
Monte Carlo Methods in Particle Physics

Bryan Webber
University of Cambridge
IMPRS, Munich
19-23 November 2007

Monte Carlo Event Generation

- Basic Principles
- Event Generation
- Parton Showers
- Hadronization
- Underlying Event
- Event Generator Survey
- Matching to Fixed Order
- Beyond Standard Model

ME-PS Matching

- Two rather different objectives:
- Matching parton showers to NLO matrix elements, without double counting
 - MC@NLO
 - POWHEG
- Matching parton showers to LO n-jet matrix elements, minimizing jet resolution dependence
 - CKKW
 - Dipole
 - MLM Matching
 - Comparisons

MC@NLO

Recall simple one-dim. example from lecture 1:

$$|\mathcal{M}_{m+1}|^2 \equiv \frac{1}{x}\mathcal{M}(x)$$

x = gluon energy or two-parton invariant mass.

Divergences regularized by $d = 4 - 2\epsilon$ dimensions.

$$|\mathcal{M}_m^{\text{one-loop}}|^2 \equiv \frac{1}{\epsilon} \mathcal{V}$$

Cross section in d dimensions is:

$$\sigma = \int_0^1 \frac{dx}{x^{1+\epsilon}} \, \mathcal{M}(x) \, F_1^J(x) + \frac{1}{\epsilon} \mathcal{V} \, F_0^J$$

Infrared safety: $F_1^J(0) = F_0^J$

KLN cancellation theorem: $\mathcal{M}(0) = \mathcal{V}$

Subtraction Method

Exact identity:

$$\sigma^{J} = \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} \, \mathcal{M}(x) \, F_{1}^{J}(x) - \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} \, \mathcal{V} \, F_{0}^{J} + \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} \, \mathcal{V} \, F_{0}^{J} + \frac{1}{\epsilon} \mathcal{V} \, F_{0}^{J}$$

$$= \int_{0}^{1} \frac{dx}{x} \left(\mathcal{M}(x) \, F_{1}^{J}(x) - \mathcal{V} \, F_{0}^{J} \right) + \mathcal{O}(1) \, \mathcal{V} \, F_{0}^{J}.$$

Two separate finite integrals.

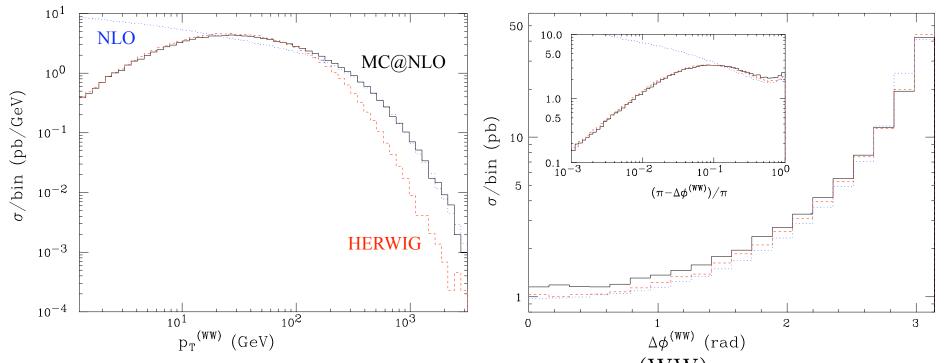
Modified Subtraction

$$\sigma^{J} = \int_{0}^{1} \frac{dx}{x} \left(\mathcal{M}(x) F_{1}^{J}(x) - \mathcal{V} F_{0}^{J} \right) + \mathcal{O}(1) \mathcal{V} F_{0}^{J}$$

Now add parton shower:

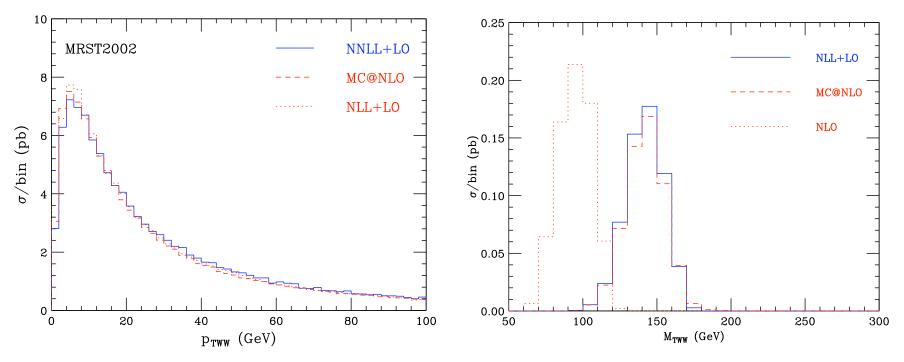
 $F_{0,1}^{J} \Rightarrow$ result from showering after 0,1 emissions.

But shower adds $\mathcal{M}_{\rm MC}/x$ to 1 emission. Must subtract this, and add to 0 emission (so that $F_{0,1}^{\rm tot}=1\Rightarrow\sigma^{\rm tot}$ fixed)


$$\sigma^{J} = \int_{0}^{1} \frac{dx}{x} \left(\left\{ \mathcal{M}(x) - \mathcal{M}_{\mathrm{MC}}(x) \right\} F_{1}^{J}(x) - \left\{ \mathcal{V} - \mathcal{M}_{\mathrm{MC}}(x) \right\} F_{0}^{J} \right) + \mathcal{O}(1) \mathcal{V} F_{0}^{J}$$

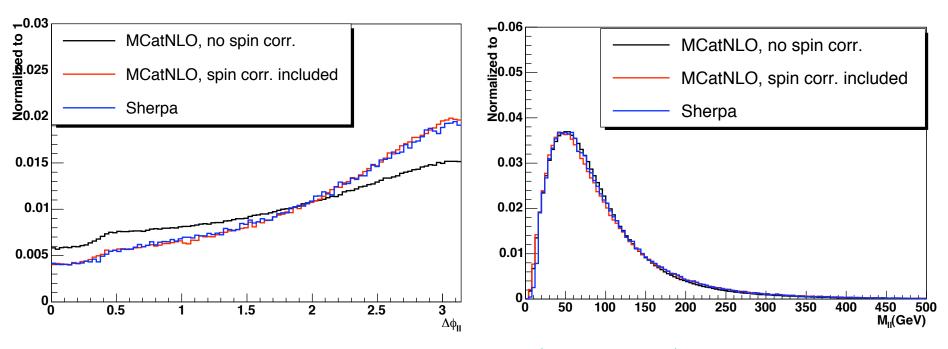
MC good for soft and/or collinear $\Rightarrow \mathcal{M}_{MC}(0) = \mathcal{M}(0)$

0 & 1 emission contributions separately finite now!
 (But some can be negative "counter-events")


MC@NLO Results

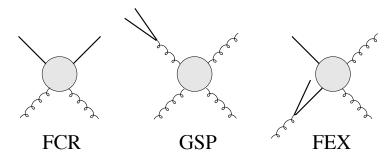
WW production at LHC

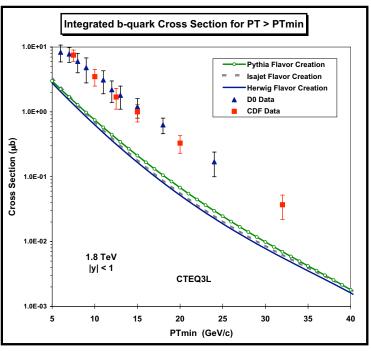
- Interpolates between MC & NLO in $p_{\mathrm{T}}^{\mathrm{(WW)}}$
- Above both at $\Delta \phi^{(WW)} \simeq 0$

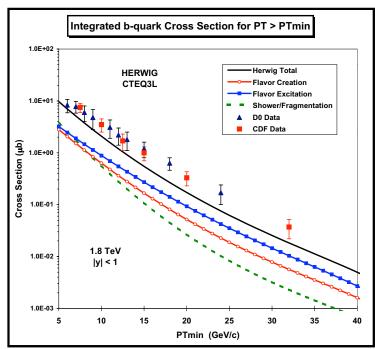

W^+W^- : MC@NLO vs Resummations

Plots from M. Grazzini JHEP 0601(2006)095

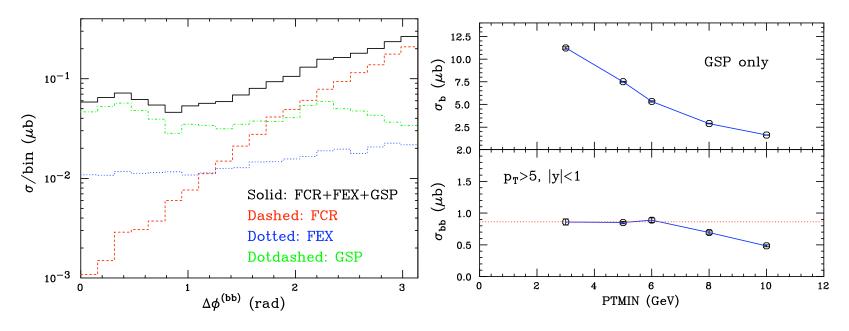
- ▶ Highly non-trivial test (of both computations) for *shapes* and *rates*!
- ► $M_{\text{TWW}} = \sqrt{(E_{Tll} + \cancel{\mathbf{p}}_T)^2 (\mathbf{p}_{Tll} + \cancel{\mathbf{p}}_T)^2}$ where $E_{Tll} = \sqrt{\mathbf{p}_{Tll}^2 + m_{ll}^2}$ and $\cancel{\mathbf{p}}_T \equiv \sqrt{\cancel{\mathbf{p}}_T^2 + m_{ll}^2}$ (Rainwater & Zeppenfeld)
- ► Cuts involved in definition of M_{TWW} : $\Delta \phi_{l^+l^-} < \pi/4$, $M_{l^+l^-} > 35 \text{ GeV}$, $p_{\text{Tmin}}^{(l^+,l^-)} > 25 \text{ GeV}$, $35 < p_{\text{Tmax}}^{(l^+,l^-)} < 50 \text{ GeV}$, $p_{\text{T}}^{\text{WW}} < 30 \text{ GeV}$


W^+W^- Spin Correlations

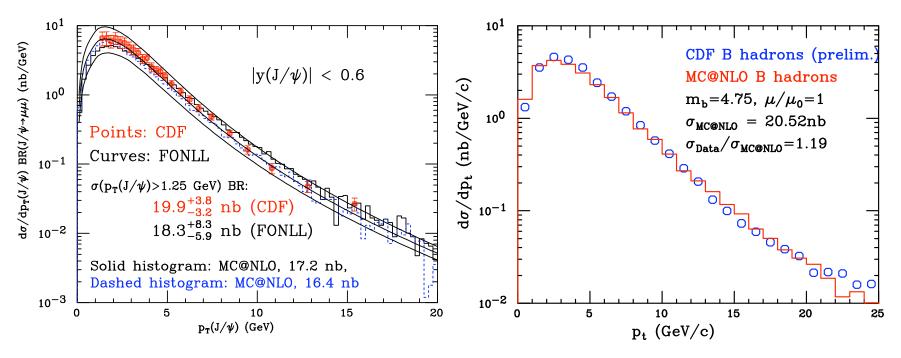

Plots from W. Quayle (preliminary)


b Production: PS MC vs MC@NLO

• In parton shower MC's, 3 classes of processes can contribute:

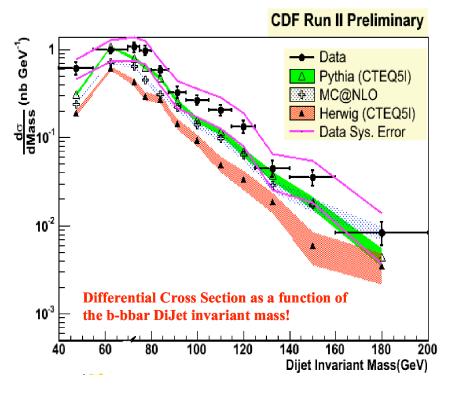

• All are needed to get close to data (RD Field, hep-ph/0201112):

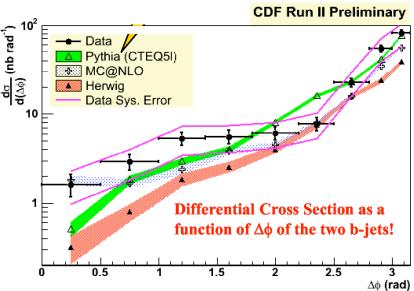
Monte Carlo Methods 5


GSP and FEX contributions in HERWIG PS MC

- GSP, FEX and FCR are complementary and all must be generated
 - SP cutoff (PTMIN) sensitivity depends on cuts and observable
 - ❖ FEX sensitive to bottom PDF
 - GSP efficiency very poor, $\sim 10^{-4}$
- All these problems are avoided with MC@NLO!

MC@NLO: B Production at Tevatron

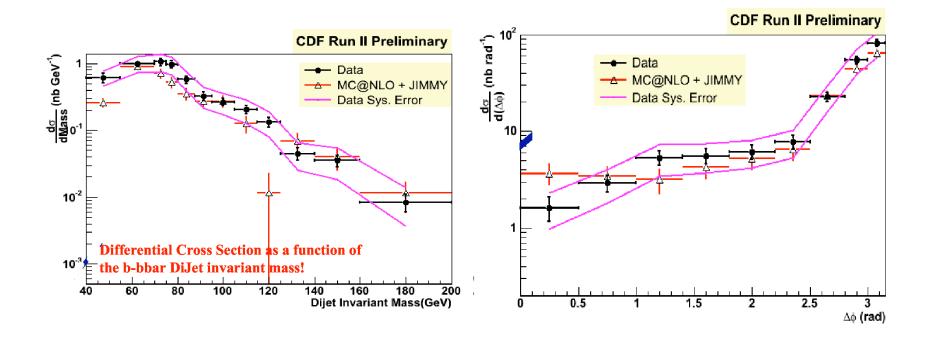

• $B \to J/\psi$ results from Tevatron Run II \Rightarrow B hadrons



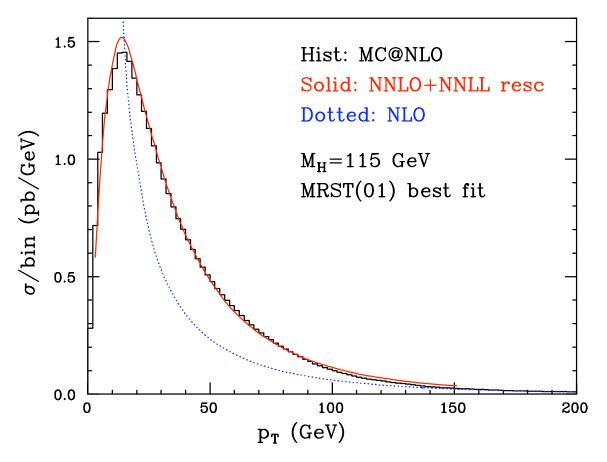
→ Good agreement (and MC efficiency)

S Frixione, P Nason & BW, JHEP 0308(2003)007 M Cacciari et al., JHEP 0407(2004)033

MC@NLO Di-b Jet Production



- ► These observables are very involved (b-jets at hadron level) and cannot be computed with analytical techniques;
- ► The underlying event in Pythia is fitted to data; default Herwig model (used in MC@NLO) does not fit data well (lack of MPI).


MC@NLO b-Jets: Improved Underlying Event

► The JIMMY underlying event model includes multiple parton interactions and interfaces to Herwig ⇒ interfaces to MC@NLO

► The importance of the underlying event shows the necessity of embedding precise computations in a Monte Carlo framework.

MC@NLO: Higgs Production at LHC

V Del Duca, S Frixione, C Oleari & BW, in prep.

Good agreement with state-of-the-art resummation

POWHEG

Positive Weight Hardest Emission Generator

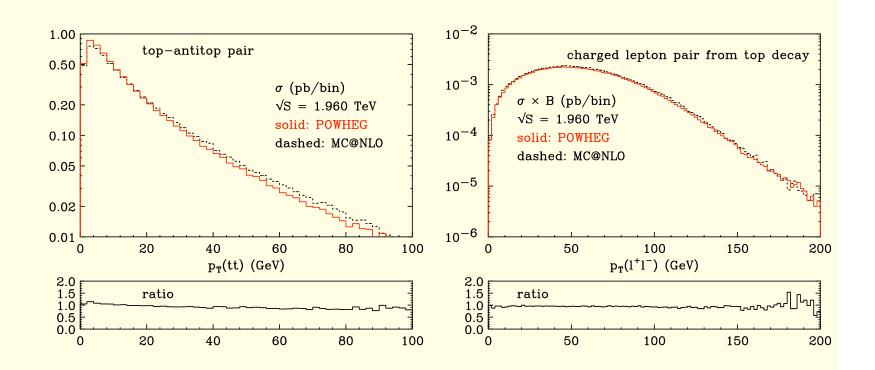
- Method to generate hardest emission first, with NLO accuracy, independent of PSEG
- Can be interfaced to any PSEG
- No negative weights
- Inaccuracies only affect next-to-hardest emission
- In principle, needs 'truncated showers'
 - P Nason & G Ridolfi, JHEP08(2006)077
 - S Frixione, P Nason & G Ridolfi, arXiv:0707.3088
 - S Frixione, P Nason & C Oleari, arXiv:0709.2092

POWHEG

How it works (roughly)

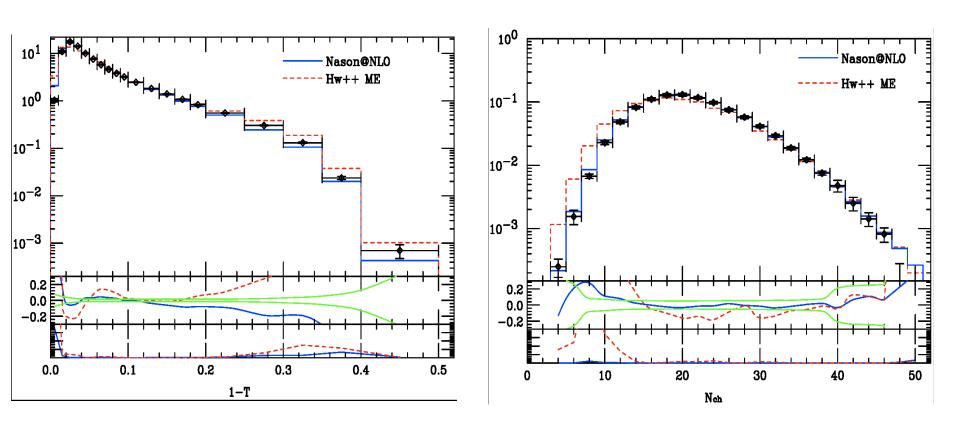
In words: works like a standard Shower MC for the hardest radiation, with care to maintain higher accuracy.

Inclusive cross section \implies NLO inclusive cross section. Positive if NL < LO


$$\Phi_n = \text{Born variables} \\ \Phi_r = \text{radiation vars.} \qquad \bar{B}(\Phi_n) = B(\Phi_n) + \underbrace{\begin{bmatrix} \text{INFINITE} \\ V(\Phi_n) \end{bmatrix}}_{\text{FINITE!}} + \underbrace{\int R(\bar{\Phi}_n, \Phi_r) \, d\Phi_r}_{\text{INFINITE!}}$$

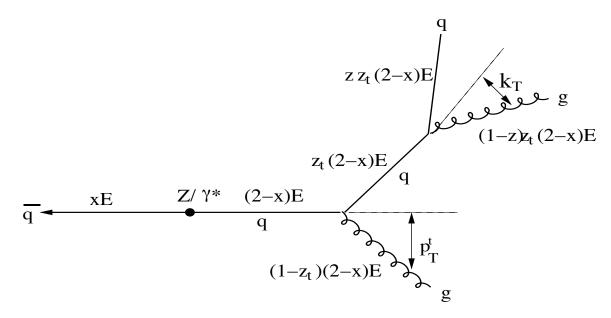
Sudakov form factor for hardest emission built from exact NLO real emission

$$\Delta_t = \exp \left[- \underbrace{\int \theta(t_r - t) \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} d\Phi_r}_{\text{FINITE because of } \theta \text{ function}} \right]$$


with $t_r = k_T(\Phi_n, \Phi_r)$, the transverse momentum for the radiation.

POWHEG and MC@NLO comparison: Top pair production

Good agreement for all observable considered (differences can be ascribed to different treatment of higher order terms)


POWHEG for e⁺e⁻→ hadrons

O Latunde-Dada, S Gieseke, B Webber, JHEP02 (2007) 051, hep-ph/0612281

Truncated Shower

- In angular-ordered shower, hardest emission is not necessarily the first
- Need to add softer, wider-angle emissions
- Checked for up to one such emission in e⁺e⁻

Effect of truncated shower

Observable	Herwig++ ME	Nason@NLO	Nason@NLO
		with truncated shower	w/o truncated shower
1-T	36.52	9.03	9.81
Thrust Major	267.22	36.44	37.65
Thrust Minor	190.25	86.30	90.59
Oblateness	7.58	6.86	6.28
Sphericity	9.61	7.55	9.01
Aplanarity	8.70	22.96	25.33
Planarity	2.14	1.19	1.45
C Parameter	96.69	10.50	11.14
D Parameter	84.86	8.89	10.88
$M_{ m high}$	14.70	5.31	6.61
$M_{ m low}$	7.82	12.90	13.44
$M_{ m diff}$	5.11	1.89	2.09
$B_{ m max}$	39.50	11.42	12.17
$B_{ m min}$	45.96	35.2	36.16
$B_{ m sum}$	91.03	28.83	30.58
$B_{ m diff}$	8.94	1.40	1.14
N_{ch}	43.33	1.58	10.08
$\langle \chi^2 \rangle / \mathrm{bin}$	56.47	16.96	18.49

Table 2: χ^2 /bin for all observables we studied.

Small but beneficial effect

CKKW Matching

- Use Matrix Elements down to scale Q₁
- Use Parton Showers below Q₁
- Correct ME by reweighting
- Correct PS by vetoing
- Ensure that Q₁ cancels (to NLL)

S Catani, F Krauss, R Kuhn & BW, JHEP11 (2001) 063

Example: e⁺e → hadrons

2- & 3-jet rates at scale Q₁:

$$R_{2}(Q,Q_{1}) = \left[\Delta_{q}(Q,Q_{1})\right]^{2},$$

$$R_{3}(Q,Q_{1}) = 2\Delta_{q}(Q,Q_{1}) \int_{Q_{1}}^{Q} dq \frac{\Delta_{q}(Q,Q_{1})}{\Delta_{q}(q,Q_{1})} \Gamma_{q}(Q,q)$$

$$\times \Delta_{q}(q,Q_{1}) \Delta_{g}(q,Q_{1})$$

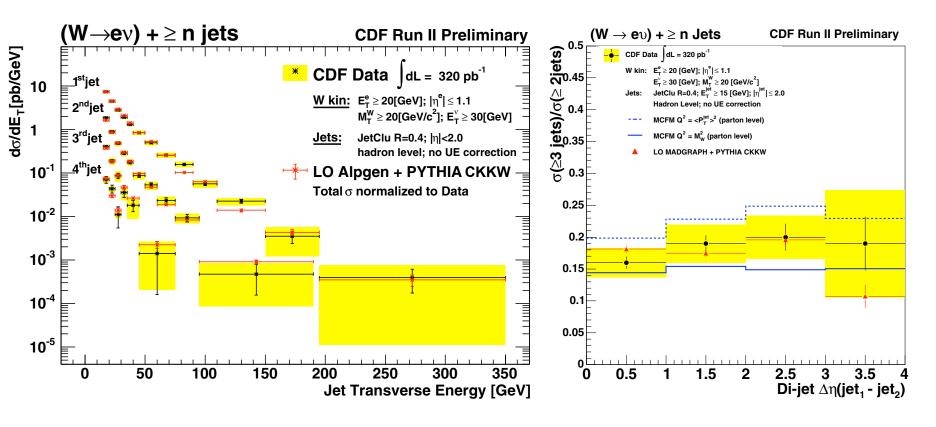
$$= 2\left[\Delta_{q}(Q,Q_{1})\right]^{2} \int_{Q_{1}}^{Q} dq \Gamma_{q}(Q,q) \Delta_{g}(q,Q_{1})$$

$$\Gamma_{q}(Q,q) = \frac{2C_{F}}{\pi} \frac{\alpha_{S}(q)}{q} \left(\ln \frac{Q}{q} - \frac{3}{4}\right)$$

CKKW reweighting

- Choose n according to $R_n(Q,Q_1)$ (LO)
 - use $[\alpha_{\mathrm{S}}(Q_1)]^n$
- Use exact LO ME to generate n partons
- Construct "equivalent shower history"
 - preferably using k_T-type algorithm
- Weight vertex at scale q by $\alpha_{\rm S}(q)/\alpha_{\rm S}(Q_1) < 1$
- Weight parton of type i from Q_j to Q_k by

$$\Delta_i(Q_j,Q_1)/\Delta_i(Q_k,Q_1)$$


CKKW shower veto

- Shower n partons from "creation scales"
 - includes coherent soft emission
- Veto emissions at scales above Q₁
 - cancels leading (LL&NLL) Q₁ dependence

Monte Carlo Methods 5

Comparisons with Tevatron data

from JM Campbell, JW Huston & WJ Stirling, Rept. Prog. Phys. 70(2007)89

M.E. + PYTHIA CKKW looks good

Dipole Matching

- Implemented in ARIADNE dipole MC
- Dipole cascade replaces parton shower
- Construct equivalent dipole history {p_{Ti}}
- Rejection replaces Sudakov weights
 - cascade from p_{Ti}, reject if p_T > p_{Ti+1}

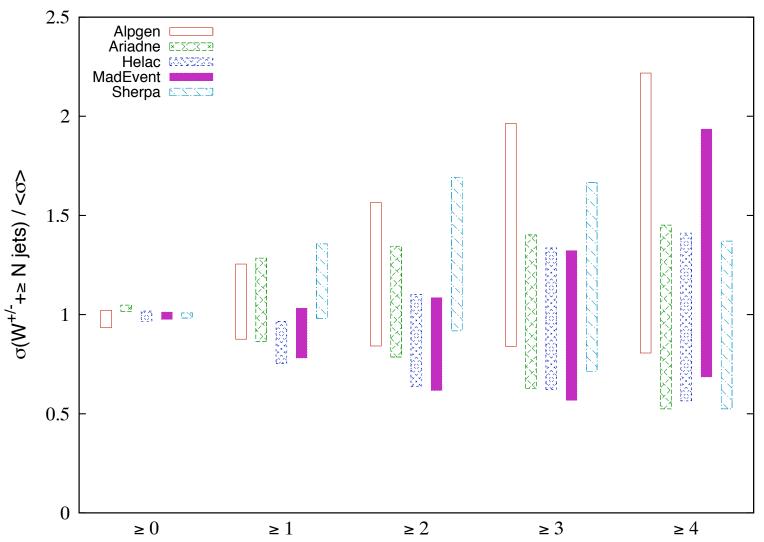
L Lönnblad, JHEP05(2002)046

MLM Matching

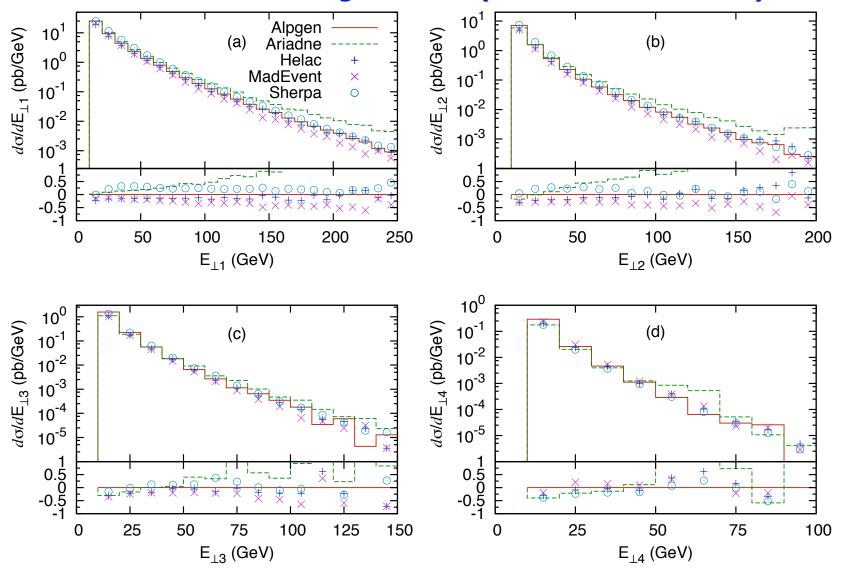
Use cone algorithm for jet definition:

$$R_{ij}^{2} = (\eta_{i} - \eta_{j})^{2} + (\phi_{i} - \phi_{j})^{2}$$

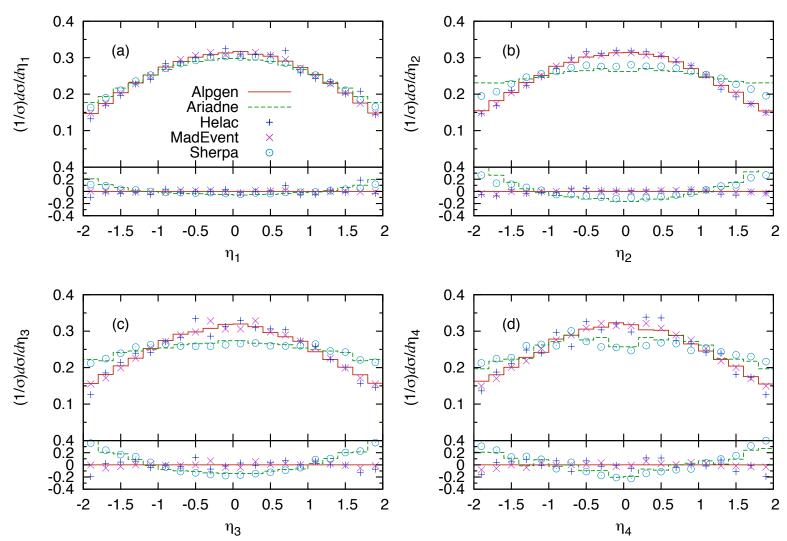
$$E_{Ti} > E_{Tmin}, \ R_{ij} > R_{min}$$

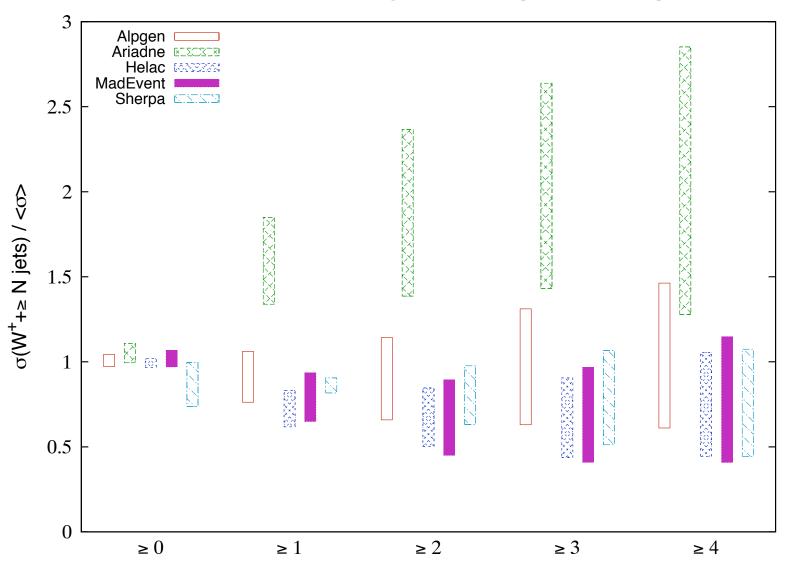

- Generate n-parton configurations with $E_{Ti} > E_{Tmin}, \ R_{ij} > R_{min}$ (no Sudakov weights)
- Generate showers (no vetos)
- Form jets using same jet definition
- Reject event if $n_{jets} \neq n_{partons}$

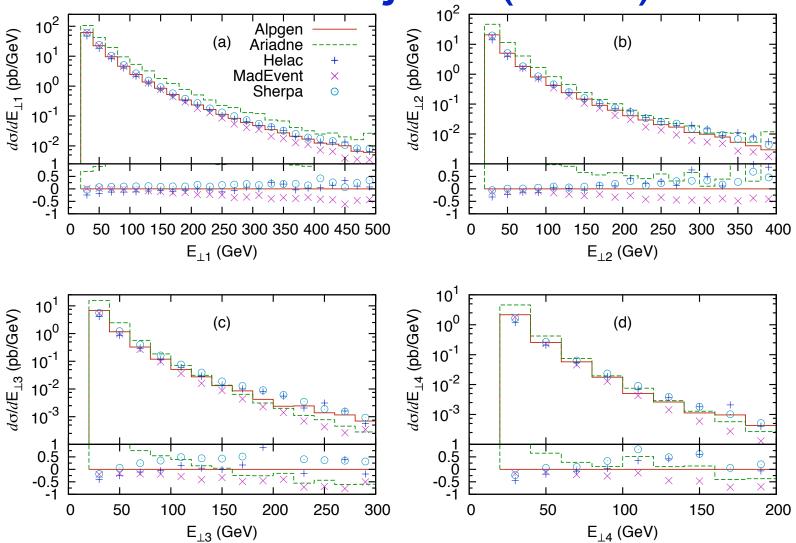
Comparisons

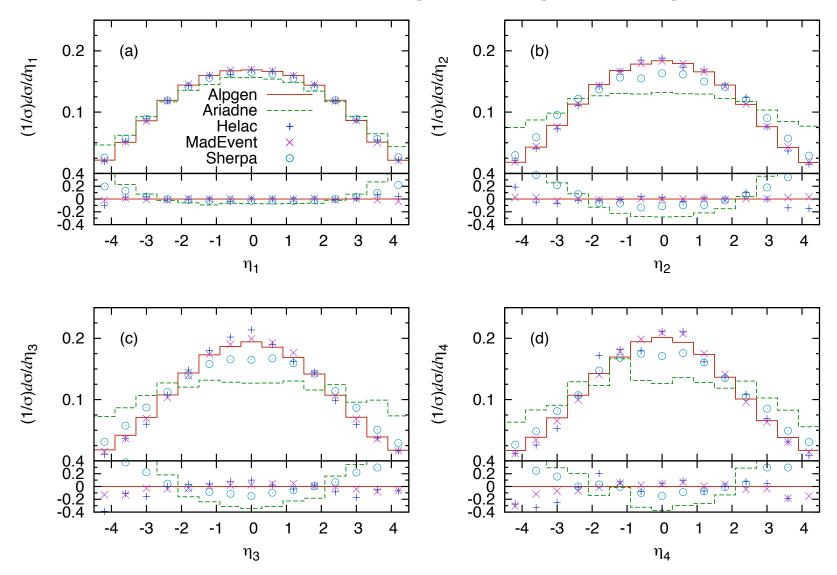

- ALPGEN: MLM matching
- ARIADNE: Dipole matching
- HELAC: MLM matching
- MadEvent: hybrid MLM/CKKW
- SHERPA: CKKW matching

J. Alwall el al., arXiv:0706.2569


W + Multijets (Tevatron)


W + Multijets (Tevatron)


W + Multijets (Tevatron)


W + Multijets (LHC)

W + Multijets (LHC)

W + Multijets (LHC)

Summary

- Matching Parton Showers to Matrix Elements comes in different forms:
 - matching to NLO for better precision
 - matching to LO for multijets
- MC@NLO is main scheme for NLO matching
 - newer POWHEG method looks promising
- Several options for LO multijets
 - reasonably consistent
 - spread indicates uncertainties (?)
- Field still very active
 - NLO matching for jets, spin correlations,...
 - building multijet matching into OO generators