepton mass distribution (3)

 $y = m_{l^*}^2/m_{Z^*}^2 = 0.65$, $z = m_{\gamma^*}^2/m_{l^*}^2 = 0.95 - 0.05$

Independent of masses and spins at $\hat{m} = 1/\sqrt{2}$ ($\theta = \pi/2$)

Barr's spin analyses (1)

hep-ph/0405052 = Phys Lett B596(2004)205 considers same decay chain

$$\tilde{q}_L \to \tilde{\chi}_2^0 q_L \to \tilde{l}_R^{\pm} l^{\mp} q_L$$

GeV

m

Barr's spin analyses (2)

hep-ph/0511115 considers slepton pair production

• Distribution of $\cos \theta_{ll}^* \equiv \tanh(\Delta \eta_{\ell^+ \ell^-}/2)$ is well correlated with Z^0/γ decay angle θ^*

Barr's spin analyses (3)

Outer error bars: after SUSY & SM background subtraction

Conclusions

Distinguishing SUSY from UED at LHC will be difficult

- jet+lepton charge asymmetry similar in shape
- dilepton distributions clean but not very sensitive
- If masses favour UED, spin confirmation very difficult
 - little sensitivity to spins
 - jets typically have low energy
 - \rightarrow other methods may be better ($\mathbb{Z}_2^*,...$)
- If masses favour SUSY, spin sensitivity is better
 - good prospect of excluding UED spins