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Structure of LHC Events

Hard process

Parton shower
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Hadronization
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4. Underlying event
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Lecture 2: Parton Showers

QED: accelerated charges 1. ete~annihilation to jets.

radiate. 2. Universality of collinear
QCD identical: accelerated emission.

colours radiate. Sudakov form factors.
gluons also charged. Universality of soft emission.
—> cascade of partons. Angular ordering.
= parton shower. Initial-state radiation.

Hard scattering.
The Colour Dipole Model.
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eTe™ annihilation to jets

Three-jet cross section:

2 2
do = o CFozs r1 + x5
dxridxo 27 (1 —21)(1 — x9)

singularas z1 2 — 1

Rewrite in terms of quark-gluon
opening angle 6 and gluon -
energy fraction z3 : .

do ozs{ 2 14 (1—2x3)2 }
— 3

— C
dcosOdrs 0 Forlsin2e T3

Singular assin9 — O0and x3 — O.
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can separate into two independent jets:

2dcos/  dcost dcos 6
sinf¢  1-cosf® 1+ cosf
~ dcos@ dcos 6
~ 1-cosf® 1-—cosl
92 | df-
T T

jets evolve independently

do? 14+ (1—2)2
dazaoZCF%—z dz + (= 2)
jets 21 6 z

Exactly same form for anything oc 62
eg transverse momentum: k2 = 22(1 — 2)2 02 E?

invariant mass: ¢ = z(1 — z) 62 E?

d6?  dk?  dg?
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Collinear Limit

Universal: f
d6?
s dz P(z. ) >

do = o

21 02 \
q— q92
P(z. 0) = Cp 11—|:ZZ
Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi splitting
kernel: dependent on
flavour
9 — g9

OAZ4‘|‘1‘|‘(1_Z)4

2(1—2)
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Resolvable partons

What is a parton?
Collinear parton pair —— single parton

Introduce resolution criterion, eg k| > Q.

Virtual corrections must be combined with unresolvable
real emission

Resolvable emission:
Finite

J@-%)» T — > Virtual + Unresolvable
emission: Finite

Unitarlt%I P(resolved) + P(unresolved) = 1
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Sudakov form factor

Probability(emission between ¢2 and ¢° + dq? )

Qo/q d 2
dp = —~— dz P(2) = —=P(q?).
/Q 2 P(2) = "5 P(a?)

Define probability(no emission between Q2 and ¢2) to
be A(Q2, ¢2). Gives evolution equation

B dA(Q27q2) — A(QQ q2) dP
dq? dq?
Q2 de

=A@ @) =exp— | 5P
A(Q?,Q3) = A(Q?) Sudakov form factor factor

=Probability(emitting no resolvable radiation)

QQ
DG (Q%) ~ exp CF2—I092
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Multiple emission

, q/2
d1 g
> qd5 5
43

But initial condition? ¢7 <777

Process dependent
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Monte Carlo implementation

Can generate branching according to
dq2 _
dP = qQP(qz) A(Q%, ¢7)
By choosing O < p < 1 uniformly:
If p < A(Q?) no resolvable radiation, evolution stops.

Otherwise, solve p = A(QZ?, ¢°)
for ¢° = emission scale

Considerable freedom:

Evolution scale: g2 /k2 /62 7 Equivalent at this

z: Energy? Light-cone momentum? stage, but can be very
Massless partons become massive. How? important numerically

Upper limit for q2?
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Parton Shower

 Evolution in t (g%) and x (DIS)

_t =1 _t

A —in —1
o %xl %

0

to t Q
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Basm 2-step:
i A(t%tl) (tz,xl)
(t1.1) \‘/P(xg/%)

e*e . same formula,
opposite direction!
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Running coupling

Effect of summing up higher orders:

Scale is set by maximum virtuality of emitted gluon
kmax = (1= 2)¢°

Imax
Similarly in ¢ — gg’, scale is set by
min{k2 .. k2, b = min{z, (1 - 2)}¢? = 2(1 - 2)¢* = k2
Scale change absorbed by replacing ag(¢?) by ag(k*)

=P Faster parton multiplication
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Soft limit

Also universal. But at amplitude level...

soft gluon comes from everywhere in event.
- Quantum interference.
Spoils independent evolution picture?
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Angular Ordering

NO:

outside angular ordered cones, soft gluons sum
coherently: only see colour charge of whole jet.

Soft gluon effects fully incorporated by using 62 as
evolution variable: angular ordering

First gluon not necessarily hardest!
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Soft Gluon Emission

* Propagator factor for emission from external line,
energy E, mass m

]. ::]. ::].

(p£q)2—m2 2p-q B 2E(1 —vcos )

Including numerator, get universal eikonal factor
in soft limit p-E
Fsoft —
D-q

No enhancement for emission from internal lines

(p+q)>—m* —=p°—m?*#0asw — 0
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Enhancement factor in amplitude for each external line
implies cross section enhancement is sum over all pairs of
external lines:

dw dQ a
dopi1 = doy — — = ZC,,,:,WZJ

w 2T 2T

where df? is element of solid angle for emitted gluon, C;;
IS a colour factor, and radiation function W,; is given by

u)2p7; . pj B 1 — ?)i?)j COS Hij

W, = —
pi-qp;-q (1 —v;c080;,)(1 —v;cosbj,)

Colour-weighted sum of radiation functions C;;W,; is
antenna pattern of hard process.

Monte Carlo Methods 2 Bryan Webber



Angular Ordering

Radiation function can be separated into two parts
containing collinear singularities along lines i and j.
Consider for simplicity massless particles, v; ; = 1. Then
Wij _— W,L-Zj + WZJJ where

1 1 1

Wi == | Wi — .
" 2( ]_I_I—COSH@'Q 1—C080jq)

This function has the remarkable property of angular
ordering. Write angular integration in polar coordinates
w.r.t. direction of i, dQ2 = dcos 0;, do;,

Performing azimuthal integration, we find

2
/0 27Tq Wi = 1 — cos b, if 0;4 < 0,5, otherwise 0.
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To prove angular ordering property, write
1 —cosfj, =a—bcosp;; where a =1 — cos0;; cos b,
b = sinf;; sin0;,. Defining z = exp(ip;i,), we have

Z. /2” dos, 1 1 dz
]ij — =
0

o1 1—cos;, imb ) (z—zy)(z—2_)

where z-integration contour is the unit circle and
z+ =a/b++/a?/b>—1 . Now only pole at z = z_can lie
inside unit circle, so

. _\/ 1 1
W Va2 —b2 | cosfi; — cos byl
Hence

/27r d¢iq Wz _ 1 [1_|_( 0. — H)Iz]
o 2m Y 2(1—cosfy) “ORVig T OB YL

1
= if 0,, < 0,5, otherwise 0.
1 — cos by,
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Coherent Branching

Angular ordering provides basis for coherent parton branching

formalism, which includes leading soft gluon enhancements to

all orders. In place of virtual mass-squared variable t in earlier

treatment, use angular variable

C L Pb - De

Ey B,

as evolution variable for branchinga — bc, and impose angular

ordering ¢’ < ( for successive branchings. Iterative formula for
n-parton emission becomes

~ 1 —cosf

dg o Qs

¢ 2w

In place of virtual mass-squared cutoff, we must use angular
cutoff for coherent branching. This is to some extent arbitrary,
depending on how we classify emission as unresolvable.
Simplest choice is (o = to/E?
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With this cutoff, the most convenient definition of evolution
variable is not ( itself but rathert = E2C > 19

Angular ordering cond|t|on Ch, Cc < (g for timelike branching
a — bc becomes &, < 2°t, t. < (1—2)°t

where t = t,andz = Eb/E . Thus cutoff on 2 becomes

\/t0/£<2<1— t()/g

Neglecting masses of b & ¢, virtual mass-squared of a and
transverse momentum of branching are

t=z2(1-2)t, p;=2z°(1-2)%
Thus for coherent branching Sudakov form factor of quark

—ozs 22(1 = 2)°t") Pyy(2)
to/t’
This falls more slowly than without coherence, due to

suppression of soft gluon emission by angular ordering.
Monte Carlo Methods 2 Bryan Webber

becomes AR A
— exp / /
4tg




Initial state radiation

In principle identical to final state (for not too small x)

In practice different because both ends of evolution fixed:

- cis/

Use approach based on evolution equations...
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Backward Evolution

DGLAP evolution: pdfs at (x, @Q2)as function of pdfs at (> =, Q%)i

Evolution paths sum over all
possible events.

Formulate as backward evolution:
start from hard scattering and
work down in ¢2,up in z towards
iIncoming hadron.

Algorithm identical to final state

with A;(QZ2, ¢2) replaced by
£(Q%, %)/ fi(w,q?).
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Note that for initial-state (spacelike) branchinga — bc

(a incoming, b spacelike), angular ordering condition is
O,

0, > 0, > 0.
and so for z = E4/E, we now have Ce , f
a b
SO bl

> 221, , f.<(1—2)2, ’

Thus we can have either £, > t, or tq, >t , especially
at small z

=» Spacelike branching becomes disordered at small x.
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Hard Scattering

Sets up initial conditions for parton showers.
Colour coherence important here too.

N/
/N

Emission from each parton confined to cone stretching to
its colour partner

Essential to fit Tevatron data...
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Three-jet correlations (CDF)

¢|

@

Erq1 > 110 GeV, Eps > 10 GeV.
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Distributions of third-hardest jet in multi-jet events
HERWIG has complete treatment of colour coherence,

PYTHIA+ has partial
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The Colour Dipole Model

Conventional parton showers: start from collinear limit,
modify to incorporate soft gluon coherence

Colour Dipole Model: start from soft limit

Emission of soft gluons from colour-anticolour dipole
universal (and classical):

——== dy, y = rapidity = logtan6/2
27 ki Y

After emitting a gluon, colour dipole is spilit:
\

4
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Subsequent dipoles continue to cascade
c.f. parton shower: one parton - two
CDM: one dipole = two = two partons - three

Represented in ‘origami diagram’:

log k|

\

N

Similar to angular-ordered parton shower for et e™ annihilation
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Summary

* Accelerated colour charges radiate gluons.
Gluons are also charged - cascade.

* Probabilistic language derived from factorization
theorems of full gauge theory.

Colour coherence - angular ordering.

 Modern parton shower models are very sophisticated
implementations of perturbative QCD, but would be
useless without hadronization models...
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