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Lagrangian of QCD

● Feynman rules for perturbative QCD follow from Lagrangian

L = −
1

4
F

A
αβF

αβ
A +

X

flavours

q̄a(i6D − m)abqb + Lgauge−fixing

F A
αβ is field strength tensor for spin-1 gluon field AA

α ,

F
A
αβ = ∂αA

A
β − ∂βA

A
α − gf

ABC
A

B
αA

C
β

Capital indices A, B, C run over 8 colour degrees of freedom of the gluon field. Third

‘non-Abelian’ term distinguishes QCD from QED, giving rise to triplet and quartic gluon

self-interactions and ultimately to asymptotic freedom.

● QCD coupling strength is αS ≡ g2/4π. Numbers fABC (A, B, C = 1, ..., 8) are

structure constants of the SU(3) colour group. Quark fields qa (a = 1, 2, 3) are in triplet

colour representation. D is covariant derivative:

(Dα)ab = ∂αδab + ig
“

t
C
A

C
α

”

ab

(Dα)AB = ∂αδAB + ig(T CAC
α )AB

● t and T are matrices in the fundamental and adjoint representations of SU(3), respectively:

ˆ

t
A
, t

B˜
= if

ABC
t
C
,
ˆ

T
A
, T

B˜
= if

ABC
T

C
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where (T A)BC = −ifABC. We use the metric gαβ = diag(1,–1,–1,–1) and set h̄ = c =

1. 6D is symbolic notation for γαDα. Normalisation of the t matrices is

Tr t
A
t
B

= TR δ
AB

, TR =
1

2
.

● Colour matrices obey the relations:

X

A

tA
abt

A
bc = CF δac , CF =

N2 − 1

2N

Tr T
C
T

D
=

X

A,B

f
ABC

f
ABD

= CA δ
CD

, CA = N

Thus CF = 4
3 and CA = 3 for SU(3).
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Gauge Invariance

● QCD Lagrangian is invariant under local gauge transformations. That is, one can redefine

quark fields independently at every point in space-time,

qa(x) → q
′
a(x) = exp(it · θ(x))abqb(x) ≡ Ω(x)abqb(x)

without changing physical content.

● Covariant derivative is so called because it transforms in same way as field itself:

Dαq(x) → D
′
αq

′
(x) ≡ Ω(x)Dαq(x) .

(omitting the colour labels of quark fields from now on). Use this to derive transformation

property of gluon field A

D′
αq′(x) =

`

∂α + igt · A′
α

´

Ω(x)q(x)

≡ (∂αΩ(x))q(x) + Ω(x)∂αq(x) + igt · A
′
αΩ(x)q(x)

where t · Aα ≡
P

A tAAA
α . Hence

t · A
′
α = Ω(x)t · AαΩ

−1
(x) +

i

g

`

∂αΩ(x)
´

Ω
−1

(x) .
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● Transformation property of gluon field strength Fαβ is

t · Fαβ(x) → t · F ′
αβ(x) = Ω(x)Fαβ(x)Ω−1(x) .

Contrast this with gauge-invariance of QED field strength. QCD field strength is not gauge

invariant because of self-interaction of gluons. Carriers of the colour force are themselves

coloured, unlike the electrically neutral photon.

● Note there is no gauge-invariant way of including a gluon mass. A term such as

m
2
A

α
Aα

is not gauge invariant. This is similar to QED result for mass of the photon. On the other

hand quark mass term is gauge invariant.
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Feynman Rules

● Use free piece of QCD Lagrangian to obtain inverse quark and gluon propagators.

❖ Quark propagator in momentum space obtained by setting ∂α = −ipα for an incoming

field. Result is in Table 1. The iε prescription for pole of propagator is determined by

causality, as in QED.

❖ Gluon propagator impossible to define without a choice of gauge. The choice

Lgauge−fixing = −
1

2 λ

“

∂αAA
α

”2

defines covariant gauges with gauge parameter λ. Inverse gluon propagator is then

Γ
(2)

{AB, αβ}
(p) = iδAB

»

p
2
gαβ − (1 −

1

λ
)pαpβ

–

.

(Check that without gauge-fixing term this function would have no inverse.) Resulting

propagator is in Table 1. λ = 1 (0) is Feynman (Landau) gauge.
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Table 1: Feynman rules for QCD in a covariant gauge.
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● Gauge fixing explicitly breaks gauge invariance. However, in the end physical results will be

independent of gauge. For convenience we usually use Feynman gauge.

● In non-Abelian theories like QCD, covariant gauge-fixing term must be supplemented by a

ghost term which we do not discuss here. Ghost field, shown by dashed lines in Table 1,

cancels unphysical degrees of freedom of gluon which would otherwise propagate in covariant

gauges.
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Running Coupling

● Consider dimensionless physical observable R which depends on a single large energy scale,

Q ≫ m where m is any mass. Then we can set m → 0 (assuming this limit exists), and

dimensional analysis suggests that R should be independent of Q.

● This is not true in quantum field theory. Calculation of R as a perturbation series in the

coupling αS = g2/4π requires renormalization to remove ultraviolet divergences. This

introduces a second mass scale µ — point at which subtractions which remove divergences

are performed. Then R depends on the ratio Q/µ and is not constant. The renormalized

coupling αS also depends on µ.

● But µ is arbitrary! Therefore, if we hold bare coupling fixed, R cannot depend on µ. Since

R is dimensionless, it can only depend on Q2/µ2 and the renormalized coupling αS. Hence

µ2 d

dµ2
R

 

Q2

µ2
, αS

!

≡

"

µ2 ∂

∂µ2
+ µ2∂αS

∂µ2

∂

∂αS

#

R = 0 .
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● Introducing

τ = ln

 

Q2

µ2

!

, β(αS) = µ2∂αS

∂µ2
,

we have
"

−
∂

∂τ
+ β(αS)

∂

∂αS

#

R = 0.

This renormalization group equation is solved by defining running coupling αS(Q):

τ =

Z αS(Q)

αS

dx

β(x)
, αS(µ) ≡ αS .

Then
∂αS(Q)

∂τ
= β(αS(Q)) ,

∂αS(Q)

∂αS

=
β(αS(Q))

β(αS)
.

and hence R(Q2/µ2, αS) = R(1, αS(Q)). Thus all scale dependence in R comes from

running of αS(Q).

● We shall see QCD is asymptotically free: αS(Q) → 0 as Q → ∞. Thus for large Q we

can safely use perturbation theory. Then knowledge of R(1, αS) to fixed order allows us to

predict variation of R with Q.
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Beta Function

● Running of of the QCD coupling αS is determined by the β function, which has the

expansion

β(αS) = −bα
2
S(1 + b

′
αS) + O(α

4
S)

b =
(11CA − 2Nf)

12π
, b

′
=

(17C2
A − 5CANf − 3CFNf)

2π(11CA − 2Nf)
,

where Nf is number of “active” light flavours. Terms up to O(α5
S) are known.

● Roughly speaking, quark loop “vacuum polarisation” diagram (a) contributes negative Nf

term in b, while gluon loop (b) gives positive CA contribution, which makes β function

negative overall.

● QED β function is

βQED(α) =
1

3π
α

2
+ . . .

Thus b coefficients in QED and QCD have opposite signs.
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● From previous section,

∂αS(Q)

∂τ
= −bα

2
S(Q)

h

1 + b
′
αS(Q)

i

+ O(α
4
S).

Neglecting b′ and higher coefficients gives

αS(Q) =
αS(µ)

1 + αS(µ)bτ
, τ = ln

 

Q2

µ2

!

.

● As Q becomes large, αS(Q) decreases to zero: this is asymptotic freedom. Notice that

sign of b is crucial. In QED, b < 0 and coupling increases at large Q.

Including next coefficient b′ gives implicit equation for αS(Q):

bτ =
1

αS(Q)
−

1

αS(µ)
+ b′ ln

“ αS(Q)

1 + b′αS(Q)

”

− b′ ln
“ αS(µ)

1 + b′αS(µ)

”
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● What type of terms does the solution of the renormalization group equation take into

account in the dimensionless physical quantity R(Q2/µ2, αS)?

Assume that R has perturbative expansion

R(1, αS) = R1αS + R2α
2
S + O(α3

S)

RGE solution R(1, αS(Q)) can be re-expressed in terms of αS(µ):

αS(Q) = αS(µ) − bτ [αS(µ)]
2
+ O(α

3
S)

R(1, αS(Q)) = R1αS(µ) + (R2 − bτ)αS(µ)2 + O(α3
S)

Thus there are powers of τ = log(Q2/µ2) that are automatically resummed by using the

running coupling.

● Notice that a leading order (LO) evaluation of R (i.e. the coefficient R1) is not very useful

since αS(µ) can be given any value by varying the scale µ.

❖ We need the next-to-leading order (NLO) coefficient (R2 − bτ) to gain some control of

scale dependence: the µ dependence of τ starts to compensate that of αS(µ).
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Charge Screening

● In QED the observed electron charge is distance-dependent (⇒ momentum transfer

dependent) due to charge screening by the vacuum polarisation:

+

+

+

+
+

+

+
++

+

+
+

-
-

--
-

-
-

- - -
-

-

q2

αeff

137
1 128

1

2m
Z

● At short distances (high momentum scales) we see more of the “bare” charge ⇒ effective

charge (coupling) increases.

● In contrast, the vacuum polarisation of a non-Abelian gauge field gives anti-screening.

❖ Consider for simplicity an SU(2) gauge field: this has 3 “colours”. . .
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Non-Abelian Vacuum Polarization

E

∇ · E = g δ3(r) + g (A · E − A · E)
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Non-Abelian Vacuum Polarization

E

A

∇ · E = g (A · E − A · E)
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Non-Abelian Vacuum Polarization

E

A

E

∇ · E = g (A · E − A · E)
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Non-Abelian Vacuum Polarization

E

A

E

∇ · E = g δ3(r) + g (A · E − A · E)
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Lambda Parameter

● Perturbative QCD tells us how αS(Q) varies with Q, but its absolute value has to be

obtained from experiment. Nowadays we usually choose as the fundamental parameter

the value of the coupling at Q = MZ, which is simply a convenient reference scale large

enough to be in the perturbative domain.

● Also useful to express αS(Q) directly in terms of a dimensionful parameter (constant of

integration) Λ:

ln
Q2

Λ2
= −

Z ∞

αS(Q)

dx

β(x)
=

Z ∞

αS(Q)

dx

bx2(1 + b′x + . . .)
.

Then (if perturbation theory were the whole story) αS(Q) → ∞ as Q → Λ. More

generally, Λ sets the scale at which αS(Q) becomes large.

● In leading order (LO) keep only first β-function coefficient b:

αS(Q) =
1

b ln(Q2/Λ2)
(LO).
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● In next-to-leading order (NLO) include also b′:

1

αS(Q)
+ b

′
ln
“ b′αS(Q)

1 + b′αS(Q)

”

= b ln
“Q2

Λ2

”

.

This can be solved numerically, or we can obtain an approximate solution to second order

in 1/ log(Q2/Λ2):

αS(Q) =
1

b ln(Q2/Λ2)

"

1 −
b′

b

ln ln(Q2/Λ2)

ln(Q2/Λ2)

#

(NLO).

This is Particle Data Group (PDG) definition.

● Note that Λ depends on number of active flavours Nf . ‘Active’ means mq < Q. Thus

for 5 < Q < 175 GeV we should use Nf = 5. See ESW for relation between Λ’s for

different values of Nf .
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Renormalization Schemes

● Λ also depends on renormalization scheme. Consider two calculations of the renormalized

coupling which start from the same bare coupling α0
S:

α
A
S = Z

A
α

0
S , α

B
S = Z

B
α

0
S

Infinite parts of renormalization constants ZA and ZB must be same in all orders of

perturbation theory. Therefore two renormalized couplings must be related by a finite

renormalization:

α
B
S = α

A
S (1 + c1α

A
S + . . .).

● Note that first two β-function, coefficients, b and b′, are unchanged by such a transformation:

they are therefore renormalization-scheme independent.

● Two values of Λ are related by

log
ΛB

ΛA
= −

1

2

Z αB
S (Q)

αA
S

(Q)

dx

β(x)

This must be true for all Q, so take Q → ∞, to obtain

ΛB = ΛA exp
c1

2b

Thus relations between different definitions of Λ are given by the one-loop calculation that

fixes c1.
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● Nowadays, most calculations are performed in modified minimal subtraction (MS)

renormalization scheme. Ultraviolet divergences are ‘dimensionally regularized’ by reducing

number of space-time dimensions to D < 4:

d4k

(2π)4
−→ (µ)2ǫ d4−2ǫk

(2π)4−2ǫ

where ǫ = 2 − D
2 . Note that renormalization scale µ still has to be introduced to preserve

dimensions of couplings and fields.

● Loop integrals of form
Z

dDk

(k2 + m2)2

lead to poles at ǫ = 0. The minimal subtraction prescription is to subtract poles and

replace bare coupling by renormalized coupling αS(µ). In practice poles always appear in

combination
1

ǫ
+ ln(4π) − γE,

(Euler’s constant γE = 0.5772 . . .). In modified minimal subtraction scheme ln(4π)−γE

is subtracted as well. From argument above, it follows that

ΛMS = ΛMSe
[ln(4π)−γE]/2 = 2.66 ΛMS
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● Current best fit value of αS at mass of Z is [Bethke, hep-ex/0606035]

αS(MZ) = 0.1189 ± 0.0010

corresponding to a preferred value of ΛMS (for Nf = 5) in the range

206 MeV < ΛMS(5) < 231 MeV.

● Uncertainty in αS propagates directly into QCD cross sections. Thus we expect errors at

the percent level (at least) in prediction of cross sections which begin in order αS.

● As in the case of scale dependence, we need at least an NLO calculation to start to control

the renormalization scheme dependence of any quantity.
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● Measurements of αS are reviewed in ESW. The most recent (2006) compilation of Bethke

is shown above. Evidence that αS(Q) has a logarithmic fall-off with Q is persuasive.
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jets & shapes 161 GeV 

jets & shapes 172 GeV 

0.08 0.10 0.12 0.14

α  (Μ  )s Z

τ-decays  [LEP]

xF   [ν -DIS]
F   [e-, µ-DIS]

Υ decays

 Γ(Z  --> had.) [LEP]

e  e  [σ     ]+
had

_
e  e  [jets & shapes 35 GeV]+ _

σ(pp --> jets)

pp --> bb X

0

QQ + lattice QCD

DIS [GLS-SR]

2

3

pp, pp --> γ X

DIS [Bj-SR]

e  e  [jets & shapes 58 GeV]+ _

jets & shapes [HERA]

jets & shapes 133 GeV

e  e  [jets & shapes 22 GeV]+ _

e  e  [jets & shapes 44 GeV]+ _

e  e  [σ     ]+
had

_

jets & shapes 183 GeV

DIS [pol. strct. fctn.]

jets & shapes 189 GeV

e  e  [scaling. viol.]+ _

jets & shapes 91.2 GeV [LEP]

● Using the formula for running αS(Q) to rescale all measurements to Q = MZ gives

excellent agreement.
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History of Asymptotic Freedom

1954 Yang & Mills study vector field theory with non-Abelian gauge invariance.

1965 Vanyashin & Terentyev compute vacuum polarization due to a massive charged vector field.

In our notation, they found

b =
1

12π

„

21

2
= 11 −

1

2

«

The 1
2 comes from longitudinal polarization states (absent for massless gluons)

❖ They concluded that this result “. . . seems extremely undesirable”

1969 Khriplovich correctly computes the one-loop β-function in SU(2) Yang-Mills theory using

the Coulomb (∇ · A = 0) gauge

b =
CA

12π
(12 − 1 = 11)

In Coulomb gauge the anti-screening (12) is due to an instantaneous Coulomb interaction

❖ He did not make a connection with strong interactions

1971 ’t Hooft computes the one-loop β-function for SU(3) gauge theory but does not publish it.

❖ He wrote it on the blackboard at a conference

❖ His supervisor (Veltman) told him it wasn’t interesting

❖ ’t Hooft & Veltman received the 1999 Nobel Prize for proving the renormalizability of QCD

(and the whole Standard Model).
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1972 Fritzsch & Gell-Mann propose that the strong interaction is an SU(3) gauge theory, later

named QCD by Gell-Mann

1973 Gross & Wilczek, and independently Politzer, compute and publish the 1-loop β-function

for QCD:

b =
1

12π
(11CA − 2Nf)

⇒2004 Nobel Prize (now that ’t Hooft has one anyway . . . )

1974 Caswell and Jones compute the 2-loop β-function for QCD.

1980 Tarasov, Vladimirov & Zharkov compute the 3-loop β-function for QCD.

1997 van Ritbergen, Vermaseren & Larin compute the 4-loop β-function for QCD

(∼ 50, 000 Feynman diagrams)

“. . . We obtained in this way the following result for the 4-loop beta function in the

MS-scheme:

q
2∂as

∂q2
= −β0a

2
s − β1a

3
s − β2a

4
s − β3a

5
s + O(a

6
s)

where as = αS/4π and . . .
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β0 =
11

3
CA −

4

3
TFnf , β1 =

34

3
C2

A − 4CFTFnf −
20

3
CATFnf

β2 =
2857

54
C

3
A + 2C

2
FTFnf −

205

9
CFCATFnf

−
1415

27
C2

ATFnf +
44

9
CFT 2

Fn2
f +

158

27
CAT 2

Fn2
f

β3 = C4
A

„

150653

486
−

44

9
ζ3

«

+ C3
ATFnf

„

−
39143

81
+

136

3
ζ3

«

+C
2
ACFTFnf

„

7073

243
−

656

9
ζ3

«

+ CAC
2
FTFnf

„

−
4204

27
+

352

9
ζ3

«

+46C
3
FTFnf + C

2
AT

2
Fn

2
f

„

7930

81
+

224

9
ζ3

«

+ C
2
FT

2
Fn

2
f

„

1352

27
−

704

9
ζ3

«

+CACFT 2
Fn2

f

„

17152

243
+

448

9
ζ3

«

+
424

243
CAT 3

Fn3
f +

1232

243
CFT 3

Fn3
f

+
dabcd

A dabcd
A

NA

„

−
80

9
+

704

3
ζ3

«

+ nf

dabcd
F dabcd

A

NA

„

512

9
−

1664

3
ζ3

«

+n2
f

dabcd
F dabcd

F

NA

„

−
704

9
+

512

3
ζ3

«
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Here ζ is the Riemann zeta-function (ζ3 = 1.202 · · ·) and the colour factors for SU(N)

are

TF =
1

2
, CA = N, CF =

N2 − 1

2N
,

dabcd
A dabcd

A

NA

=
N2(N2 + 36)

24
,

dabcd
F dabcd

A

NA

=
N(N2 + 6)

48
,

dabcd
F dabcd

F

NA

=
N4 − 6N2 + 18

96N2

Substitution of these colour factors for N = 3 yields the following numerical results for

QCD:

β0 ≈ 11 − 0.66667nf

β1 ≈ 102 − 12.6667nf

β2 ≈ 1428.50 − 279.611nf + 6.01852n2
f

β3 ≈ 29243.0 − 6946.30nf + 405.089n
2
f + 1.49931n

3
f

28
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Nonperturbative QCD

● Corresponding to asymptotic freedom at high momentum scales (short distances), we have

infrared slavery: αS(Q) becomes large at low momenta (long distances). Perturbation

theory (PT) not reliable for large αS, so nonperturbative methods (e.g. lattice) must be

used.

● Important low momentum-scale phenomena:

❖ Confinement: partons (quarks and gluons) found only in colour-singlet bound states

(hadrons), size ∼ 1 fm. If we try to separate them, it becomes energetically favourable to

create extra partons, forming additional hadrons.

❖ Hadronization: partons produced in short-distance interactions reorganize themselves (and

multiply) to make observed hadrons.

● Note that confinement is a static (long-distance) property of QCD, treatable by lattice

techniques whereas hadronization is a dynamical (long timescale) phenomenon: only models

are available at present (see later).
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Infrared Divergences

● Even in high-energy, short-distance regime, long-distance aspects of QCD cannot be ignored.

Soft or collinear gluon emission gives infrared divergences in PT. Light quarks (mq ≪ Λ)

also lead to divergences in the limit mq → 0 (mass singularities).

❖ Spacelike branching: gluon splitting on incoming line (a)

p2
b = −EaEc(1 − cos θ) ≤ 0 .

Propagator factor 1/p2
b diverges as Ec → 0 (soft singularity) or θ → 0 (collinear or mass

singularity). If a and b are quarks, inverse propagator factor is

p2
b − m2

q = −EaEc(1 − va cos θ) ≤ 0 ,

Hence Ec → 0 soft divergence remains; collinear enhancement becomes a divergence as

va → 1, i.e. when quark mass is negligible. If emitted parton c is a quark, vertex factor

cancels Ec → 0 divergence.
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❖ Timelike branching: gluon splitting on outgoing line (b)

p
2
a = EbEc(1 − cos θ) ≥ 0 .

Diverges when either emitted gluon is soft (Eb or Ec → 0) or when opening angle θ → 0.

If b and/or c are quarks, collinear/mass singularity in mq → 0 limit. Again, soft quark

divergences cancelled by vertex factor.

● Similar infrared divergences in loop diagrams, associated with soft and/or collinear

configurations of virtual partons within region of integration of loop momenta.

● Infrared divergences indicate dependence on long-distance aspects of QCD not correctly

described by PT. Divergent (or enhanced) propagators imply propagation of partons over

long distances. When distance becomes comparable with hadron size ∼ 1 fm, quasi-free

partons of perturbative calculation are confined/hadronized non-perturbatively, and apparent

divergences disappear.

● Can still use PT to perform calculations, provided we limit ourselves to two classes of

observables:

❖ Infrared safe quantities, i.e. those insensitive to soft or collinear branching. Infrared

divergences in PT calculation either cancel between real and virtual contributions or are

removed by kinematic factors. Such quantities are determined primarily by hard, short-

distance physics; long-distance effects give power corrections, suppressed by inverse powers

of a large momentum scale.

❖ Factorizable quantities, i.e. those in which infrared sensitivity can be absorbed into an overall

non-perturbative factor, to be determined experimentally.
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● In either case, infrared divergences must be regularized during PT calculation, even though

they cancel or factorize in the end.

❖ Gluon mass regularization: introduce finite gluon mass, set to zero at end of calculation.

However, as we saw, gluon mass breaks gauge invariance.

❖ Dimensional regularization: analogous to that used for ultraviolet divergences, except we

must increase dimension of space-time, ǫ = 2 − D
2 < 0. Divergences are replaced by

powers of 1/ǫ.

● We’ll see how this works in the next lecture!
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Summary of Lecture 1

● QCD is a non-Abelian gauge theory.

❖ Gauge quanta (gluons) are massless and self-interacting.

❖ Gauge group SU(3) ⇒ 3 colours, 8 gluons.

● Scale invariance is broken by renormalization

❖ Physical scale dependence is absorbed in running coupling αS(Q).

● Renormalization scale dependence cancels order-by order.

❖ Need at least next-to-leading order (NLO) for meaningful predictions.

● Asymtotic freedom: αS(Q) → 0 as Q → ∞.

❖ Due to charge anti-screening.

● All data consistent with αS(MZ) ≃ 0.119.

● Growth of αS(Q) at low scales (infrared slavery) ⇒ confinement, hadronization.

❖ Must use non-perturbative techniques or models for these.

● Infrared divergences ⇒ can only treat infrared safe or factorizable quantities perturbatively.
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