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Calculating QCD Radiative Effects

• Fixed order (NLO, NNLO,...)

❖ Well-controlled approximation 

❖ Laborious, numerical problems, divergences

• Resummation

❖ Cures divergences, can be matched to fixed order

❖ Only available for small number of observables

• Parton showers (Monte Carlo event generators)

❖ Simple, fast approximation to all orders

❖ Interfaces to hadronization models

❖ Uncontrolled, bad approximation for hard emission
4
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Example: Higgs pT Distribution

• MC@NLO matches fixed order and parton shower (more later)
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Resummation of pT in Higgs and Vector Boson Production
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Figure 1: Diagrammatic structure of the various factors that enter the process-independent
resummation formula (13).

The two versions (4) and (13) of the resummation formula can formally be related as
follows. We use the renormalization-group identity

g1(αS(Q
2)) = exp

{∫ Q2

b2
0
/b2

dq2

q2
g2(αS(q

2))

}

g1(αS(b
2
0/b

2)) , (16)

which is valid when

g2(αS) = β(αS)
d ln g1(αS)

d ln αS
, (17)

where β(αS) is the QCD β-function

d ln αS(q2)

d ln q2
= β(αS(q

2)) , (18)

β(αS) = −β0
αS

π
− β1

(αS

π

)2

+ . . . , 12β0 = 11CA − 2Nf . (19)

Then, setting g1(αS(Q2)) = HF
c (αS(Q2)) and inserting the right-hand side of Eq. (16) in

Eq. (13), we immediately obtain Eq. (4). More precisely, the process-independent resumma-
tion formula in Eq. (13) implies the customary version in Eq. (4), provided the perturbative
function Bc(αS) in the form factor SF

c (see Eq. (5)) and the coefficient functions CF
ab are

related to their process-independent analogues by the following all-order relations

CF
ab(αS, z) =

[
HF

a (αS)
]1/2

Cab(αS, z) , (20)

BF
c (αS) = Bc(αS) − β(αS)

d lnHF
c (αS)

d ln αS
. (21)

While the perturbative function Ac(αS) and the first-order coefficient B(1)
c of the function

Bc(αS) are process-independent, the result in Eqs. (21) and (20) shows that the coefficients
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hadrons‡. The distinction between the two terms is purely theoretical. The partonic cross
section that enters in the resummed part (the first term on the right-hand side) contains
all the logarithmically-enhanced contributions αn

S lnm Q2/q2
⊥. Thus, this part has to be

evaluated by resumming the logarithmic terms to all orders in perturbation theory. On
the contrary, the partonic cross section in the second term on the right-hand side is finite
order-by-order in perturbation theory when q⊥ → 0. It can thus be computed by truncating
the perturbative expansion at a given fixed order in αS.

The finite component of the transverse-momentum cross section is obviously process-
dependent, and we have nothing to add on it in this paper. In the following we discuss the
structure of the resummed part.

The resummed component is§

[
dσF

dQ2 dq2
⊥

]

res.

=
∑

a,b

∫ 1

0

dx1

∫ 1

0

dx2

∫ ∞

0

db
b

2
J0(bq⊥) fa/h1

(x1, b
2
0/b

2) fb/h2
(x2, b

2
0/b

2)

· W F
ab(x1x2s; Q, b) . (3)

The Bessel function J0(bq⊥) and the coefficient b0 = 2e−γE (γE = 0.5772 . . . is the Euler
number) have a kinematical origin. To correctly take into account the kinematics constraint
of transverse-momentum conservation, the resummation procedure has to be carried out in
the impact-parameter space. The transverse-momentum cross section (3) is then obtained
by performing the inverse Fourier (Bessel) transformation with respect to the impact pa-
rameter b. The factor W F

ab is the perturbative and process-dependent partonic cross section
that embodies the all-order resummation of the large logarithms ln Q2b2 (the limit q⊥ " Q
corresponds to Qb # 1, because b is the variable conjugate to q⊥).

The resummed partonic cross section is usually (see, e.g., the list of references in Sec-
tions 5.1 and 5.3 of Ref. [1]) written in the following form:

W F
ab(s; Q, b) =

∑

c

∫ 1

0

dz1

∫ 1

0

dz2 CF
ca(αS(b

2
0/b

2), z1) CF
c̄b(αS(b

2
0/b

2), z2) δ(Q2 − z1z2s)

· σ(LO) F
cc̄ (Q2) SF

c (Q, b) . (4)

Here, σ(LO) F
cc̄ is the cross section (integrated over q⊥) for the LO partonic subprocess c+c̄ →

F , where c, c̄ = q, q̄ (the quark qf and the antiquark q̄f ′ can possibly have different flavours

f, f ′) or c, c̄ = g, g. The expression σ(LO) F
cc̄ can include an overall factor αp

S(Q
2), as in the

case of g + g → H through a triangular quark loop where p = 2. The term SF
c (Q, b) is the

quark (c = q) or gluon (c = g) Sudakov form factor. The resummation of the logarithmic
contributions is achieved by exponentiation [4]–[7], that is by showing [8, 9] that the form
factor can be expressed as

Sc(Q, b) = exp

{

−
∫ Q2

b2
0
/b2

dq2

q2

[
Ac(αS(q

2)) ln
Q2

q2
+ Bc(αS(q

2))

]}

, (5)

‡Throughout the paper we always use parton densities as defined in the MS factorization scheme and
αS(q2) is the QCD running coupling in the MS renormalization scheme.

§As discussed at the end of the paper, this expression can be generalized to include the dependence on
the renormalization and factorization scales µR and µF .
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in the various terms on the right-hand side, the coefficient functions CF
ab depend on the

process. This is confirmed by the calculations of the coefficients C(1) F
ab , performed in the

literature for several processes ‖ [12] [14]–[19]. The form factor Sc(Q, b) that enters Eq. (4)
is (often) supposed to be universal (this is the reason why it is named quark or gluon form
factor rather than DY, γγ, WZ, H, . . . form factor). However, this is not the case: the
form factor SF

c (Q, b) in Eq. (4) is process-dependent. In the following, we first present a
universal (process-independent) version of the resummation formula (4) and we sketch its
physical origin. We then clarify the relation between Eq. (4) and our process-independent
version.

The process-independent resummation formula is
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It formally differs from Eq. (4) by the replacement σ(LO) F
cc̄ (Q2) → σF

cc̄(Q
2, αS(Q2)). While

σ(LO) F
cc̄ (Q2) is the cross section for the LO partonic subprocess, σF

cc̄(Q
2, αS(Q2)) includes

higher-order QCD corrections to it, according to

σF
cc̄(Q

2, αS(Q
2)) = σ(LO) F

cc̄ (Q2) HF
c (αS(Q

2)) , (14)

where the function HF
c (αS) has a perturbative expansion similar to Eqs. (6)–(8):

HF
c (αS) = 1 +

∞∑

n=1

(αS

π

)n
H(n) F

c . (15)

Note that the function HF
c (αS) depends on the process. Nonetheless, its introduction is

sufficient to transform the process-dependent form factor SF
c and coefficient functions CF

ca

of Eq. (4) into the process-independent form factor Sc and coefficient functions Cca of
Eq. (13).

The resummation formula in Eq. (13), which can be derived by the customary resum-
mation methods [4]–[9] [11], has a simple physical origin. When the final-state system F is
kinematically constrained to have a small transverse momentum, the emission of accompa-
nying radiation is strongly inhibited, so that only soft and collinear partons (i.e. partons
with low transverse momenta qt) can be radiated in the final state (Fig. 1). The process-
dependent factor HF

c (αS(Q2)) embodies hard contributions produced by virtual corrections
at transverse-momentum scales qt ∼ Q. The form factor Sc(Q, b) contains real and virtual
contributions due to soft (the function Ac(αS) in Eq. (5)) and flavour-conserving collinear
(the function Bc(αS) in Eq. (5)) radiation at scales Q∼>qt ∼> 1/b. At very low momentum
scales, qt ∼< 1/b, real and virtual soft-gluon corrections cancel because the cross section is
infrared safe, and only real and virtual contributions due to collinear radiation remain
(the coefficient functions Cab(αS(b2

0/b
2), z)). Note that Sc(Q, b) and Cab(αS(b2

0/b
2), z) are

process-independent and only depend on the flavour and colour charges of the QCD partons.

‖A general expression for the coefficients C(1) F

ab
in terms of the one-loop matrix element of the corre-

sponding process is given in Eq. (17) of Ref. [13].
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Figure 1: Diagrammatic structure of the various factors that enter the process-independent
resummation formula (13).
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where τ0 = exp(−γE) = 0.56146 . . ., γE being the Euler-Mascheroni constant. Therefore

the effective lower limit of the soft resummation is iτ0/τ , and the parton distributions

and coefficient functions should be evaluated at this scale. However, evaluation of parton

distribution functions at an imaginary scale using the standard parametrizations is not

feasible. We avoid this by noting that

fa/h(x, q′) =
∑

b

∫ 1

x

dz

z
Uab(z; q′, q)fb/h(x/z, q) (2.8)

where Uab is the DGLAP evolution operator. Therefore

fa/h(x, iµ) =

∫ 1

x

dz

z
Uab(z; iµ, µ)fb/h(x/z, µ) (2.9)

where the evolution operator Uab(z; iµ, µ) is given to NLO by

Uab(z; iµ, µ) = δab +
1

2
iαS(µ)Pab(z) , (2.10)

Pab(z) being the leading-order DGLAP splitting function. Similarly, in the coefficient

functions we can write αS(iµ) in terms of αS(µ) using the definition of the running coupling:

∫ iµ

µ

dαS

β(αS)
= 2

∫ iµ

µ

dq

q
= iπ (2.11)

where β(αS) = −bα2
S + O(α3

S), so that

αS(iµ) = αS(µ) − iπb[αS(µ)]2 + O(α3
S) . (2.12)

Furthermore, as the expressions (2.1) and (2.2) are convolutions, we can transfer the extra

terms from (2.9) into the coefficient functions to obtain

W F
ab(s;Q, τ) =

∑

c

∫ 1

0
dz1

∫ 1

0
dz2 C̃ca(αS(τ0/τ), z1) C̃c̄b(αS(τ0/τ), z2) δ(Q2 − z1z2s)

· σF
cc̄(Q,αS(Q)) Sc(Q, τ) . (2.13)

where

C̃ca(αS(µ), z) =
∑

d

∫ 1

z

dz′

z′
Ccd(αS(iµ), z/z′)Uda(z

′; iµ, µ) . (2.14)

Now the lowest-order coefficient function is of the form

C̃(0)
ca (z) = C(0)

ca (z) = δcaδ(1 − z) (2.15)

and therefore

C̃(1)
ca (z) = C(1)

ca (z) + i
π

2
Pca(z) . (2.16)

Putting everything together, we have
[

dσF

dQ2 dET

]

res.

=
1

2πs

∑

c

∫ +∞

−∞

dτ e−iτET Sc(Q, τ) Rc(s;Q, τ) σF
cc̄(Q,αS(Q)) (2.17)
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all-order resummation of the large logarithms ln(Qτ). Since τ is conjugate to ET , the limit

ET ! Q corresponds to Qτ " 1.

The resummed partonic cross section can be written in the following universal form [5]:1

W F
ab(s;Q, τ, µ) =

∑

c

∫ 1

0
dz1

∫ 1

0
dz2 Cca(αS(µ), z1; τ, µ) Cc̄b(αS(µ), z2; τ, µ) δ(Q2 − z1z2s)

· σF
cc̄(Q,αS(Q)) Sc(Q, τ) . (2.2)

Here σF
cc̄ is the cross section for the partonic subprocess c + c̄ → F , where c, c̄ = q, q̄ (the

quark qf and the antiquark q̄f ′ can possibly have different flavours f, f ′) or c, c̄ = g, g.

The term Sc(Q, τ) is the quark (c = q) or gluon (c = g) Sudakov form factor. The

resummation of the logarithmic contributions is achieved by exponentiation [9]– [12], that

is by showing [13,14] that the form factor can be expressed as

Sc(Q, τ) = exp

{
−2

∫ Q

0

dq

q

[
2Ac(αS(q)) ln

Q

q
+ Bc(αS(q))

] (
1 − eiqτ

)}
, (2.3)

with c = q or g. The functions Ac(αS), Bc(αS), as well as the coefficient functions Cab in

Eq. (2.2), contain no ln(Qτ) terms and are perturbatively computable according to the

power expansions2

Ac(αS) =
∞∑

n=1

(αS

π

)n
A(n)

c , (2.4)

Bc(αS) =
∞∑

n=1

(αS

π

)n
B(n)

c , (2.5)

Cab(αS, z) = δab δ(1 − z) +
∞∑

n=1

(αS

π

)n
C(n)

ab (z) . (2.6)

Thus a calculation to NLO in αS involves the coefficients A(1)
c , A(2)

c , B(1)
c , B(2)

c and C(1)
ab .

All these quantities are known for both the quark and gluon form factors and associ-

ated coefficient functions. Knowledge of the coefficients A(1) leads to the resummation of

the leading logarithmic (LL) contributions in the ET distribution, which are of the form

αn
S lnp(Q/ET )/ET where p = 2n−1. The coefficients B(1) give the next-to-leading logarith-

mic (NLL) terms with p = 2n−2, A(2) and C(1) give the next-to-next-to-leading logarithmic

(N2LL) terms with p = 2n − 3, and B(2) gives the N3LL terms with p = 2n − 4. With

knowledge of all these terms, the first term neglected in the resummed of the distribution

is of order α3
S ln(Q/ET )/ET .

In general the coefficient functions in Eq. (2.2) contain logarithms of µτ , which are

eliminated by a suitable choice of factorization scale. To find the optimal factorization

scale, we note that, to NLL accuracy,
∫ Q

0

dq

q
lnp q

(
1 − eiqτ

)
%

∫ Q

iτ0/τ

dq

q
lnp q , (2.7)

1For earlier references see for example Sections 5.1 and 5.3 of ref. [6].
2Note that in Refs. [17,18] the perturbative coefficients are normalized to powers of αS/2π rather than

αS/π.
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A Papaefstathiou, J Smillie & BW, in preparation 
G Altarelli, G Martinelli & F Rapuano, Z Phys C32 (1986) 369 
C Davies & BW, Z Phys C24 (1984) 133  
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Resummation of ET in Higgs Production

8

A Papaefstathiou, J Smillie & BW, in preparation 

• Underlying event modelled by multiple parton interactions
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Parton Shower Event Generators

• HERWIG

❖ Angular-ordered shower, cluster hadronization

❖ v6 Fortran, now Herwig++

• PYTHIA

❖ Virtuality/kT-ordered shower, string hadronization

❖ v6 Fortran, v8 C++

• SHERPA

❖ Virtuality-ordered shower, string/cluster hadronization

❖ C++

9

http://www.hepforge.org/projects
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Underlying Event (MPI)
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Monte Carlo ET in Higgs Production

11

A Papaefstathiou, J Smillie & BW, in preparation 

Tevatron LHC
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A Papaefstathiou, J Smillie & BW, in preparation 

Tevatron LHC

Monte Carlo ET in Higgs Production
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A Papaefstathiou, J Smillie & BW, in preparation 

Tevatron LHC

Monte Carlo ET in Higgs Production
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A Papaefstathiou, J Smillie & BW, in preparation 

Tevatron LHC

Monte Carlo ET in Higgs Production
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A Papaefstathiou, J Smillie & BW, in preparation 

Tevatron LHC

Monte Carlo ET in Higgs Production
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Matching fixed orders 
with parton showers

16
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Fixed Order-Parton Shower Matching
• Two rather different objectives:
• Matching parton showers to NLO matrix 

elements, without double counting
– MC@NLO
– POWHEG

• Matching parton showers to LO n-jet matrix 
elements, minimizing jet resolution dependence
– CKKW
– Dipole
– MLM Matching

17
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Illustrate with simple one-dim. example:

x = gluon energy or two-parton invariant mass.
Divergences regularized by                  dimensions.

Cross section in d dimensions is:

Infrared safety:
KLN cancellation theorem:

MC@NLO

18
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Subtraction Method

Exact identity:

         
             Two separate finite integrals.

J

19
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Now add parton shower:
                result from showering after 0,1 emissions.
But shower adds                to 1 emission.  Must subtract
this, and add to 0 emission (so that                            fixed)

MC good for soft and/or collinear
         0 & 1 emission contributions separately finite now!
         (But some can be negative “counter-events”)

F J
0,1 ⇒

Modified Subtraction
σJ =

∫ 1

0

dx

x

(
M(x) F J

1 (x)− V F J
0

)
+O(1)V F J

0

σJ =
∫ 1

0

dx

x

(
{M(x)−MMC(x)} F J

1 (x)

− {V −MMC(x)} F J
0

)
+O(1)V F J

0

F tot
0,1 = 1 ⇒ σtot

MMC/x

⇒ MMC(0) =M(0)

20
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MC@NLO Results
• WW production at LHC

HERWIG

MC@NLO
NLO

Interpolates between MC & NLO in
Above both at

p(WW)
T

∆φ(WW) ! 0
S Frixione & BW, JHEP 06(2002)029

21
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H    WW: MC@NLO vs NNLO at LHC

22

C Anastasiou, G Dissertori, F Stöckli & BW, JHEP03(2008)017 [arXiv:0801.2682] 
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H    WW at Tevatron

23

C Anastasiou, G Dissertori, M Grazzini, F Stöckli & BW, JHEP08(2009)099 [arXiv:0905.3529] 
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Theoretical Uncertainties

24

σ [fb] LO (pdfs, αs) NLO (pdfs, αs) NNLO (pdfs, αs)

0-jets 3.452+7%
−10% 2.883+4%

−9% 2.707+5%
−9%

1-jet 1.752+30%
−26% 1.280+24%

−23% 1.165+24%
−22%

≥ 2-jets 0.336+91%
−44% 0.221+81%

−42% 0.196+78%
−41%

Table 2: Inclusive cross sections in the different jet bins.

The total cross-section with NNLO pdfs varies around the default scale value µ = mH

by ±14%. From Table 2 we see that about 66.5% of the events contain zero jets, 28.6% one

jet only, and 4.9% contain more than one jets. Notice, however, that the scale variation in

the three jet bins is significantly different and deteriorates with increasing jet multiplicity.

This is a consequence of the fact that in the 1-jet and 2-jet bins the fixed order calculation

is only accurate through NLO and LO, respectively. The resulting scale dependence of the

inclusive cross section is made up as follows:

∆Ninc(scale)

Ninc
= 66.5% ·

(

+5%
−9%

)

+ 28.6% ·
(

+24%
−22%

)

+ 4.9% ·
(

+78%
−41%

)

=
(

+14.0%
−14.3%

)

(4.1)

The application of different selection cuts in the three jet bins leads to a theoretical

error estimate of the number of signal events which is different from the theoretical error

of the inclusive NNLO cross-section. Specifically, from Tables 1-3 of Ref. [2] we observe

that, after preselection, 60% of gluon fusion events belong to the 0-jets bin, 29% to the

1-jet bin, and 11% to the 2-jet bin.

We now examine how this modification of the jet multiplicities with the experimental

cuts affects the scale variation for the total number of events. With the exception of the

jet-veto, all other cuts used in the CDF preselection [2] do not affect the scale variation of

the total cross-section significantly. We can then estimate the scale variation of the total

number of signal events using the scale-variations for each jet-multiplicity in Table 2 and

the expected composition of jet-multiplicities for the signal [2]. Using NNLO pdf’s and

NNLO αs evolution for all jet bins, we find that:

∆Nsignal(scale)

Nsignal
= 60% ·

(

+5%
−9%

)

+ 29% ·
(

+24%
−22%

)

+ 11% ·
(

+78%
−41%

)

=
(

+18.5%
−16.3%

)

(4.2)

The resulting scale variation is therefore larger than the corresponding scale variation of

±14% for the inclusive cross-section.

Notice that in Eq. 4.2 we used a scale variation for the one-jet and two-jet bins cor-

responding to NNLO pdfs and αs evolution. A more consistent approach would be to

estimate the number of events in the 1-jet and 2-jet bins using NLO and LO pdfs and αs

evolution correspondingly. In this way we obtain:

∆Nsignal(scale)

Nsignal
= 60% ·

(

+5%
−9%

)

+ 29% ·
(

+24%
−23%

)

+ 11% ·
(

+91%
−44%

)

=
(

+20.0%
−16.9%

)

(4.3)

The relative population of the jet bins is very important for the determination of

the theoretical error on the total number of events. The contribution of the different jet
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0-jets 1-jet >1-jet

CDF separate events into jet samples:

But selection cuts change jet fractions 
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Also 1-jet is only NLO and >1-jet only LO
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Tevatron  Higgs Exclusion

25
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Dealing with QCD 
initial-state radiation

26
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QCD Initial-State Radiation

27

Irreducible source of “jet contamination”
Misidentification of processes
Combinatorial ambiguities

Modifies kinematics of hard process
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Global Inclusive Observables

28

• How can jets from hard subprocess be 
distinguished from ISR jets?

• In principle, there is no way!  So let’s look at 
“global inclusive” observables

• Consider e.g. the total invariant mass M visible 
in the detector:

or (Konar, Kong & Matchev, 0812.1042) 

M =
√

E2 − P 2
z− "E2

T

ŝ1/2
min(Minv) =

√
M2+ !E2

T +
√

M2
inv+ !E2

T
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Inclusive Observables: MC results
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HT = ET + !ETM =
√

E2 − P 2
z− "E2

T

ŝ1/2
min(Minv) =

√
M2+ !E2

T +
√

M2
inv+ !E2

T

Konar, Kong, Matchev, 0812.1042 

PYTHIA top production: ISR off
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ISR Effects on Inclusive Observables
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x1x̄1 x̄2x2

−ηmax ηmax

θ

dσ

dM2
=

∫
dx̄1

x̄1

dx̄2

x̄2
dx1 dx2f(x̄1, Qc)f(x̄2, Qc)K

(
x1

x̄1
;Qc, Q

)
K

(
x2

x̄2
;Qc, Q

)
σ̂(x1x2S)δ(M2 − x̄1x̄2S)

• ISR at                          enters detector

• Hard scale                     but

• PDFs sampled at 

θ > θc ∼ exp(−ηmax)

Q2 ∼ ŝ = x1x2S M2 = x̄1x̄2S

Qc ∼ θcQ

A Papaefstathiou & BW, 0903.2013 
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ISR Effects: MC & Resummed Results
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fHERWIG6.510

. .{resummed

HT = ET + !ETM =
√

E2 − P 2
z− "E2

T

ŝ1/2
min(Minv) =

√
M2+ !E2

T +
√

M2
inv+ !E2

T
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Dependence on
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E, M, smin strongly dependent; ET, ET, HT not

ηmax
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E, M, smin strongly dependent; ET, ET, HT not

ηmax
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Dependence on
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E, M, smin strongly dependent; ET, ET, HT not

ηmax
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Mass determination 
with MT2 and MCT 
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T
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MT2 variable

36

≤ m2
Y when µN = mN

m2
T2(µN ) ≡ min

p1
T +p2

T =/p
T

[
max{m2

T (p1
T , pa

T ; µN ), m2
T (p2

T , pb
T ; µN )}

]

Lester & Summers, hep-ph/9906349

• pp   YYX, Y   aN, Y   bN

• a,b visible, N invisible

• Transverse mass:

Figure 1: An event with two invisible particles N , each from a decay of a heavy particle Y .

methods using the variable mT2 [9], which is sometimes called the stransverse mass.
mT2 is defined event by event as a function of the invisible particle mass. Its endpoint

or maximal value over many events, denoted by mmax
T2 , gives an estimate of the mother

particle’s mass in the beginning of the decay chain. When the invisible particle’s mass

is unknown, one has to use a trial mass to calculate mT2 and only obtains an estimate
of the mass difference. However, it has been shown in Ref. [10] that if the two mother

particles decay through three-body decays to the invisible particles, a “kink” occurs on
the mmax

T2 curve as a function of the trial mass. The position of the kink is actually at the
true value of the invisible particle mass, which allows us to simultaneously determine

the masses of both the invisible particle and its mother particle. A generalized study
of the kink method is available in Ref. [11].

The purpose of this paper is to clarify the relation between the two mass deter-

mination techniques, i.e., the one using kinematic constraints and the one using the
variable mT2. An apparent difference between the two approaches is that the former
uses the 4-momenta of the visible particles, while the latter is defined solely on the

plane transverse to the beam direction. Nevertheless, due to the lack of total momen-
tum measurement in the beam direction, the longitudinal momenta of the two invisible

particles can be arbitrarily chosen, offsetting some of the information obtained from
the visible particles’ longitudinal momenta. As a consequence, mT2 is equivalent to the
“minimal” kinematic constraints discussed below.

We illustrate our definition of “minimal” constraints in Fig. 1. Two mother par-

ticles of the same mass, mY , each decays to a dark matter particle of mass mN , plus
some visible particles, either directly or through other on-shell particles. Since the

– 3 –
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CDF Top Mass from MT2
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CDF, 0911.2956

•  3.4 fb-1 => mt = 168.0 +5.6/-5.0 GeV (MT2 alone)
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Top Mass from MT2 at LHC?
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 / ndf 2!  21.33 / 14
p0        1.1! 171.1 
p1        0.731! 4.998 
p2        55.4! 558.5 
p3        1.5! 142.9 
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Cho, Choi, Kim & Park, 0804.2185

• Input mass 170.9 GeV; PYTHIA+PGS;  b-tagging   50%

• 10 fb-1 @ LHC (14 TeV) => mt = 171.1 +/- 1.1 GeV
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Jet contamination in tt
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• Fully leptonic tt: 2 jets (+2 leptons + MET) 

• Matched = top decay parton within   R=0.5 and   E/E=0.3

• Generated with MC@NLO (no underlying event) 

Half of events have an extra jet

∆∆
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ET ordering of jets
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• P(1 or both leading jets unmatched) > 50%
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Reducing ISR contamination
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Reducing jet contamination in tt
Idea: demand more jets, select lowest MT2 

As long as one is correct, this cannot raise edge
Alwall, Hiramatsu, Nojiri & Shimizu, PRL103(2009)151802

• 7 fb-1 MC@NLO, no b-tagging

• > 50% events have extra jets

• Hardest 2 jets (red) =>     
ISR contaminates edge

• Smallest MT2 from 3 hardest 
(blue) => less contamination
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Reducing ISR contamination
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Reducing jet contamination in SUSY

Again, endpoint is clearer for lowest MT2 with extra jet 

Alwall, Hiramatsu, Nojiri & Shimizu, PRL103(2009)151802

gg → g̃g̃ , g̃ → qq̄χ̃0
1

mg̃ = 685 GeV , mq̃ = 1426 GeV , mχ̃0
1

= 102 GeV

Consider                             at LHC (PYTHIA, 40 fb-1)               

Hardest 4 jets Hardest 5 jets,ISR rank order
rejected rank >2

with ISR

without
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MCT   Variable
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T

Matchev & Park, 0910.1584

P

P

C

C

v1

v2

Pup = −(p1T + p2T + pTmiss)

Pup

Upstream transverse momentum (ISR):
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MCT   Variable
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T

Matchev & Park, 0910.1584

P

P

C

C

v1

v2

Neglecting visible masses:

MCT⊥ = 2
√

p1T⊥p2T⊥Θ(p1T⊥p2T⊥)

p1T⊥

p2T⊥Pup
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Phase-space distribution is universal:

Mmax =
M2

P −M2
C

MP

γ =
√

ŝ

2MP

Fraction of events with p1T⊥p2T⊥ > 0 decreases ∼ 1/γ

MCT⊥ = 2
√

p1T⊥p2T⊥Θ(p1T⊥p2T⊥)

dP

dMCT⊥
= 4

MCT⊥
M2

max

ln
MCT⊥
Mmax
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MCT   in Top Production (1)
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T

Dilepton endpoint gives W mass

Not phase space, but still close in shape
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MCT   in Top Production (2)

47

T

Quark jets endpoint Mmax =
M2

t −M2
W

Mt

Parton level Two hardest jets
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Alwall et al. idea: demand more jets, select lowest MCT 

As long as one is correct, this cannot raise endpoint

T

Lowest of 3 hardest2 hardest jets

High-mass tail removed but shape deviates more

p1T⊥p2T⊥ > 0Only a few percent of events have
for all 3 combinations
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Conclusions
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New ideas on reducing ISR jet contamination 

Matching fixed orders with parton showers 

QCD effects in Higgs search 

Dealing with QCD initial-state radiation

Only transverse observables are robust

QCD effects unavoidable at hadron colliders 

Fixed-order, resummation & parton showers 


