Event Generator Physics

Bryan Webber University of Cambridge 1st MCnet School, IPPP Durham 18th – 20th April 2007

Event Generator Physics

- Basic Principles
- Event Generation
- Parton Showers
- Hadronization
- Underlying Events
- Survey of EGs
- Matching

Lecture 5: Matching

- Two rather different objectives:
- Matching parton showers to NLO matrix elements, without double counting – MC@NLO
- Matching parton showers to LO n-jet matrix elements, minimizing jet resolution dependence
 - CKKW
 - Dipole
 - MLM Matching
 - Comparisons

MC@NLO

Recall simple one-dim. example from lecture 1:

$$|\mathcal{M}_{m+1}|^2 \equiv \frac{1}{x}\mathcal{M}(x)$$

x = gluon energy or two-parton invariant mass.

Divergences regularized by $d = 4 - 2\epsilon$ dimensions.

$$|\mathcal{M}_m^{\text{one-loop}}|^2 \equiv \frac{1}{\epsilon} \mathcal{V}$$

Cross section in d dimensions is:

$$\sigma = \int_0^1 \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) F_1^J(x) + \frac{1}{\epsilon} \mathcal{V} F_0^J$$

Infrared safety: $F_1^J(0) = F_0^J$
KLN cancellation theorem: $\mathcal{M}(0) = \mathcal{V}$

Subtraction Method

Exact identity:

$$\sigma^{J} = \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) F_{1}^{J}(x) - \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} \mathcal{V} F_{0}^{J} + \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} \mathcal{V} F_{0}^{J} + \frac{1}{\epsilon} \mathcal{V} F_{0}^{J} = \int_{0}^{1} \frac{dx}{x} \left(\mathcal{M}(x) F_{1}^{J}(x) - \mathcal{V} F_{0}^{J} \right) + \mathcal{O}(1) \mathcal{V} F_{0}^{J}.$$

→ Two separate finite integrals.

Modified Subtraction

$$\sigma^J = \int_0^1 \frac{dx}{x} \left(\mathcal{M}(x) F_1^J(x) - \mathcal{V} F_0^J \right) + \mathcal{O}(1) \, \mathcal{V} F_0^J$$

Now add parton shower:

 $F_{0.1}^J \Rightarrow$ result from showering after 0,1 emissions. But shower adds \mathcal{M}_{MC}/x to 1 emission. Must subtract this, and add to 0 emission (so that $F_{0,1}^{\text{tot}} = 1 \Rightarrow \sigma^{\text{tot}}$ fixed) $\sigma^J = \int_0^1 \frac{dx}{x} \left\{ \{ \mathcal{M}(x) - \mathcal{M}_{\mathrm{MC}}(x) \} F_1^J(x) \right\}$ $- \{ \mathcal{V} - \mathcal{M}_{\mathrm{MC}}(x) \} F_0^J + \mathcal{O}(1) \mathcal{V} F_0^J$ MC good for soft and/or collinear $\Rightarrow \mathcal{M}_{MC}(0) = \mathcal{M}(0)$ 0 & 1 emission contributions separately finite now! (But some can be negative "counter-events")

Event Generator Physics 5

MC@NLO Processes

IPROC	IV	IL_1	IL_2	Spin	Process
-1350 - IL				\checkmark	$H_1H_2 \to (Z/\gamma^* \to) l_{\rm IL}\bar{l}_{\rm IL} + X$
-1360-IL				\checkmark	$H_1H_2 \to (Z \to) l_{\rm IL}\bar{l}_{\rm IL} + X$
-1370-IL				\checkmark	$H_1 H_2 \to (\gamma^* \to) l_{\rm IL} \bar{l}_{\rm IL} + X$
-1460 - IL				\checkmark	$H_1H_2 \to (W^+ \to) l_{\rm IL}^+ \nu_{\rm IL} + X$
-1470 - IL				\checkmark	$H_1H_2 \rightarrow (W^- \rightarrow) l_{\rm IL}^- \bar{\nu}_{\rm IL} + X$
-1396				×	$H_1 H_2 \to \gamma^* (\to \sum_i f_i \bar{f}_i) + X$
-1397				×	$H_1 H_2 \to Z^0 + X$
-1497				×	$H_1 H_2 \to W^+ + X$
-1498				×	$H_1H_2 \rightarrow W^- + X$
-1600 - ID					$H_1H_2 \to H^0 + X$
-1705					$H_1H_2 \to b\bar{b} + X$
-1706				×	$H_1H_2 \to t\bar{t} + X$
-2000 - IC				×	$H_1 H_2 \to t/\bar{t} + X$
-2001 - IC				×	$H_1 H_2 \to \bar{t} + X$
-2004 - IC				×	$H_1H_2 \to t + X$
-2600 - ID	1	7		×	$H_1 H_2 \to H^0 W^+ + X$
-2600 - ID	1	i		\checkmark	$H_1H_2 \to H^0(W^+ \to) l_i^+ \nu_i + X$
-2600 - ID	-1	7		×	$H_1 H_2 \to H^0 W^- + X$
-2600 - ID	-1	i		\checkmark	$H_1H_2 \to H^0(W^- \to) l_i^- \bar{\nu}_i + X$
-2700 - ID	0	7		×	$H_1H_2 \to H^0Z + X$
-2700 - ID	0	i		\checkmark	$H_1H_2 \to H^0(Z \to) l_i \bar{l}_i + X$
-2850		7	7	×	$H_1H_2 \rightarrow W^+W^- + X$
-2850		i	j	\checkmark	$H_1H_2 \rightarrow (W^+ \rightarrow) l_i^+ \nu_i (W^- \rightarrow) l_j^- \bar{\nu}_j + X$
-2860		7	7	×	$H_1 H_2 \to Z^0 Z^0 + X$
-2870		7	7	×	$H_1 H_2 \to W^+ Z^0 + X$
-2880		7	7	×	$H_1 H_2 \to W^- Z^0 + X$

Event Generator Physics 5

MC@NLO Results

• WW production at LHC

- Interpolates between MC & NLO in $p_{\rm T}^{\rm (WW)}$
- Above both at $\Delta \phi^{(WW)} \simeq 0$

S Frixione & BW, JHEP 06(2002)029

Event Generator Physics 5

MC@NLO: B Production at Tevatron

• $B \to J/\psi$ results from Tevatron Run II \Rightarrow B hadrons

Good agreement (and MC efficiency)

S Frixione, P Nason & BW, JHEP 08(2003)007

Event Generator Physics 5

MC@NLO: Higgs Production at LHC

V Del Duca, S Frixione, C Oleari & BW, in prep.

Good agreement with state-of-the-art resummation

Event Generator Physics 5

CKKW Matching

- Use Matrix Elements down to scale Q₁
- Use Parton Showers below Q₁
- Correct ME by reweighting
- Correct PS by vetoing
- Ensure that Q₁ cancels (to NLL)

S Catani, F Krauss, R Kuhn & BW, JHEP11 (2001) 063

Example: e⁺e - hadrons

• 2- & 3-jet rates at scale Q₁:

$$R_{2}(Q,Q_{1}) = [\Delta_{q}(Q,Q_{1})]^{2},$$

$$R_{3}(Q,Q_{1}) = 2\Delta_{q}(Q,Q_{1})\int_{Q_{1}}^{Q}dq \frac{\Delta_{q}(Q,Q_{1})}{\Delta_{q}(q,Q_{1})}\Gamma_{q}(Q,q)$$

$$\times \Delta_{q}(q,Q_{1})\Delta_{g}(q,Q_{1})$$

$$= 2[\Delta_{q}(Q,Q_{1})]^{2}\int_{Q_{1}}^{Q}dq \Gamma_{q}(Q,q)\Delta_{g}(q,Q_{1})$$

$$\Gamma_{q}(Q,q) = \frac{2C_{F}}{\pi}\frac{\alpha_{S}(q)}{q}\left(\ln\frac{Q}{q} - \frac{3}{4}\right)$$

Event Generator Physics 5

CKKW reweighting

- Choose n according to $R_n(Q, Q_1)$ (LO) - use $[\alpha_S(Q_1)]^n$
- Use exact LO ME to generate n partons
- Construct "equivalent shower history"
 preferably using k_T-type algorithm
- Weight vertex at scale q by $\alpha_{\rm S}(q)/\alpha_{\rm S}(Q_1) < 1$
- Weight parton of type i from Q_j to Q_k by $\Delta_i(Q_j,Q_1)/\Delta_i(Q_k,Q_1)$

CKKW shower veto

- Shower n partons from "creation scales"

 includes coherent soft emission
- Veto emissions at scales above Q₁
 cancels leading (LL&NLL) Q₁ dependence

Comparisons with Tevatron data

from JM Campbell, JW Huston & WJ Stirling, Rept. Prog. Phys. 70(2007)89

M.E. + PYTHIA CKKW looks good

Dipole Matching

- Implemented in ARIADNE dipole MC
- Dipole cascade replaces parton shower
- Construct equivalent dipole history {p_{Ti}}
- Rejection replaces Sudakov weights
 - cascade from p_{Ti} , reject if $p_T > p_{Ti+1}$

L Lönnblad, JHEP05(2002)046

MLM Matching

- Use cone algorithm for jet definition: $R_{ij}^{2} = (\eta_{i} - \eta_{j})^{2} + (\phi_{i} - \phi_{j})^{2}$ $E_{Ti} > E_{Tmin}, R_{ij} > R_{min}$
- Generate n-parton configurations with E_{Ti} > E_{Tmin}, R_{ij} > R_{min} (no Sudakov weights)
- Generate showers (no vetos)
- Form jets using same jet definition
- Reject event if $n_{jets} \neq n_{partons}$

Comparisons

- ALPGEN: MLM matching
- ARIADNE: Dipole matching problems with $g \to q \bar{q} \, \Rightarrow {\rm not}$ yet for LHC
- SHERPA: CKKW

S Höche el al., hep-ph/0602031

W + Multijets (Tevatron)

W + Multijets (Tevatron)

W + Multijets (LHC)

Summary

- Matching Parton Showers to Matrix Elements comes in different forms:
 - matching to NLO for better precision
 - matching to LO for multijets
- MC@NLO is main scheme for NLO matching
 - newer Nason method looks promising:
 P Nason & G Ridolfi, JHEP08(2006)077 + refs therein
- Several options for LO multijets
 - reasonably consistent
 - spread indicates uncertainties (?)
- Field still very active
 - NLO matching for jets, spin correlations,...
 - building multijet matching into OO generators