Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007

Bryan Webber

Monte Carlo Event Generation

- Basic Principles
- Event Generation
- Parton Showers
- Hadronization
- Underlying Event
- Event Generator Survey
- Matching to Fixed Order
- Beyond Standard Model

BSM Physics at LHC

SUSY vs UED *
Black Holes *

- * JM Smillie & BW, hep-ph/0507170
- + CM Harris et al., hep-ph/0411022

Spin Correlations in SUSY & UED

- SUSY: new particles are superpartners $q \leftrightarrow \widetilde{q}, g \leftrightarrow \widetilde{g}, l \leftrightarrow \widetilde{l}, (\gamma, Z, ...) \leftrightarrow (\widetilde{\chi}_1^0, \widetilde{\chi}_2^0, ...)$ • spins differ by one-half
- UED: new particles are KK excitations $q \leftrightarrow q^*, g \leftrightarrow g^*, l \leftrightarrow l^*, (\gamma, Z, ...) \leftrightarrow (\gamma^*, Z^*, ...)$ • spins are the same!
- Suppose masses have been measured: how could we distinguish?
 - need evidence on spins to be sure

SUSY and UED decay chains

Two distinct helicity structures, with different spin correlations:

- Process 1: $\{q, l^{\text{near}}, l^{\text{far}}\} = \{q_L, l_L^-, l_L^+\} \text{ or } \{\bar{q}_L, l_L^+, l_L^-\} \text{ or } \{q_L, l_R^+, l_R^-\} \text{ or } \{\bar{q}_L, l_R^-, l_R^+\};$
- Process 2: $\{q, l^{\text{near}}, l^{\text{far}}\} = \{q_L, l_L^+, l_L^-\}$ or $\{\bar{q}_L, l_L^-, l_L^+\}$ or $\{q_L, l_R^-, l_R^+\}$ or $\{\bar{q}_L, l_R^+, l_R^-\}$.

UED and **SUSY** mass spectra

• UED models tend to have quasi-degenerate spectra

γ^*	Z^*	q_L^*	l_R^*	l_L^*
501	536	598	505	515

 $(M_n \sim n/R)$ broken by boundary terms and loops, with low cutoff)

Table 1: UED masses in GeV, for $R^{-1} = 500 \text{GeV}, \ \Lambda R = 20, \ m_h = 120 \text{GeV}, \ \overline{m}_h^2 = 0$ and vanishing boundary terms at cut-off scale Λ .

• SUSY spectra typically more hierarchical

$\widetilde{\chi}_1^0$	$\widetilde{\chi}_2^0$	\widetilde{u}_L	\widetilde{e}_R	\widetilde{e}_L
96	177	537	143	202

(high-scale universality)

Table 2: SUSY masses in GeV, forSPS point 1a.

Production cross sections (pb)

Masses	Model	$\sigma_{\rm all}$	σ_{q^*}	$\sigma_{ar{q}^*}$	f_q
UED	UED	253	163	84	0.66
UED	SUSY	28	18	9	0.65
SPS 1a	UED	433	224	80	0.74
SPS 1a	SUSY	55	26	11	0.70

 $\Rightarrow \sigma_{\text{UED}} \gg \sigma_{\text{SUSY}} \text{ for same masses (100 pb = 1/sec)}$ $\Rightarrow q^*/\bar{q}^* \sim 2 \Rightarrow \text{ charge asymmetry}$

 θ^* defined in $\tilde{\chi}_2^0/Z^*$ rest frame θ, ϕ defined in \tilde{l}/l^* rest frame

Invariant masses

•
$$ql^{near}$$
: $m_{ql}/(m_{ql})_{max} = \sin(\theta^*/2)$
• $l^{near}l^{far}$: $m_{ll}/(m_{ll})_{max} = \sin(\theta/2)$
• ql^{far} : $m_{ql}/(m_{ql})_{max} = \frac{1}{2} \Big[(1-y)(1-\cos\theta^*\cos\theta) + (1-y)(1-\cos\theta^*\cos\theta) \Big]$

$$+(1-y)(\cos\theta^* - \cos\theta) - 2\sqrt{y}\sin\theta^*\sin\theta\cos\phi \Big]^{\frac{1}{2}}$$

where
$$x = m_{Z^*}^2 / m_{q^*}^2$$
, $y = m_{l^*}^2 / m_{Z^*}^2$, $z = m_{\gamma^*}^2 / m_{l^*}^2$

Helicity dependence

Process I (UED, transverse Z^* : $P_T/P_L = 2x$)

 \Rightarrow Both prefer high $(ql^-)^{near}$ invariant mass

Jet + lepton mass distribution

Not resolvable for UED masses, maybe for SUSY masses
 Charge asymmetry due to quark vs antiquark excess

Black Holes at the LHC?

For n extra dimensions compactified at scale R

TeV-Scale Gravity $G_4 = G_{4+n}/R^n$ $G_{4+n} = M_{PL}^{-2-n}$ $\Rightarrow M_{PL}^{(4)} = M_{PL} \left(\frac{M_{PL}c}{\hbar}R\right)^{n/2}$

• Hence for $M_{PL} = 1$ TeV we need

 $10^{19} \,\mathrm{GeV} \sim 10^3 \,\mathrm{GeV} \times (10^4 \,R/\mathrm{fm})^{n/2}$

 \rightarrow mm for n=2, nm for n=3, pm for n=4

Black hole production

Parton-level cross section:

$$\hat{\sigma}(\hat{s}=M_{BH}^2)=F_n\pi r_S^2$$

 $r_S =$ Schwarzschild radius in 4+n dimensions:

$$r_{S} = \frac{1}{\sqrt{\pi}M_{PL}} \left[\frac{8\Gamma\left(\frac{n+3}{2}\right)M_{BH}}{(n+2)M_{PL}} \right]^{\frac{1}{n+1}}$$

- $F_n =$ form factor of order unity (hoop conjecture)
- Usually set Planck scale $M_{PL} = 1$ TeV for illustration
 (Dimopoulos-Landsberg $M_{PL} \equiv \left[G_{(4+n)}\right]^{-rac{1}{n+2}}$)

BH formation factor (1)

$$b_{max} = 2r_h = 2r_s \left[1 + a_*^2\right]^{-\frac{1}{n+1}}$$
$$a_* = \frac{(n+2)J}{2r_h M_{BH}}, \quad J \simeq b M_{BH}/2$$
$$\hat{\sigma} = F_n \pi r_s^2 \simeq \pi b_{max}^2$$

$$\Rightarrow F_n \simeq 4 \left[1 + \left(\frac{n+2}{2} \right)^2 \right]^{-\frac{2}{n+1}} \quad \text{("geometric")}$$

BH formation factor (2)

H Yoshino & Y Nambu, gr-qc/0209003 H Yoshino & VS Rychkov, hep-th/0503171

Yoshino-Rychkov Bound on $\hat{\sigma}_{BH}$

YN bound is πb_{max}^2 for AH on past lightcone (boundary of region I)

- YR bound is πb_{max}^2 for AH on future lightcone (boundary of regions II & III)
- Area of AH sets limits on M_{BH} and J_{BH}

Limits on MBH and JBH

• $\mu \equiv \sqrt{\hat{s}}/2$, so $M/2\mu = 1$ implies $M_{BH}^2 = \hat{s}$

• We'll assume $M_{BH}\simeq 2\mu=\sqrt{\hat{s}}$, $J_{BH}\simeq b\mu\simeq bM_{BH}/2$

BH cross section vs Planck mass

➡ Little sensitivity to n
➡ Sensitive to assumption that $M_{BH} \simeq \sqrt{\hat{s}}$

BH cross sections at LHC

Black hole decay (I)

Balding phase

- loses `hair' and multipole moments, mainly by gravitational radiation
- Spin-down phase
 - loses angular momentum, mainly by Hawking radiation
- Schwarzschild phase
 - Ioses mass by Hawking radiation, temperature increases

• Planck phase

mass and/or temperature reach Planck scale: remnant = ??

Black hole decay (2)

We'll assume Schwarzschild phase is dominant

all types of SM particles emitted with Hawking spectrum

$$rac{dN}{dE} \propto rac{\gamma E^2}{(e^{E/T_H} \mp 1)T_H^{n+6}}$$

Hawking temperature

$$T_H = \frac{n+1}{4\pi r_{BH}} \propto (M_{BH})^{-\frac{1}{n+1}}$$

 \Rightarrow Y is (4+n)-dimensional grey-body factor

Grey-body factors

Integrated Hawking flux

N.B. $F^{tot} r_s \gg 1$ at large n Transit time \gg time between emissions Decay no longer quasi-stationary at large n

Black hole lifetime

Black Hole Event Generators

- TRUENOIR (Dimopoulos & Landsberg, hep-ph/0106295)
 - ➡ J=0 only; no energy loss; fixed T; no g.b.f.
- CHARYBDIS (Harris, Richardson & BW, hep-ph/0307305)
 - J=0 only; no energy loss; variable T; g.b.f. included
- CATFISH (Cavaglia et al., hep-ph/0609001)
 - J=0 only; energy loss option; variable T; g.b.f. included
- All need interfacing to a parton shower and hadronization generator (PYTHIA or HERWIG)

Main CHARYBDIS parameters

Name	Description	Values	Default
TOTDIM	Total dimension (n+4)	6-11	6
MPLNCK	Planck mass (GeV)	real	1000
GTSCA	Use scale (I/rs) not M _{BH}	logical	.FALSE.
TIMVAR	Use time-dependent T _H	logical	.TRUE.
MSSDEC	Include t,W,Z(2), h(3) decay	I-3	3
GRYBDY	Include grey-body factors	logical	.TRUE.
KINCUT	Use kinematic cutoff	logical	.TRUE.

CHARYBDIS Event at LHC

TOTDIM = 10 MPLNCK = 1 TeV M_{BH} = 8 TeV

Effects of grey-body factors

Vector boson suppression 20-30%

Generator-theory differences due to masses & charge conservation

Exploring Higher Dimensional Black Holes at the Large Hadron Collider

C.M. Harris[†], M.J. Palmer[†], M.A. Parker[†], P. Richardson[‡], A. Sabetfakhri[†] and B.R. Webber[†]

[†] Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, UK.

[‡] Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, UK.

hep-ph/0411022, JHEP05(2005)053; see also CM Harris, PhD thesis, hep-ph/0502005; CM Harris et al (CHARYBDIS event generator) hep-ph/0307035, JHEP08(2003)033

earlier work: SB Giddings & S Thomas, hep-ph/0106219; S Dimopoulos & G Landsberg, hep-ph/0106295

Missing transverse energy

 \Rightarrow Typically larger \not{E}_T than SM or even MSSM

Measuring black hole masses

Need ∉_T < 100 GeV for adequate resolution</p>

 $\Rightarrow \Delta M_{RH} / M_{BH} \sim 4\%$

Effect of energy cutoff E $< M_{BH}/2$

Energy distribution of primary emissions vs M_{BH}

Cutoff affects spectrum at low mass and/or high n

Effects of time dependence

Fits to primary electron spectrum for n=2

Neglecting time variation of T_H leads to over-estimate of n

Combined measurement of M_{PL} and n

 $\Rightarrow \Delta M_{PL} / M_{PL} \sim 15\%$, $\Delta n \sim 0.75$

Summary

- BSM simulations important for LHC
- SUSY
 - Spin correlations essential
- Extra dimensions: important scenario
 - UED
 - Black Hole production
 - Inelasticity source of uncertainty
 - Spin-down work in progress
 - Remnant new models
 - KK gravitons
- LHC will tell!