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Lecture 3: Hadronization

Partons are not physical
particles: they cannot
freely propagate.

Hadrons are.

Need a model of partons'
confinement into

hadrons: hadronization.
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Phenomenological Models

Experimentally, eTe~ — two jets: o
Flat rapidity plateau and limited pt, p(p?) ~ e Pi/2P6
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Estimate of Hadronization Effects

Using this model, can estimate hadronization correction to
perturbative quantities.

Jet energy and momentum:
v
E = /0 dy d?ps ,o(ptz_) pr coshy = AsinhY

P

v
/O dy d?p; p(p%) pr Sinhy = A(coshY — 1) ~ E — A,

with A = /dzm ,o(pf_) pt, mean transverse momentum.
Estimate from Fermi motion X ~ 1/Rj,,q ~ Mpad.

Jet acquires non-perturbative mass: M? = E2 — P2 ~ 2)\E
Large: ~ 10 GeV for 100 GeV jets.
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Independent Fragmentation Model ¢reynman—rieia

Direct implementation of the above.

Longitudinal momentum distribution = arbitrary
fragmentation function: parameterization of data.

Transverse momentum distribution = Gaussian.

Recursively apply ¢ — ¢’ + had.
Hook up remaining soft ¢ and q.

Strongly frame dependent.
No obvious relation with perturbative emission.
Not infrared safe.

Not a model of confinement.
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Confinement

Asymptotic freedom: QQ becomes increasingly QED-like
at short distances.

QED:

but at long distances, gluon self-interaction makes field
lines attract each other:

QCD: ( 3)

—>linear potential 2 confinement
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Interquark potential

Can measure from or from lattice QCD:
guarkonia spectra:
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-> String tension
r~ 1 GeV/fm.
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String Model of Mesons

Light quarks connected by string.
L=0 mesons only have ‘'yo-yo’ modes:

L

Obeys area law: m? = 2x? area
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The Lund String Model

Start by ignoring gluon radiation:
eT e~ annihilation = pointlike source of ¢g pairs

Intense chromomagnetic field within string = ¢q pairs created
by tunnelling. Analogy with QED:

d(Probability)

dx dt
Expanding string breaks into mesons long before yo-yo point.

X eXp(—’?T?’ng/ﬁl)
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Lund Symmetric Fragmentation Function

String picture = constraints on fragmentation function:

Lorentz invariance
Acausality
Left—right symmetry

f(Z) X Zaﬂ_aﬁ_l(l _ Z)aﬁ
aq.3 adjustable parameters for quarks « and 3.

Fermi motion =2 Gaussian transverse momentum.
Tunnelling probability becomes

exp {—b(*mg + p?)}

a, b and mg = main tuneable parameters of model
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Baryon Production

Baryon pictured as three quarks attached to a common centre:

At large separation, can consider two quarks tightly bound: diquark

: 4
N

—> diquark treated like antiquark.

Two quarks can tunnel nearby in phase space: baryon—antibaryon pair
Extra adjustable parameter for each diquark!

Alternative “popcorn” model: o— —0
¢ 9
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Three-Jdet Events

So far: string model = motivated, constrained independent
fragmentation!

New feature: universal
Gluon = kink on string - the string effect

¥ F 3

VS.

Pa VS

Infrared safe matching with parton shower: gluons with

k| < inverse string width irrelevant.
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String Model Summary

« String model strongly physically motivated.
« Very successful fit to data.
. Universal: fitted to eTe™, little freedom elsewhere.

« How does motivation translate to prediction?
~ one free parameter per hadron/effect!

« Blankets too much perturbative information?

Can we get by with a simpler model?
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Preconfinement

Planar approximation: gluon = colour—anticolour pair.

Follow colour structure of parton shower: colour-singlet
pairs end up close in phase space

0

Mass spectrum of colour-singlet pairs asymptotically
independent of energy, production mechanism, ...

Peaked at low mass ~ Q.
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Cluster mass distribution

» Independent of shower scale ()
— depends on Qgand A

Primary Light Clusters
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The Nalve Cluster Model

Project colour singlets onto continuum of high-mass
mesonic resonances (=clusters). Decay to lighter well-
known resonances and stable hadrons.

Assume spin information washed out:
decay = pure phase space.

- heavier hadrons suppressed

-> baryon & strangeness suppression ‘for free’ (i.e.
untuneable).

Hadron-level properties fully determined by cluster mass
spectrum, i.e. by perturbative parameters.

Shower cutoff Qg becomes parameter of model.
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The Cluster Model

Although cluster mass spectrum peaked at small m, broad talil at
high m.

“Small fraction of clusters too heavy for isotropic two-body decay
to be a good approximation” - Longitudinal cluster fission:

Rather string-like.
Fission threshold becomes crucial parameter.
~15% of primary clusters get split but ~50% of hadrons come from them.
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The Cluster Model

“Leading hadrons are too soft”

- ‘perturbative’ quarks remember their direction somewhat
P(0%) ~ exp(—02/265)

Rather string-like.

Extra adjustable parameter.
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Strings Clusters

“Hadrons are produced by “Get the perturbative phase
hadronization: you must right and any old
get the non-perturbative hadronization model will
dynamics right” be good enough”
Improving data has meant Improving data has meant
successively refining successively making non-
perturbative phase of perturbative phase more
evolution... string-like...
777
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The Underlying Event

* Protons are extended objects

« After a parton has been scattered out of each, what
happens to the remnants?

Two models:
. Soft parton—parton cross section is so large that the remnants
¢ NOn'pe rturbative: always undergo a soft collision.

e Perturbative: ‘Hard’ parton—parton cross section huge at low p,, high energy,

dominates inelastic cross section and is calculable.
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Soft Underlying Event Model (HERWIG)

Compare underlying event with ‘minimum bias’ collision

(‘typical’ inelastic proton—proton collision)

—

Parametrization of (UAS) data + model of energy dependence
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Multiparton Interaction Model (PYTHIA/JIMMY)

For small p, ,, and high energy inclusive parton—parton
cross section is larger than total proton—proton cross
section.

- More than one parton—parton scatter per proton—
proton

Need a model of spatial distribution within proton

-> Perturbation theory gives you n-scatter distributions
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Double Parton Scattering

« CDF Collaboration,
PR D56 (1997) 3811

O~j035
O eff

ODPS =

oo = 14 £+ 171&; mb
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Some Warnings

* Not everyone means same thing by “underlying event’
— Remnant—remnant interaction
— Everything except hard process final state

« Separation into components is model dependent
— Operational definition (R Field): “transverse” regions
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Tuning PYTHIA to the Underlying Event

* Rick Field (CDF): keep all parameters that can be fixed
by LEP or HERA at their default values. What's left?

« Underlying event. Big uncertainties at LHC...

"Transverse" Nchg versus PT(charged jet#1)
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Rick Field

PYTHIA Tune A

December 1, 2004
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LHC predictions: JIMMY4.1 Tunings A and B vs.
PYTHIA6.214 — ATLAS Tuning (DC2)
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Summary

« Hard Process is very well understood: firm perturbative
basis

« Parton Shower is fairly well understood: perturbative
basis, with various approximations

 Hadronization is less well understood: modelled, but
well constrained by data. Extrapolation to LHC fairly
reliable.

* Underlying event least understood: modelled and only
weakly constrained by existing data. Extrapolation?

« Always ask “What physics is dominating my effect?”
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