Precision of Standard Model Parameters and Higgs Properties

Bryan Webber

UNIVERSITY OF CAMBRIDGE

Outline

- Precision electroweak fits
- QCD coupling
- Quark masses
- Implications for Higgs decays
- Conclusions

Precision Electroweak Fits

Electroweak Fit – Experimental inputs

	$M_H \; [\text{GeV}]^\circ$	125.7 ± 0.4	LHC
Latest experimental inputs:	M_W [GeV]	80.385 ± 0.015	
 Z-pole observables: from LEP / SLC [ADLO+SLD, Phys. Rept. 427, 257 (2006)] 	Γ_W [GeV]	2.085 ± 0.042	Tevatron
 M_W and Γ_W from LEP/Tevatron [arXiv:1204.0042, arXiv:1302.3415] 	M_Z [GeV] Γ_Z [GeV]	91.1875 ± 0.0021 2.4952 ± 0.0023	
 m_{top} latest avg from Tevatron [arXiv:1305.3929] 	$\sigma_{ m had}^0$ [nb] R_ℓ^0	41.540 ± 0.037 20.767 ± 0.025	LEP
 m_c, m_b world averages (PDG) [PDG, J. Phys. G33,1 (2006)] 	$egin{array}{l} A_{ m FB}^{0,\ell} \ A_\ell \ ^{(\star)} \end{array}$	$\begin{array}{c} 0.0171 \pm 0.0010 \\ 0.1499 \pm 0.0018 \end{array}$	SLC
• $\Delta \alpha_{had}^{(5)}(M_Z^2)$ including α_S dependency [Davier et al., EPJC 71, 1515 (2011)]	$\sin^2 \theta_{ m eff}^{\ell}(Q_{ m FB}) \ A_c$	$egin{array}{c} 0.2324 \pm 0.0012 \\ 0.670 \pm 0.027 \end{array}$	1
• M _H from LHC [arXiv:1207.7214, arXiv:1207.7235]	$egin{array}{c} A_b \ A_{ m FB}^{0,c} \end{array}$	0.923 ± 0.020 0.0707 ± 0.0035	SLC
• M_H , M_Z , $\alpha_S(M_Z^2)$, $\Delta \alpha_{had}^{(5)}(M_Z^2)$,	$egin{aligned} &A^{0,b}_{ ext{FB}} \ &R^0_c \ &R^0_b \end{aligned}$	$\begin{array}{c} 0.0992 \pm 0.0016 \\ 0.1721 \pm 0.0030 \\ 0.21629 \pm 0.00066 \end{array}$	LEP
 m_t, m_c, m_b 2 theory nuisance parameters δM_w (4 MeV) δsin²θ⁻¹ (4 7x10⁻⁵) 	$\overline{m}_c \text{ [GeV]}$ $\overline{m}_b \text{ [GeV]}$ $m_t \text{ [GeV]}$	$\begin{array}{c} 1.27 \substack{+0.07 \\ -0.11} \\ 4.20 \substack{+0.17 \\ -0.07} \\ 173.20 \pm 0.87 \end{array}$	Tevatron
	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ ^{(\dagger \triangle)}$	$(2756 \pm 10) \times 10^{-1}$	5

Electroweak Fit – SM Fit Results

Plot inspired by Eberhardt et al. [arXiv:1209.1101]

Pull values of full fit (with M_H)

- No individual value exceeds 3σ
- Small pulls for M_H , M_Z , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, \overline{m}_c , \overline{m}_b indicate that input accuracies exceed fit requirements
- Largest deviation in b-sector: $A^{0,b}_{FB}$ with 2.5 σ
- Most affected when including M_H:
- Shift in predicted M_w value of 13 MeV.
- Goodness of fit p-value:
 - From pseudo experiments: 18⁺² %

•
$$\chi^2_{min}$$
 = 18.1 \rightarrow Prob(χ^2_{min} , 14) = 20%

- Large value of χ^2_{min} not due to inclusion of M_H measurement.
- Without M_H measurement: χ^2_{min} = 16.7 \rightarrow Prob(χ^2_{min} , 13) = 21%

Max Baak (CERN) RoySoc, Jan 2014 The ElectroWeak fit of Standard Model

Electroweak Fit – SM Fit Results

- Results drawn as *pull values:*
 → deviations to the *indirect* determinations, divided by *total error*.
- Total error: error of direct measurement plus error from indirect determination.
- Black: direct measurement (data)
- Orange: full fit result
- Light-blue: fit excluding input from the row
- The prediction (light blue) is often more precise than the measurement!

The ElectroWeak fit of Standard Model

State of the SM: W versus top mass

- Scan of M_W vs m_t, with the direct measurements excluded from the fit.
- Results from Higgs measurement significantly reduces allowed indirect parameter space → corners the SM!

Observed agreement demonstrates impressive consistency of the SM!

State of the SM: W mass versus $sin^2\theta^{I}_{eff}$

- Scan of M_W vs sin² θ_{eff}^{I} , with direct measurements excluded from the fit.
- Again, significant reduction allowed indirect parameter space from Higgs mass measurement.

- M_W and $\sin^2\theta_{eff}$ have become *the* sensitive probes of new physics!
 - Reason: both are 'tree-level' SM predictions.

Max Baak (CERN) RoySoc, Jan 2014 The ElectroWeak fit of Standard Model

Muon magnetic moment

Not included in above fits

$$a_{\mu} = \frac{g_{\mu} - 2}{2} = \frac{\alpha}{2\pi} + \dots$$

$$a_{\mu}^{\text{exp}} = 0.00116592089(54)(33)$$

 $a_{\mu}^{\text{SM}} = 0.00116591802(49)$
 $\Delta a_{\mu}^{\text{had}} = (691.6 \pm 6.9) \times 10^{-10}$

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = (28.7 \pm 8.0) \times 10^{-10} \ (3.6 \sigma)$$

QCD Coupling

QCD Coupling

Lattice QCD Coupling

FLAG WG: Aoki et al., 1310.8555

Collaboration	Ref.	N_f	Ind	1.eff	Der	of	$\alpha_{\overline{\mathrm{MS}}}(M_{\mathrm{Z}})$	Method	Table
ETM 13D ETM 12C ETM 11D	544] [545] [546]	2+1+1 2+1+1 2+1+1	A A A	0 0 0	0 0 0	:	$\begin{array}{c} 0.1196(4)(8)(16)\\ 0.1200(14)\\ 0.1198(9)(5)(^{+0}_{-5}) \end{array}$	gluon-ghost vertex gluon-ghost vertex gluon-ghost vertex	37 37 37
Bazavov 12 HPQCD 10 HPQCD 10 PACS-CS 09A Maltman 08 HPQCD 08B HPQCD 08A HPQCD 05A	$\begin{array}{c} [503] \\ [73] \\ [486] \\ [517] \\ [85] \\ [514] \\ [513] \end{array}$	$2+1 \\ 2+1 $	A A A A A A A	○ ○ ★ ○ ○	○ ★ ● ■ ◆	0 ★ 0 ■ ★ 0	$\begin{array}{c} 0.1156(^{+21}_{-22})\\ 0.1183(7)\\ 0.1184(6)\\ 0.118(3)^{\#}\\ 0.1192(11)\\ 0.1174(12)\\ 0.1183(8)\\ 0.1170(12) \end{array}$	$Q-\bar{Q}$ potential current two points Wilson loops Schrödinger functiona Wilson loops current two points Wilson loops Wilson loops	33 36 35 1 32 35 36 35 35 35
QCDSF/UKQCD Boucaud 01B SESAM 99 Wingate 95 Davies 94 Aoki 94 El-Khadra 92	0.05[518] [539] [519] [520] [521] [522] [523]	$\begin{array}{c} 0,2\rightarrow 3\\ 2\rightarrow 3\\ 0,2\rightarrow 3\\ 0,2\rightarrow 3\\ 0,2\rightarrow 3\\ 2\rightarrow 3\\ 2\rightarrow 3\\ 0\rightarrow 3\end{array}$	A A A A A A	* • * * * *		*	$\begin{array}{c} 0.112(1)(2)\\ 0.113(3)(4)\\ 0.1118(17)\\ 0.107(5)\\ 0.115(2)\\ 0.108(5)(4)\\ 0.106(4) \end{array}$	Wilson loops gluon-ghost vertex Wilson loops Wilson loops Wilson loops Wilson loops Wilson loops Wilson loops	35 37 35 35 35 35 35

Quark Masses

Lattice light quark masses

			²⁴ tion	ertran of drag	NULL 200/861	Volumo Vole	hali- clor	F ه	LAG WG: Ao	ki et al., 1310.855
Collaboration	Ref.	$p_{\eta\gamma\gamma}$		CON.		ren c	Tub.	\tilde{z} m_u	m_d	m_u/m_d
PACS-CS 12^{\star} Laiho 11 HPQCD 10^{\ddagger} BMW 10A, $10B^{+}$ Blum 10^{\dagger} MILC 09A MILC 09 MILC 04, HPQCD/	$[76] \\ [77] \\ [73] \\ [22, 23] \\ [32] \\ [37] \\ [15] \\ [36, 82] \\ \end{tabular}$	A C A A C A A A	★ ○ ○ ★ ○ ○ ○	■ ★ ★ ★ ■ ★ ★ O	■ ★ ★ ★ o ★ ★ o	★ ○ ★ ★ ★ ○ ○	a b 	2.57(26)(7) $1.90(8)(21)(10)$ $2.01(14)$ $2.15(03)(10)$ $2.24(10)(34)$ $1.96(0)(6)(10)(12)$ $1.9(0)(1)(1)(1)$ $1.7(0)(1)(2)(2)$	$\begin{array}{c} 3.68(29)(10) \\ 4.73(9)(27)(24) \\ 4.77(15) \\ 4.79(07)(12) \\ 4.65(15)(32) \\ 4.53(1)(8)(23)(12) \\ 4.6(0)(2)(2)(1) \\ 3.9(0)(1)(4)(2) \end{array}$	$\begin{array}{c} 0.698(51)\\ 0.401(13)(45)\\ 0.448(06)(29)\\ 0.4818(96)(860)\\ 0.432(1)(9)(0)(39)\\ 0.42(0)(1)(0)(4)\\ 0.43(0)(1)(0)(8)\\ \end{array}$
RM123 13 RM123 11 [⊕] Dürr 11 [*] RBC 07 [†]	$[45] \\ [104] \\ [61] \\ [34]$	A A A A	0 0 0	★ ★★ ■	0 0 0 ★	* * - *	с с 	2.40(15)(17) 2.43(11)(23) 2.18(6)(11) 3.02(27)(19)	$\begin{array}{c} 4.80 \ (15)(17) \\ 4.78(11)(23) \\ 4.87(14)(16) \\ 5.49(20)(34) \end{array}$	$\begin{array}{c} 0.50(2)(3) \\ 0.51(2)(4) \\ 0.550(31) \end{array}$

Light quark masses

Manohar, Sachrajda, RPP 2012

MS masses at 2 GeV:

 $\overline{m}_u = 2.15 \pm 0.15 \text{ MeV}$

 \overline{m}_{d} = 4.70 ± 0.20 MeV

 $\overline{m}_{s} = 93.5 \pm 2.5 \text{ MeV}$

Running quark mass

 Couplings and masses (parameters in Lagrangian) must be renormalised, hence scale (and scheme) dependent

Charm quark mass

- $m_c(m_c) = 1.268(9) \text{ GeV}$

- $m_c(M_H) = 0.612(5) \text{ GeV}$

Bottom quark mass

 $m_b(10 \text{ GeV}) = 3.617(25) \text{ GeV}$ $--- m_b(m_b) = 4.164(30) \text{ GeV}$ $--- m_b(M_H) = 2.768(21) \text{ GeV}$

m_b from QCD sum rules

n	$m_b(10{ m GeV})$	exp	α_s	μ	total	$m_b(m_b)$
1	3597	14	7	2	16	4151
2	3610	10	12	3	16	4163
3	3619	8	14	6	18	4172
4	3631	6	15	20	26	4183

 $m_b(10 \text{ GeV}) = 3.610(16) \text{ GeV}$

Pole quark mass

$$\begin{split} D(p) &= \frac{i}{p - m_q - \Sigma(p)} \\ p_{\text{pole}} &= m_q + \Sigma(p) = m_q + \Sigma^{(1)}(m_q) + \dots \\ \Sigma^{(1)}(m_q) &= \frac{16m_q}{3\beta_0} \sum_{n=0}^{\infty} c_n \, a^{n+1} \\ \end{split} \qquad a &= \frac{\beta_0 \alpha_{\text{s}}(m_q)}{4\pi} \sim \frac{1}{\log(m_q^2/\Lambda^2)} \end{split}$$

Asymptotic expansion: sum to smallest term (n~L/2)

Ambiguity ~ smallest term ($c_n a^{n+1} \sim e^{-L/2} \sim \Lambda/m_q$)

$$\begin{split} m_{\rm pole} &= m_q(m_q) \left\{ 1 + 0.4244 \, \alpha_{\rm s}(m_q) + 0.835 \, \alpha_{\rm s}^2(m_q) + 2.375 \, \alpha_{\rm s}^3(m_q) \right] + \mathcal{O}(\Lambda) \\ & \text{Renormalon ambiguity} \\ & \text{(There is no pole!)} \end{split}$$

Top quark mass

RPP 2013

"Direct" (\approx pole mass?) measurements:

$m_t \; ({\rm GeV}/c^2)$	Source	$\int \mathcal{L} dt$	Ref. Channel
$174.94 \pm 1.14 \pm 0.96$	DØ Run II	3.6	[102] ℓ +jets
$\overline{172.85 \pm 0.71 \pm 0.85}$	CDF Run II	8.7	[101] ℓ +jets
$173.93 \pm 1.64 \pm 0.87$	CDF Run II	8.7	[116] Missing E_T +jets
$172.5 \pm 1.4 \pm 1.5$	CDF Run II	5.8	[122] All jets
$172.31 \pm 0.75 \pm 1.35$	ATLAS	4.7	[99] ℓ +jets
$173.09 \pm 0.64 \pm 1.50$	ATLAS	4.7	$[108] \ell \ell$
$174.9 \pm 2.1 \pm 3.8$	ATLAS	2.04	[115] All jets
$173.49 \pm 0.43 \pm 0.98$	CMS	5.0	[100] ℓ +jets
$172.5 \pm 0.4 \pm 1.5$	CMS	5.0	$[109] \ell \ell$
$173.49 \pm 0.69 \pm 1.21$	CMS	3.54	[114] All jets
$173.20 \pm 0.51 \pm 0.71^{*}$	CDF,DØ (I+II	[)≤8.7	[3] publ. or prelim. res
$173.29 \pm 0.23 \pm 0.92$ *	ATLAS, CMS	≤ 4.9	[121] publ. or prelim. res

$m_t(pole) = 173.07 \pm 0.52(stat) \pm 0.72(sys) \text{ GeV}$ $---- m_t(m_t) = 163.4 \pm 0.9 \text{ GeV}$ $m_t(m_t) = 160^{+5} - 4 \text{ GeV}$ from cross section

Top quark mass

Mangano, Kyoto, 2012

Hadronization effects are in principle sensitive to the environment in which the top is produced. E.g.

- gg vs qqbar initial state
- pt or rapidity
- additional ISR or FSR

Monitoring this dependence and verifying MC predictions will constrian the modeling of non-perturbative effects

Vacuum metastability

Buttazzo et al., 1307.3536

Nothing to worry about!

Implications for Higgs Decays

LHC Higgs Cross Section Working Group

arXiv:1101.0593, 1201.3084, 1307.1347

Higgs decays

	Channel	$M_{\rm H}$ [GeV]	Γ [MeV]	$\Delta \alpha_{\rm s}$	$\Delta m_{\rm b}$	$\Delta m_{\rm c}$	$\Delta m_{\rm t}$	THU
		122	2.30	-2.3% +2.3%	+3.2% -3.2%	+0.0% -0.0%	+0.0% -0.0%	-2.0%
56.1%	$\mathrm{H} \to \mathrm{b}\mathrm{b}$	126	2.36	-2.3%	+3.3%	+0.0%	+0.0%	+2.0%
		130	2.42	$^{+2.3\%}_{-2.4\%}$ $^{+2.3\%}_{+2.3\%}$	-3.2% +3.2% -3.2%	-0.0% +0.0% -0.0%	-0.0% +0.0% -0.0%	-2.0% +2.0% -2.0%
		122	$2.51 \cdot 10^{-1}$	+0.0%	+0.0%	+0.0%	+0.0%	+2.0%
67%	$H \rightarrow \tau^+ \tau^-$	126	259.10^{-1}	+0.0% +0.0%	+0.0%	+0.0%	+0.1%	+2.0%
0.270	11 / t t	130	$2.67 \cdot 10^{-1}$	+0.0% +0.0% +0.0%	-0.0% +0.0% -0.0%	-0.0% +0.0% -0.0%	-0.1% +0.1% -0.1%	-2.0% +2.0% -2.0%
		122	871.10^{-4}	+0.0%	+0.0%	+0.0%	+0.1%	+2.0%
0 02%	$H\to \mu^+\mu^-$	126	$8.99 \cdot 10^{-4}$	+0.0% +0.0% +0.0%	-0.0% +0.0% -0.0%	-0.0% -0.1% -0.0%	-0.1% +0.0% -0.1%	-2.0% +2.0% -2.0%
0.02/0		130	$9.27 \cdot 10^{-4}$	+0.1%	+0.0%	+0.0%	+0.1%	+2.0%
		122	$1.16.10^{-1}$	+0.0% -7.1%	-0.0% -0.1%	+6.2%	$\frac{-0.0\%}{+0.0\%}$	$\frac{-2.0\%}{+2.0\%}$
2 0%	II 	122	1.10.10-1	$+7.0\% \\ -7.1\%$	$-0.1\% \\ -0.1\%$	-6.0% +6.2%	-0.1% +0.0%	-2.0% +2.0%
2.8%	$H \rightarrow cc$	126	1.19.10	+7.0%	-0.1%	-6.1%	-0.1%	-2.0%
		130	$1.22 \cdot 10^{-1}$	-7.1% +7.0%	-0.1%	+0.3% -6.0%	+0.1% -0.1%	+2.0% -2.0%
		122	$3.25 \cdot 10^{-1}$	+4.2% -4.1%	-0.1% -0.1%	+0.0% -0.0%	-0.2% +0.2%	+3.0% -3.0%
8.5%	$\mathrm{H} \to \mathrm{gg}$	126	$3.57 \cdot 10^{-1}$	+4.2% -4.1%	-0.1% -0.1%	+0.0% -0.0%	-0.2% +0.2%	+3.0% -3.0%
		130	$3.91 \cdot 10^{-1}$	+4.2%	-0.1%	+0.0%	-0.2%	+3.0%
		122	837.10^{-3}	+0.0%	+0.0%	+0.0%	+0.2% +0.0%	+1.0%
0 2 2 9/	TT .	122	$0.57 10^{-3}$	-0.0% +0.0%	-0.0% +0.0%	-0.0% +0.0%	-0.0% +0.0%	-1.0% +1.0%
0.23%	$H \rightarrow \gamma \gamma$	126	9.59.10	-0.0%	-0.0%	-0.0%	-0.0%	-1.0%
		130	$1.10 \cdot 10^{-2}$	$^{+0.1\%}_{-0.0\%}$	+0.0% -0.0%	+0.0% -0.0%	$^{+0.0\%}_{-0.0\%}$	$^{+1.0\%}_{-1.0\%}$
		122	$4.74 \cdot 10^{-3}$	+0.0% -0.1%	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.1\%}$	$^{+5.0\%}_{-5.0\%}$
016%	$H \rightarrow Z\gamma$	126	$6.84 \cdot 10^{-3}$	+0.0%	+0.0%	+0.0%	+0.0%	+5.0%
0.10/0		130	$9.55 \cdot 10^{-3}$	+0.0%	-0.0% +0.0%	+0.0%	-0.1% +0.0%	-5.0% +5.0%
		122	$6.25.10^{-1}$	-0.0% +0.0%	-0.0% +0.0%	+0.0%	-0.0% +0.0%	$\frac{-5.0\%}{+0.5\%}$
		122	0.23.10	-0.0% +0.0%	-0.0% +0.0%	-0.0% +0.0%	-0.0% +0.0%	-0.5% +0.5%
23.1%	$H \rightarrow W W$	126	9.73.10	-0.0%	-0.0%	-0.0%	-0.0%	-0.5%
		130	1.49	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.5\%}_{-0.5\%}$
		122	$7.30 \cdot 10^{-2}$	+0.0%	+0.0%	+0.0%	+0.0%	+0.5%
2 00/	$H \rightarrow ZZ$	126	$1.22 \cdot 10^{-1}$	+0.0%	+0.0%	+0.0%	+0.0%	+0.5%
L.7/0		130	$1.95 \cdot 10^{-1}$	-0.0% +0.0%	-0.0% +0.0%	-0.0% +0.0%	-0.0% +0.0%	-0.5% +0.5%
		100		-0.0%	-0.0%	-0.0%	-0.0%	-0.5%

HXSWG v.3, 1307.1347

Theoretical uncertainty: from scale variation and missing higher orders (not uncertainty in m_H)

Parametric uncertainties from QCD coupling and quark masses

 $\Gamma_{tot}(126) = 4.21 \text{ MeV}$

Higgs decays

	Channel	$M_{\rm H} \; [{\rm GeV}]$	Γ [MeV]	$\Delta \alpha_{\rm s}$	$\Delta m_{\rm b}$	$\Delta m_{\rm c}$	$\Delta m_{ m t}$	THU
		122	2.30	-2.3%	+3.2%	+0.0%	+0.0%	+2.0% -2.0%
56.1%	$H \rightarrow bb$	126	2.36	-2.3%	+3.3%	+0.0%	+0.0%	+2.0%
		130	2 4 2	$^{+2.3\%}_{-2.4\%}$	-3.2% +3.2%	-0.0% +0.0%	-0.0% +0.0%	$^{-2.0\%}_{+2.0\%}$
		130	2.42	+2.3%	-3.2%	-0.0%	-0.0%	-2.0%
		122	$2.51 \cdot 10^{-1}$	+0.0%	-0.0%	-0.0%	-0.1%	+2.0% -2.0%
6.2%	${\rm H} \to \tau^+ \tau^-$	126	$2.59 \cdot 10^{-1}$	$^{+0.0\%}_{+0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.1\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
		130	$2.67 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.1\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
		122	$8.71 \cdot 10^{-4}$	+0.0%	+0.0%	+0.0%	+0.1%	+2.0%
0 0 0 0 0 /	н,+,,-	126	800.10^{-4}	$^{+0.0\%}_{+0.0\%}$	-0.0% +0.0%	-0.0% -0.1%	-0.1% +0.0%	-2.0% +2.0%
0.02%	$11 \rightarrow \mu \mu$	120	0.99.10	+0.0%	-0.0%	-0.0%	-0.1%	-2.0%
		130	$9.27 \cdot 10^{-4}$	+0.1% $\pm 0.0\%$	+0.0% -0.0%	+0.0%	+0.1%	+2.0% -2.0%
		100	1 1 (10-1	-7.1%	-0.1%	+6.2%	+0.0%	+2.0%
		122	1.16.10	+7.0%	-0.1%	-6.0%	-0.1%	-2.0%
28%	$H \rightarrow c\overline{c}$	126	$1.19 \cdot 10^{-1}$	-7.1%	-0.1%	+6.2%	+0.0%	+2.0%
2.0/0	11 / 00		1	+7.0% -7.1%	-0.1%	-6.1% $\pm 6.3\%$	-0.1% $\pm 0.1\%$	-2.0% $\pm 2.0\%$
		130	$1.22 \cdot 10^{-1}$	+7.0%	-0.1%	+0.3% -6.0%	$^{+0.1\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
		122	$3.25 \cdot 10^{-1}$	$^{+4.2\%}_{-4.1\%}$	-0.1%	+0.0%	-0.2%	+3.0%
8 5%	$\mathrm{H} \rightarrow \mathrm{gg}$	126	$3.57 \cdot 10^{-1}$	+4.2%	-0.1%	+0.0%	-0.2%	+3.0%
0.070	11 / 55	130	$3.91.10^{-1}$	$^{-4.1\%}_{+4.2\%}$	-0.1% -0.1%	$^{-0.0\%}_{+0.0\%}$	$^{+0.2\%}_{-0.2\%}$	-3.0% +3.0%
		150	5.91.10	-4.1%	-0.2%	-0.0%	+0.2%	-3.0%
		122	$8.37 \cdot 10^{-3}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+1.0\%}_{-1.0\%}$
0 2 3 %	$H \rightarrow \gamma \gamma$	126	$9.59 \cdot 10^{-3}$	+0.0%	+0.0%	+0.0%	+0.0%	+1.0%
0.23/0		120	$1.10.10^{-2}$	-0.0% $\pm 0.1\%$	-0.0% $\pm 0.0\%$	-0.0% $\pm 0.0\%$	-0.0% $\pm 0.0\%$	-1.0% $\pm 1.0\%$
		130	1.10.10 2	-0.0%	-0.0%	-0.0%	-0.0%	-1.0%
		122	$4.74 \cdot 10^{-3}$	+0.0% -0.1%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.1%	+5.0% -5.0%
016%	$H \rightarrow Z_{\nu}$	126	$6.84 \cdot 10^{-3}$	+0.0%	+0.0%	+0.0%	+0.0%	+5.0%
0.10/0	11 / 21	120	0.55.10-3	-0.0% $\pm 0.0\%$	-0.0% $\pm 0.0\%$	-0.1% $\pm 0.0\%$	-0.1% $\pm 0.0\%$	-5.0% $\pm 5.0\%$
		130	$9.55 \cdot 10^{-3}$	+0.0%	+0.0%	+0.0%	+0.0%	+5.0%
		122	$6.25 \cdot 10^{-1}$	+0.0%	+0.0%	+0.0%	+0.0%	+0.5%
2210/		126	$0.72 \ 10^{-1}$	+0.0%	+0.0%	+0.0%	+0.0%	+0.5%
Z 3. 1%	$\Pi \to W W$	120	9.75.10	-0.0%	-0.0%	-0.0%	-0.0%	-0.5%
		130	1.49	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.5% -0.5%
		100	$7.20.10^{-2}$	+0.0%	+0.0%	+0.0%	+0.0%	+0.5%
		$1\angle \angle$	1.30.10	-0.0%	-0.0%	-0.0%	-0.0%	-0.5%
2.9%	$\mathrm{H} \to \mathrm{ZZ}$	126	$1.22 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.5\%}_{-0.5\%}$
		130	$1.95 \cdot 10^{-1}$	+0.0%	+0.0%	+0.0%	+0.0%	+0.5%

HXSWG v.3, 1307.1347

Uncertainties > 2% (mostly QCD)

Unknown EW HO

 $\Gamma_{tot}(126) = 4.21 \text{ MeV}$

Higgs decays

	Channel	$M_{\rm H} \; [{\rm GeV}]$	Γ [MeV]	$\Delta \alpha_{\rm s}$	$\Delta m_{\rm b}$	$\Delta m_{\rm c}$	$\Delta m_{\rm t}$	THU
		122	2.30	-2.3% +2.3\%	+3.2% -3.2%	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+2.0\%}_{-2.0\%}$
56.1%	$\mathrm{H} \to \mathrm{b}\mathrm{b}$	126	2.36	-2.3% $\pm 2.3\%$	+3.3% -3.2%	+0.0% -0.0%	+0.0%	+2.0% -2.0%
		130	2.42	+2.3% -2.4% +2.2%	+3.2%	+0.0%	+0.0%	+2.0%
		122	$2.51 \cdot 10^{-1}$	+2.3% +0.0%	-3.2% +0.0%	+0.0%	+0.0%	+2.0%
67%	$H \rightarrow \tau^+ \tau^-$	126	2.51 10 2 59.10 ⁻¹	$^{+0.0\%}_{+0.0\%}$	-0.0% +0.0%	$^{-0.0\%}_{+0.0\%}$	-0.1% +0.1%	$^{-2.0\%}_{+2.0\%}$
0.270	11 / t t	120	$2.57 \ 10^{-1}$	$^{+0.0\%}_{+0.0\%}$	-0.0% +0.0%	-0.0% +0.0%	-0.1% +0.1%	-2.0% +2.0%
		130	2.07.10	+0.0%	-0.0%	-0.0%	-0.1%	$\frac{-2.0\%}{\pm 2.0\%}$
		122	8.71.10	+0.0%	-0.0%	-0.0%	-0.1%	-2.0%
0 02%	$\mathrm{H} \to \mu^+ \mu^-$	126	$8.99 \cdot 10^{-4}$	$^{+0.0\%}_{+0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$-0.1\% \\ -0.0\%$	$^{+0.0\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
0.02/0		130	$9.27 \cdot 10^{-4}$	+0.1%	+0.0%	+0.0%	+0.1%	+2.0%
		122	$1.16.10^{-1}$	-7.1%	-0.1%	+6.2%	+0.0%	+2.0%
2 00/	··· –	122	1.10.10	+7.0% -7.1%	-0.1%	-6.0% $\pm 6.2\%$	-0.1% $\pm 0.0\%$	-2.0% $\pm 2.0\%$
2.8%	$H \to c\overline{c}$	126	$1.19 \cdot 10^{-1}$	+7.0%	-0.1%	+0.2% -6.1%	-0.1%	$^{+2.0\%}_{-2.0\%}$
		130	$1.22 \cdot 10^{-1}$	-7.1% +7.0%	$-0.1\% \\ -0.1\%$	$^{+6.3\%}_{-6.0\%}$	$^{+0.1\%}_{-0.1\%}$	+2.0% -2.0%
		122	$3.25 \cdot 10^{-1}$	+4.2%	-0.1%	+0.0%	-0.2%	+3.0%
8 5%	$\mathrm{H} \rightarrow \mathrm{gg}$	126	$3.57 \cdot 10^{-1}$	-4.1% +4.2%	-0.1% -0.1%	+0.0%	+0.2% -0.2%	-3.0% +3.0%
0.370	11 / 88	130	$3.91.10^{-1}$	-4.1% +4.2%	-0.1% -0.1%	$^{-0.0\%}_{+0.0\%}$	$^{+0.2\%}_{-0.2\%}$	-3.0% +3.0%
		130	0.07.10-3	-4.1%	-0.2% +0.0%	-0.0%	+0.2% +0.0%	-3.0%
		122	8.37.10	-0.0%	-0.0%	-0.0%	-0.0%	-1.0%
0.23%	$\mathrm{H}\to\gamma\gamma$	126	$9.59 \cdot 10^{-3}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+1.0\%}_{-1.0\%}$
		130	$1.10 \cdot 10^{-2}$	+0.1% -0.0%	$^{+0.0\%}_{-0.0\%}$	+0.0% -0.0%	$^{+0.0\%}_{-0.0\%}$	$^{+1.0\%}_{-1.0\%}$
		122	$4.74 \cdot 10^{-3}$	+0.0%	+0.0%	+0.0%	+0.0%	+5.0%
0160/	$H \rightarrow Z_{\gamma}$	126	$6.84 \cdot 10^{-3}$	+0.1%	+0.0%	+0.0%	+0.0%	-5.0% +5.0%
0.10/0	11 / 21	120	$0.55 \ 10^{-3}$	-0.0% +0.0%	-0.0% +0.0%	-0.1% +0.0%	-0.1% +0.0%	-5.0% +5.0%
		130	9.55.10	-0.0%	-0.0%	-0.0%	-0.0%	-5.0%
		122	$6.25 \cdot 10^{-1}$	+0.0% -0.0%	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	+0.5% -0.5%
23.1%	$\mathrm{H} \rightarrow \mathrm{WW}$	126	$9.73 \cdot 10^{-1}$	+0.0%	+0.0%	+0.0%	+0.0%	+0.5%
2011/0		130	1.49	+0.0%	+0.0%	+0.0%	+0.0%	+0.5%
		122	$7.30.10^{-2}$	+0.0%	+0.0%	-0.0% +0.0%	+0.0%	-0.5% +0.5%
• • • • •		122	1.30.10	-0.0%	-0.0%	-0.0%	-0.0%	-0.5%
2.9%	$\mathrm{H} \rightarrow \mathrm{ZZ}$	126	$1.22 \cdot 10^{-1}$	-0.0%	-0.0%	-0.0%	-0.0%	-0.5%
		130	$1.95 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.5\%}_{-0.5\%}$

HXSWG v.3, 1307.1347

Uncertainties > 2% (mostly QCD)

Unknown EW HO

 $Strong mass dependence \\ \delta M_{H}=400 \text{ MeV} => \sim 5\%$

 $\Gamma_{tot}(126) = 4.21 \text{ MeV}$

$$\Gamma(H \to q\bar{q}) = \frac{3\sqrt{2}}{8\pi} G_F M_H m_q^2(M_H) \left[1 - \frac{4m_q^2(M_H)}{M_H^2} \right]^{\frac{3}{2}} \left[1 + 1.803 \,\alpha_{\rm s}(M_H) + 2.953 \,\alpha_{\rm s}^2(M_H) + \ldots \right]$$
(known to 4th order)

- Running of masses is enormously important! $m_b^2(M_H)/m_b^2(pole) = (2.77/4.95)^2 = 0.313$ $m_c^2(M_H)/m_c^2(pole) = (0.612/1.27)^2 = 0.233$
- Γ_b affects all branching ratios!

$$BR(X) = \frac{\Gamma_X}{\Gamma_{tot}} \longrightarrow \frac{\delta BR(X)}{BR(X)} = \frac{\delta \Gamma_b}{\Gamma_{tot}} = 0.56 \frac{\delta \Gamma_b}{\Gamma_b}$$

b contributes ~ -6%, which almost cancels top mass effect

Higgs → γγ

- W loop dominates
- b contributes less, so top mass effect is significant (\sim -2%)

Higgs uncertainties: current

Almeida, Lee, Pokorski, Wells, 1311.6721v3

	Parametric u	ncertainties %	Scale	
	added linearly	in quadrature	dependence	
	$P_{\Gamma}^{\pm}(\text{par.add.})$	$P_{\Gamma}^{\pm}(\text{par.quad.})$	$(P_{\Gamma}^+, P_{\Gamma}^-)(\mu)$	
total	2.82(1.79)	1.71(1.07)	(0.08, 0.10)	
gg	2.52(1.83)	1.74(1.49)	(0.05, 0.03)	
$\gamma\gamma$	1.45 (0.42)	$1.38\ (0.35)$	(1.31, 0.60)	
$b\overline{b}$	2.62(2.43)	1.84(1.82)	(0.29, 0.01)	
$c\overline{c}$	7.34(7.15)	5.55(5.54)	(0.45, 0.35)	
$\tau^+\tau^-$	0.36(0.12)	$0.32 \ (0.08)$	(0.01, 0.01)	
WW^*	4.41 (1.17)	4.97(1.25)	(0.25, 0.31)	
ZZ^*	4.90 (1.25) $ $	4.42(1.11)	(0.,0.)	
$Z\gamma$	3.56 (0.92)	3.52(0.88)	(0.56, 0.23)	
$\mu^+\mu^-$	0.34(0.11)	0.32(0.08)	(0.03, 0.03)	

 $\delta M_H/MeV = 400(100) [ILC => 30]$

Higgs uncertainties: prospects

Lepage, Mackenzie, Peskin, 1404.0319

	Parametr	ric uncerta	inties %	$\delta_j =$	δΓj/ 2	Γ _j %
	$\delta m_b(10)$	$\delta \alpha_s(m_Z)$	$\delta m_c(3)$	δ_b	δ_c	δ_g
current errors [10]	0.70	0.63	0.61	0.77	0.89	0.78
+ PT	0.69	0.40	0.34	0.74	0.57	0.49
+ LS	0.30	0.53	0.53	0.38	0.74	0.65
$+ LS^2$	0.14	0.35	0.53	0.20	0.65	0.43
+ PT + LS	0.28	0.17	0.21	0.30	0.27	0.21
$+ PT + LS^2$	0.12	0.14	0.20	0.13	0.24	0.17
$+ PT + LS^2 + ST$	0.09	0.08	0.20	0.10	0.22	0.09
ILC goal				0.30	0.70	0.60

 $PT = \mathcal{O}(\alpha_s^4) \text{ [current} = \mathcal{O}(\alpha_s^3)\text{]}$ LS = 0.030 fm [current = 0.045 fm] $LS^2 = 0.023 \text{ fm [computing} \times 100\text{]}$ $ST = \text{statistics} \times 100$

Conclusions

Conclusions

- SM is in very good shape (within its limitations)
- Higgs partial widths currently predicted to 2%-5%
- Higgs mass uncertainty important for VV* modes (at LHC, not ILC)
- Predictions to 1%-2% look feasible, with big investments in perturbative and lattice QCD
- Is this good enough??

Thanks for listening!