Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007

Monte Carlo Event Generation

- Basic Principles
- Event Generation
- Parton Showers
- Hadronization
- Underlying Event
- Event Generator Survey
- Matching to Fixed Order
- Beyond Standard Model

Event Generators

• HERWIG

➡ Angular-ordered shower, cluster hadronization

➡ v6 Fortran; Herwig++

• PYTHIA

➡ Virtuality/k_T-ordered shower, string hadronization

➡ v6 Fortran; v8 C++

• SHERPA

➡ Virtuality-ordered shower, string/cluster hadronization

→ C++

HERWIG 6

- Current status:
- Version 6.510 released on October 31st 2005
 - http://projects.hepforge.org/fherwig/
 - ~ 64,000 lines of FORTRAN, 11 authors (5 currently active)
- 6.51* will be the last FORTRAN version
- Some features:
 - Many built-in SM and MSSM processes
 - Les Houches Accord interface for arbitrary hard processes
 - Spin correlation algorithm \rightarrow see later
 - Interface to MC@NLO program (Frixione & Webber) \rightarrow see later
 - Interface to JIMMY multiple interaction underlying event model
 - Angular cutoff $\theta > m/E \ \Rightarrow$ "dead cone" for heavy quarks

Production/Decay Spin Correlations

Example: top quark pairs in e+e- annihilation: $\rho_{\text{prod}}^{\lambda_c \lambda'_c \lambda_d \lambda'_d} = \mathcal{M}_{ab \to cd}^{\lambda_c \lambda_d} \mathcal{M}_{ab \to cd}^{*\lambda'_c \lambda'_d},$ Full spin correlations included, by factorized, $D_c^{\lambda_c \lambda_c'} = \mathcal{M}_c^{\lambda_c}_{c \text{ decay}} \mathcal{M}_c^{*\lambda_c'}_{c \text{ decay}},$ step-by-step algorithm $|\mathcal{M}|^2 = \rho_{\text{prod}}^{\lambda_c \lambda'_c \lambda_d \lambda'_d} D_c^{\lambda_c \lambda'_c} D_d^{\lambda_d \lambda'_d}$ 0+ $= \rho_{\rm prod}^{\lambda_c \lambda_c \lambda_d \lambda_d} \left(\frac{\rho_{\rm prod}^{\lambda_c \lambda_c' \lambda_d \lambda_d} D_c^{\lambda_c \lambda_c'}}{\rho_{\rm prod}^{\lambda_c \lambda_c \lambda_d \lambda_d}} \right)$ $\mathcal{M}_{\lambda_{\overline{t}}}^{\overline{t}
ightarrow\overline{b}\ell
u}\mathcal{M}_{\lambda_{\overline{t}}'}^{*\overline{t}
ightarrow\overline{b}\ell
u}$ $\times \left(\frac{\rho_{\text{prod}}^{\lambda_c \lambda_c' \lambda_d \lambda_d'} D_c^{\lambda_c \lambda_c'} D_d^{\lambda_d \lambda_d'}}{\rho_{\text{prod}}^{\lambda_c \lambda_c' \lambda_d \lambda_d} D_c^{\lambda_c \lambda_c'}} \right)$

Production/Decay Spin Correlations

• Top quark pairs in e+e- annihilation:

Correlation between lepton and beam

Correlation between lepton and top

Monte Carlo Methods 4

PYTHIA 6

- Current status:
- Version 6.413 released September 2007
 - http://projects.hepforge.org/pythia6/
 - ~ 75,000 lines of FORTRAN
- Some features:
 - Many built-in SM and BSM processes
 - Les Houches accord interface for arbitrary hard processes
 - Mass effects in gluon emission ("no dead cone") \rightarrow see later
 - Option of virtuality- or k_T-ordered shower
 - Multiple interaction models for min bias and underlying events

Mass Effects in PYTHIA

- Dead cone only exact for
- emission from spin-0 particle, or
- infinitely soft emitted gluon

colour	spin	γ_5	example
$1 \rightarrow 3 + \overline{3}$	—	—	(eikonal)
$1 \rightarrow 3 + \overline{3}$	$1 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$Z^0 \to q \overline{q}$
$3 \rightarrow 3 + 1$	$\frac{1}{2} \rightarrow \frac{1}{2} + 1$	$1,\gamma_5,1\pm\gamma_5$	$t \to bW^+$
$1 \rightarrow 3 + \overline{3}$	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	${\rm H}^0 \to {\rm q} \overline{\rm q}$
$3 \rightarrow 3 + 1$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	$1,\gamma_5,1\pm\gamma_5$	$t\tobH^+$
$1 \rightarrow 3 + \overline{3}$	$1 \rightarrow 0 + 0$	1	$Z^0\to \widetilde{q}\overline{\widetilde{q}}$
$3 \rightarrow 3 + 1$	$0 \to 0 + 1$	1	$\tilde{q}\to \tilde{q}'W^+$
$1 \rightarrow 3 + \overline{3}$	$0 \to 0 + 0$	1	$H^0 o \widetilde{q} \overline{\widetilde{q}}$
$3 \rightarrow 3 + 1$	$0 \rightarrow 0 + 0$	1	$\tilde{q} \to \tilde{q}' H^+$
$1 \rightarrow 3 + \overline{3}$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	$1,\gamma_5,1\pm\gamma_5$	$\chi ightarrow q\overline{\widetilde{q}}$
$3 \rightarrow 3 + 1$	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$\mathbf{\tilde{q}} ightarrow \mathbf{q} \chi$
$3 \rightarrow 3 + 1$	$\frac{1}{2} \rightarrow 0 + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$t \rightarrow \tilde{t}\chi$
$8 \rightarrow 3 + \overline{3}$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	$1,\gamma_5,1\pm\gamma_5$	$\tilde{g} \to q \overline{\tilde{q}}$
$3 \rightarrow 3 + 8$	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$\tilde{q} \to q \tilde{g}$
$3 \rightarrow 3 + 8$	$\frac{1}{2} \rightarrow 0 + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$t\to \tilde{t}\tilde{g}$

- In general, depends on
- energy of gluon
- colours and spins of emitting

particle and colour partner

 \rightarrow process-dependent mass corrections

Monte Carlo Methods 4

PYTHIA Underlying Event Models

Parameter	Value	Description
MSTP(81)	0,10,20	Multiple-Parton Scattering off, for old, intermediate & new models
	1,11,21	Multiple-Parton Scattering on, for old, intermediate & new models
MSTP(82)	1 2	Multiple interactions with fixed probability & abrupt cut-off PTmin=PARP(81) or smooth turn-off at PARP(82)
MSTP(82)	3	Multiple interactions with varying impact parameter & hadronic matter overlap with single Gaussian matter distribution, with smooth turn-off at PARP(82)
MSTP(82)	4 5	Multiple interactions with varying impact parameter and a hadronic matter overlap with double Gaussian matter distribution (governed by PARP(83) and PARP(84)), or distribution $\Delta \phi^{(WW)} \simeq 0$ PARP(83), both with smooth turn-off at PARP(82)

Object Oriented Event Generators

- ThePEG: Toolkit for High Energy Physics Event Generation, used by Herwig++ (and ARIADNE++?)
- Herwig++: Physics improvements from HERWIG 6
- PYTHIA 8: Implementation of physics of PYTHIA 6 plus some improvements: see http://www.thep.lu.se/~torbjorn
- SHERPA: Completely new event generator

http://projects.hepforge.org/

Hard Processes in Herwig++

- In FORTRAN HERWIG each hard process and decay matrix element was typed in by hand.
 - Isn't a good use of time.
 - Meant that models of new physics were very hard to include.
- Herwig++ uses an entirely different philosophy.
 - A C++ helicity library based on the HELAS formalism is used for all matrix element and decay calculations.
 - Code the hard $2 \rightarrow 2$ matrix elements based on the spin structures.
 - Code the 1→2 decays in the same way and use phase space for the 1→3 decays to start with.
 - Easy to include spin correlations as we have access to the spin unaveraged matrix elements.

M Gigg and P Richardson hep-ph/0703199

M Bähr et al. arXiv:0711.3137 (today!)

Monte Carlo Methods 4

Herwig++ New Physics: UED

PYTHIA history

- 1978: work begun on JETSET: string fragmentation in e^+e^-
- 1982: work begun on PYTHIA: hadron collisions on top of JETSET
- 1997: the two program combined under PYTHIA label
- today: PYTHIA 6.410, 75 000 lines of code, 580 pp manual (JHEP), author team: Torbjörn Sjöstrand, Stephen Mrenna, Peter Skands
- intensely used for LEP, Tevatron, LHC (since 1990!), ...

...but

- only add, never subtract
- \Rightarrow has become bloated and unmanageable
- is in Fortran 77, so not understood by young people
- 1998: C++ PYTHIA 7 begun \implies THEPEG, physics stalled
- Sep 2004: C++ PYTHIA 8 begun
- \sim 1 sub-subversion per working week (T. Sjöstrand on "sabbatical")
- March 2007: PYTHIA 8.080
- •October 2007: PYTHIA 8.100; overtakes PYTHIA 6 as "current"

PYTHIA 8 status

task

administative structure hard processes, internal resonance decays hard processes, external SUSY(+more) parameters initial-state showers final-state showers matching ME's to showers multiple interactions beam remnants & colour flow parton densities string fragmentation decays & particle data **Bose-Einstein** analysis graphical user interface tuning

status

operational; extensions planned Standard Model $2 \rightarrow 1/2$; more needed Standard Model; more needed interfaces to LHA F77, LHEF, PYTHIA 6 primitive SLHA2; more needed operational operational some exists; much more needed operational; extensions planned operational; alternatives to come only 2 internal, but interface to LHAPDF operational; improvements planned operational; may need updates operational; off by default (tuning) some simple tools; may be enough operational; could be extended

major task for MCnet postdocs!

Current PYTHIA 8 structure

Introducing SHERPA

Physics of SHERPA T.Gleisberg, S.Höche, F.K., A.Schälicke, S.Schumann and J.C.Winter, JHEP 0402 (2004) 056 New event generator, written from scratch in C++. Matrix elements from AMEGIC, combined with own parton shower implementation (F.K., A.Schälicke and G.Soff, arXiv:hep-ph/0503087; similar to shower in PYTHIA) Hadronization of Pythia interfaced, will be replaced by own cluster model (J.Winter, F.K. and G.Soff, Eur. Phys. J. C**36** (2004) 381) Tested in a number of processes (highlights see below). A few other implementations exist for specific channels. ヘロト ヘヨト ヘヨト ヘヨト F. Krauss

Basics of event generation for high-energy experiments

SQ (~

TUD

Automatic cross section calculators

Example: AMEGIC++

F.K., R.Kuhn, G.Soff, JHEP 0202 (2002) 044.

- Uses helicity method + multi-channeling.
 Operational mode: 2 runs.
 - Generation run:
 - Generate Feynman diagrams,
 - construct and simplify helicity amplitudes,
 - produce integration channels,
 - write out library files.
 - Compile & link libraries.
 - Production run:
 - cross section calculations,
 - parton level events.

Implemented & tested models: SM, MSSM, ADD.

▲□▶▲□▶▲目▶▲目▶ 目 のへぐ

TUD

Basics of event generation for high-energy experiments

Monte Carlo Methods 4

F. Krauss

Standard Model @ Linear Collider

Consistency of HELAC/PHEGAS & AMEGIC++

T.Gleisberg, F.K., C.Papadopoulos, A.Schälicke and S.Schumann, Eur. Phys. J. C 34 (2004) 173

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへぐ

F. Krauss

Basics of event generation for high-energy experiments

Monte Carlo Methods 4

Bryan Webber

TUD

Azimuthal decorrelations of jets at the Tevatron

F. Krauss

Basics of event generation for high-energy experiments

Monte Carlo Methods 4

Comparison with data from Tevatron

p_{\perp} of Z-bosons in $p\bar{p} \rightarrow Z + X$

Data from CDF, Phys. Rev. Lett. 84 (2000) 845

F. Krauss

Basics of event generation for high-energy experiments

Monte Carlo Methods 4

MSSM

Automated tools

K.Hagiwara *et al.*, arXiv:hep-ph/0512260;

- 3 validated tools for MSSM studies: (S)MadGraph, O'Mega/Whizard & Amegic;
- completely different approaches & notations;
- SUSY spectra through SLHA interface;
- checked roughly 500 pair-production processes;
- some simple studies for LHC and LC.

Basics of event generation for high-energy experiments

< □ > < □ > < □ > < □ > < □ > .

-

 $\mathcal{A} \mathcal{A} \mathcal{A}$

TUD

Summary on Event Generators

- Get to know your event generator!
- Remember what is fixed by LEP and HERA data
- Question what isn't
- Tevatron data crucial testing ground
- The next generation is here...
 - Software improvements
 - Physics improvements