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Structure of LHC Events

1. Hard process

2. Parton shower

3. Hadronization

4. Underlying event
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Lecture 2: Parton Showers
QED: accelerated charges 

radiate.
QCD identical: accelerated 

colours radiate.
gluons also charged.
 cascade of partons.
= parton shower.

1.          annihilation to jets.
2. Universality of collinear 

emission.
3. Sudakov form factors.
4. Universality of soft emission.
5. Angular ordering.
6. Initial-state radiation.
7. Hard scattering.
8. The Colour Dipole Model.
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           annihilation to jets

Three-jet cross section:

singular as

Rewrite in terms of quark-gluon 
opening angle     and gluon 
energy fraction      :

Singular as                 and             .

singular as

Rewrite in terms of quark-gluon 
opening angle     and gluon 
energy fraction     :

Singular as                 and            .
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can separate into two independent jets:

jets evolve independently

Exactly same form for anything
eg transverse momentum:
     invariant mass:
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Collinear Limit
Universal:

Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi splitting 
kernel: dependent on 
flavour and spin
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Resolvable partons
What is a parton?
Collinear parton pair          single parton

Introduce resolution criterion, eg 

Virtual corrections must be combined with unresolvable 
real emission

Unitarity: P(resolved) + P(unresolved) = 1

Resolvable emission:           
Finite

Virtual + Unresolvable 
emission:    Finite
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Sudakov form factor
Probability(emission between      and                 )

Define probability(no emission between       and    ) to 
be                 .  Gives evolution equation

        Sudakov form factor factor
=Probability(emitting no resolvable radiation)
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Multiple emission

But initial condition?

Process dependent
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Monte Carlo implementation
Can generate branching according to

By choosing                   uniformly:
If                      no resolvable radiation, evolution stops.
Otherwise, solve
for     = emission scale

Considerable freedom:
Evolution scale:
z: Energy?  Light-cone momentum?
Massless partons become massive.  How?
Upper limit for     ?

Equivalent at this 
stage, but can be very 
important numerically}
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Parton Shower
• Evolution in t (q2) and x (DIS)

P (x2/x1)

Basic 2-step:

∆(t2, t1)

e+e-: same formula, 
opposite direction!



Monte Carlo Methods  2 Bryan Webber

Running coupling
Effect of summing up higher orders:

Scale is set by maximum virtuality of emitted gluon

Similarly in              , scale is set by

Scale change absorbed by replacing            by
         Faster parton multiplication

+ ...q k, 1− z

q′, z

k2
max = (1− z)q2

g → gg′

αS(q2) αS(k2
T )

min{k2
max, k

′2
max} = min{z, (1− z)}q2 " z(1− z)q2 ≡ k2

T
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Soft limit
Also universal.  But at amplitude level…

soft gluon comes from everywhere in event.
Quantum interference.
Spoils independent evolution picture?



Monte Carlo Methods  2 Bryan Webber

Angular Ordering
NO:

outside angular ordered cones, soft gluons sum 
coherently: only see colour charge of whole jet.

Soft gluon effects fully incorporated by using     as 
evolution variable: angular ordering

First gluon not necessarily hardest!
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Soft Gluon Emission
• Propagator factor for emission from external line, 

energy E, mass m

1
(p ± q)2 −m2

=
±1

2p · q =
±1

2ωE(1− v cos θ)

Fsoft =
p · ε

p · q

Including numerator, get universal eikonal factor 
in soft limit

No enhancement for emission from internal lines

(p + q)2 −m2 → p2 −m2 #= 0 as ω → 0
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Enhancement factor in amplitude for each external line 
implies cross section enhancement is sum over all pairs of
external lines:

where       is element of solid angle for emitted gluon,
is a colour factor, and radiation function        is given by

Colour-weighted sum of radiation functions               is 
antenna pattern of hard process.

dσn+1 = dσn
dω

ω

dΩ
2π

αs

2π

∑

i,j

CijWij

dΩ Cij

Wij

Wij =
ω2pi · pj

pi · q pj · q
=

1− vivj cos θij

(1− vi cos θiq)(1− vj cos θjq)

CijWij
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Radiation function  can be separated into two parts
containing collinear singularities along lines i and j.
Consider for simplicity massless particles,            . Then                             
                            where

This function has the remarkable property of angular 
ordering.  Write angular integration in polar coordinates 
w.r.t. direction of i,
Performing azimuthal integration, we find

Wij = W i
ij + W j

ij

vi,j = 1

W i
ij =

1
2

(
Wij +

1
1− cos θiq

− 1
1− cos θjq

)
.

∫ 2π

0

dφiq

2π
W i

ij =
1

1− cos θiq
if θiq < θij , otherwise 0.

dΩ = d cos θiq dφiq

Angular Ordering
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To prove angular ordering property, write
                                         where                                 ,
                          .  Defining                      , we have

where z-integration contour is the unit circle and
                                .  Now only pole at            can lie 
inside unit circle, so

Hence

1− cos θjq = a− b cos φiq

z = exp(iφiq)

Ii
ij ≡

∫ 2π

0

dφiq

2π

1
1− cos θjq

=
1

iπb

∮
dz

(z − z+)(z − z−)

z = z−

Ii
ij =

√
1

a2 − b2
=

1
| cos θiq − cos θij |

∫ 2π

0

dφiq

2π
W i

ij =
1

2(1− cos θiq)
[1 + (cos θiq − cos θij)Ii

ij ]

=
1

1− cos θiq
if θiq < θij , otherwise 0.

a = 1− cos θij cos θiq

b = sin θij sin θiq

z± = a/b±
√

a2/b2 − 1
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Coherent Branching
Angular ordering provides basis for coherent parton branching 
formalism, which includes leading soft gluon enhancements to 
all orders.  In place of virtual mass-squared variable t in earlier 
treatment, use angular variable

as evolution variable for branching            , and impose angular 
ordering            for successive branchings. Iterative formula for 
n-parton emission becomes

In place of virtual mass-squared cutoff, we must use angular 
cutoff for coherent branching. This is to some extent arbitrary, 
depending on how we classify emission as unresolvable. 
Simplest choice is                   .

ζ =
pb · pc

Eb Ec
! 1− cos θ

a→ bc
ζ ′ < ζ

dσn+1 = dσn
dζ

ζ
dz

αs

2π

ζ0 = t0/E2
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With this cutoff, the most convenient definition of evolution 
variable is not    itself but rather
Angular ordering condition                  for timelike branching
             becomes
where           and                  . Thus cutoff on    becomes

Neglecting masses of    &   , virtual mass-squared of     and 
transverse momentum of branching are

Thus for coherent branching Sudakov form factor of quark 
becomes

This falls more slowly than without coherence, due to 
suppression of soft gluon emission by angular ordering.

ζ t̃ = E2ζ ≥ t0
ζb, ζc < ζa

a→ bc
t̃ = t̃a z = Eb/Ea z√

t0/t̃ < z < 1−
√

t0/t̃

t = z(1− z)t̃ , p2
t = z2(1− z)2t̃

∆̃q(t̃) = exp

[
−

∫ t̃

4t0

dt′

t′

∫ 1−
√

t0/t′

√
t0/t′

dz

2π
αs(z2(1− z)2t′)P̂qq(z)

]

t̃b < z2t̃ , t̃c < (1− z)2t̃

ab c
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Initial state radiation
In principle identical to final state (for not too small x)

In practice different because both ends of evolution fixed:

Use approach based on evolution equations…



Monte Carlo Methods  2 Bryan Webber

Backward Evolution

DGLAP evolution: pdfs at            as function of pdfs at

Evolution paths sum over all 
possible events.
Formulate as backward evolution: 
start from hard scattering and 
work down in      up in    towards 
incoming hadron.

Algorithm identical to final state 
with
              replaced by
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Note that for initial-state (spacelike) branching             
(    incoming,    spacelike), angular ordering condition is 

and so for                    we now have

Thus we can have either               or               , especially 
at small 

       Spacelike branching becomes disordered at small x.

!!

!

ba

c

a b

c

a→ bc

θb > θa > θc

t̃b > z2t̃a , t̃c < (1− z)2t̃a

t̃b > t̃a t̃a > t̃b

z = Eb/Ea

a b

z
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Hard Scattering
Sets up initial conditions for parton showers.
Colour coherence important here too.

Emission from each parton confined to cone stretching to 
its colour partner

Essential to fit Tevatron data…
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Three-jet correlations (CDF)
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Distributions of third-hardest jet in multi-jet events
HERWIG has complete treatment of colour coherence,
PYTHIA+ has partial
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The Colour Dipole Model
Conventional parton showers: start from collinear limit, 

modify to incorporate soft gluon coherence
Colour Dipole Model: start from soft limit
Emission of soft gluons from colour-anticolour dipole 

universal (and classical):

After emitting a gluon, colour dipole is split:
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Subsequent dipoles continue to cascade
c.f. parton shower: one parton  two
CDM: one dipole  two = two partons  three

Represented in ‘origami diagram’:

Similar to angular-ordered parton shower for          annihilation
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Summary

• Accelerated colour charges radiate gluons.
 Gluons are also charged  cascade.

• Probabilistic language derived from factorization 
theorems of full gauge theory.

 Colour coherence  angular ordering.

• Modern parton shower models are very sophisticated 
implementations of perturbative QCD, but would be 
useless without hadronization models…


