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1. Introduction

The high-energy collisions taking place at the Tevatron and at the LHC constitute a severe
challenge for any theoretical framework that aims at predicting them in a quantitative
manner. On the one hand, the typical final-state multiplicity can range from a few hun-
dred to a few thousand, with an average particle energy of the order of a few GeV. At the
same time, the probability is not negligible to have several (up to about ten at the LHC)
particles with very large momenta, which can be used as hard probes for studying the
highest-energy parton-parton collisions. The task of giving reliable theoretical descriptions
of both these aspects of hadron-hadron collisions is a very difficult one, and this is why
they are usually not dealt with simultaneously. If one is interested in observables domi-
nated by the kinematics of multi-particle emissions, Parton Shower Monte Carlos (PSMCs)
are the method of choice, thanks to their flexibility and to the fact that they are able to
give a complete (“exclusive”) description of the final states at the level of measurable
hadrons. An alternative is given by the so-called resummed computations, which organize
the perturbative QCD expansion in terms of the coupling constant αS, times the logarithm
(possibly to the second power) of a numerically-large ratio of mass scales. The advantage
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of resummed results over PSMCs is that the former can (at least in principle) be systemat-
ically improved by including terms less enhanced by logarithms w.r.t. the dominant ones.
However, resummed computations are inclusive, must be performed observable by observ-
able, are very laborious, and rely on a fragmentation-type picture to predict hadron-level
observables. As far as the predictions of hard-particle cross sections are concerned, they
are obtained by a perturbative expansion in αS of the relevant scattering amplitudes. As
in the case of resummed computations, this kind of expansion is systematically improvable.
However, owing to the complexity of perturbative calculations in QCD, it is now common
to have results accurate to NLO (next-to-leading order, i.e. one order more than the one
at Born level), while only a handful of results are available to yet higher orders. It has to
be stressed that NLO computations give sensible results only in the tails of distributions
involving large scales (such as transverse momenta), i.e. for configurations that have a
small probability to happen, or for very inclusive observables (such as total rates). On
the other hand, it is often the case that interesting physics is characterized by rare events,
which justify the importance of higher order computations for the Tevatron and the LHC
programmes.

It is clearly desirable to have tools that incorporate the benefits of both PSMCs and
perturbative computations, without having their drawbacks. A theoretically-consistent way
of matching the two approaches is that defined by the MC@NLO formalism [1]. MC@NLO
requires the modification of the parton-level short-distance cross sections used in standard
NLO computations, achieved through the insertion of the so-called Monte Carlo (MC) sub-
traction terms, whose goal is to remove the double counting that would result by naively
interfacing an NLO result with a PSMC. The MC subtraction terms can be computed in
a process-independent manner, but they are still dependent on the particular PSMC one
adopts for the shower phase. In other words, each PSMC requires a set of MC subtraction
terms. Although ref. [1] formulated the solution of NLO-PSMC matching in general terms,
practical applications there and in subsequent papers have been restricted to the choice of
Fortran HERWIG [2, 3, 4] as PSMC. Recently, MC subtraction terms relevant to initial-state
emissions have been computed for PYTHIA 6.4 [5]. The aim of this paper is to present the
computations of the MC subtraction terms for the case of Herwig++ [6, 7]1. These terms
have then been implemented in the MC@NLO computer package. As a consequence, all
processes presently implemented in this package can be simulated either with Fortran HER-
WIG or with Herwig++. We also present here comparisons between the MC@NLO/HERWIG
and the MC@NLO/Herwig++ predictions for a few selected observables and processes in
hadronic collisions.

This paper is organized as follows. In sect. 2.1 we summarize the basic features of
the MC@NLO formalism, and in sect. 2.2 we describe their application to the case of low-
multiplicity processes. In sect. 2.3 we give the general forms of the MC subtraction terms
relevant to Herwig++. Section 3 presents the comparisons between results obtained with
Herwig++ and Fortran HERWIG in the context of the MC@NLO approach. Our conclusions
are reported in sect. 4. Technical details specific to Herwig++ are given in appendices A
and B.

1Stand-alone versions of MC@NLO for Herwig++ have been implemented for some processes [8, 9, 10].
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2. MC@NLO

2.1 Generalities

The definition of the MC@NLO formalism was given in ref. [1]. In a completely general
case, one can write its generating functional as follows:

FMC@NLO =
∑

µ,m

∫
dx1dx2dφn+1

{
F (n+1)

MC

(
dΣ(n+1)

µ|m
dφn+1

−
dΣ(MC)

µ|m
dφn+1

)

+ F (n)
MC

(
dΣ(MC)

µ|m
dφn+1

+
dΣ(n)

µ|m
dφn+1

)}

. (2.1)

Here, we assume that the hard process has 2 → n and 2 → n + 1 kinematic configurations
at the Born and real-emission level respectively; the index µ runs over all real-emission
processes; the role of the index m will be clarified in the following. We have denoted by F (k)

MC

the generating functional of the Parton Shower Monte Carlo (PSMC) the NLO computation
is matched to, where the index k indicates that the initial condition for the shower is given
by a 2 → k partonic configuration. In the case k = n + 1, this configuration coincides
with that associated with the phase-space point (x1, x2,φn+1), and is called real-emission
or event kinematics. When k = n, it is obtained from the event kinematics by means
of a projection, which is dictated by the structure of the underlying NLO computation,
and is called counterevent kinematics. The MC@NLO formalism requires the NLO cross
section be computed by means of the so-called FKS subtraction [12]2. The basic idea of
the method is the following: for a given 2 → n + 1 real-emission process µ, one introduces
a set of arbitrary functions Sµ|m (called S functions) which obey the constraint:

∑

m

Sµ|m = 1 . (2.2)

Each value of the index m is equivalent to the labels of two (strongly-interacting) particles
entering the process µ, whose collinear configurations will cause the real-emission matrix
element to diverge, and therefore the sum in eq. (2.2) can be interpreted as running over all
possible singular regions of process µ. Roughly speaking, the S functions are constructed
in such a way that, in the singular region associated with m, all Sµ|m′ with m′ $= m are
equal to zero, and Sµ|m = 13. This leads one to introduce the quantities

M(n+1)
µ|m = Sµ|mM(n+1)

µ , (2.3)

where M(n+1)
µ is the real-emission matrix element squared for the process µ. Owing to

the properties of the S functions, each M(n+1)
µ|m has at most one soft and one collinear

2Strictly speaking, MC@NLO may be formulated in terms of any other subtraction formalism, but in

practice this has never been done.
3The case of soft singularities is technically more involved, but does not present any difficulty of principle.

The interested reader is referred to the original publication and to ref. [13] for further details, knowledge

of which is irrelevant here.
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singularity, which can therefore be subtracted in an essentially trivial manner. In other
words, the S functions effectively achieve a partition of the phase-space, and the index m

labels the members of this partition. Using eq. (2.3), one introduces

dΣ(n+1)
µ|m

dφn+1
= LM(n+1)

µ|m , (2.4)

L being the luminosity (i.e. the product of the PDFs), and writes the differential cross
section for an observable O at the NLO as follows:

dσ

dO
=

∑

µ,m

∫
dx1dx2dφn+1

{
δ(O − On+1)

dΣ(n+1)
µ|m

dφn+1
+ δ(O − On)

dΣ(n)
µ|m

dφn+1

}
, (2.5)

where Ok is the definition of the observable O in terms of 2 → k kinematic configurations.
Eq. (2.5) implicitly defines the n-body contribution to the cross section, Σ(n)

µ|m, which also
enters the MC@NLO generating functional, eq. (2.1). The notation used here is extremely
compact, and in particular one may wonder why an n-body contribution is written in
terms of the n + 1-body phase space. We point out that all the relevant computations are
given in great details in refs. [12, 13], but that the key point here is the observation that all
ingredients necessary for the implementation of the MC@NLO formalism are already present
in the computation of the corresponding NLO cross section, except for the so-called Monte
Carlo subtraction terms Σ(MC)

µ|m .
As clarified in ref. [1], the MC subtraction terms depend on the PSMC one adopts

for showering the hard events. They can be computed by formally expanding the PSMC
results to the same order in αS as the corresponding NLO contribution to the parton-level
cross section (i.e. that of the real-emission matrix elements). Furthermore, their structures
are such that all non trivial process-specific information is contained in the Born matrix
elements. These matrix elements are multiplied by kernels whose analytic forms depend
solely on the shower variables used by the PSMC to generate the elementary branchings,
and on the identities of the partons involved in such branchings. The MC subtraction
terms can therefore be computed in a process-independent manner, and subsequently used
in eq. (2.1) to simulate a given process whose NLO short-distance cross section has been
computed previously.

By construction, the MC subtraction terms cancel locally the divergences of the NLO
short-distance cross section. This implies that the quantities that multiply F (n+1)

MC and
F (n)

MC in eq. (2.1) are separately finite everywhere in the phase space. This allows one to
unweight them, and in this way to associate a constant weight with the corresponding
kinematic configurations, as is possible with LO-based PSMC; these configurations are
called H and S events for (n + 1)-body and n-body final states respectively. We point out
that a similar unweighting cannot be performed in the context of a pure-NLO computation,
eq. (2.5), owing to the fact that the two contributions in the integrand there are associated
with different kinematics except on a zero-measure subset of the phase space.

So far the MC subtraction terms have been computed for Fortran HERWIG [1, 11, 14]
and (partly) for PYTHIA [5]. In the following we discuss applications to low-multiplicity
processes and computations specific to Herwig++.
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2.2 Applications to low-multiplicity processes

The structure of eqs. (2.1) and (2.5) is suited to the description of processes with arbitrarily
large n. On the other hand, all practical applications have been restricted to cases for which
n = 1 or n = 2 so far. We stress that this is the number of strongly-interacting particles at
the Born level. Accompanying particles such as electroweak bosons or leptons, and decay
products of the primary particles, may effectively enlarge n, but this does not affect the
core of the NLO computation, which is our concern here.

When n is a small, simplifications are possible (but not mandatory) in the structure
of eqs. (2.1) and (2.5): for a given µ, one may group together several Sµ|m contributions,
owing to the fact that the corresponding kinematic configurations are trivially related to
each other. In order to be more precise, we shall give here two specific examples: we
consider the two partonic processes

g(p1) + g(p2) −→ t(k1) + t̄(k2) + g(k3) (2.6)

u(p1) + b(p2) −→ t(k1) + d(k2) + g(k3) (2.7)

which are part of the real-emission contributions to top-pair and single-top (t channel)
production. We label the initial-state partons with momenta p1 and p2 by + and −
respectively, and final-state particles with momenta ki by fi. For the two processes in
eqs. (2.6) and (2.7) there are four independent S functions; the corresponding four values
of m are:

m = (f3,+) , m = (f3,−) , m = (f3, f1) , m = (f3, f2) , (2.8)

which are associated with the configurations in which the final-state gluon g(k3) may
become collinear to one of the initial-state partons (m = (f3,+) or m = (f3,−)), or to one
of the final-state particles (m = (f3, f1) or m = (f3, f2)). At this point, one observes that,
in any of these collinear configurations, p1 is back-to-back with p2, and k1 is back-to-back
with k2. In turn, this implies that when e.g. g(k3) is collinear with g(p1), it is anticollinear
to g(p2). In the FKS subtraction formalism, each Sµ|m dictates the choice of the integration
variables directly related to the subtraction procedure. In particular, one of these variables
is the angle between the two particles identified by the label m. It is obvious that, if one
given angular variable is suited to performing a subtraction in a collinear region, it will
be as well suited to performing it in an anticollinear region. This implies that a single
angular variable can be used to deal simultaneously with contributions m = (f3,+) and
m = (f3,−), and another one to deal simultaneously with m = (f3, f1) and m = (f3, f2).

One further observes that the contributions m = (f3, f1) and m = (f3, f2) to eq. (2.6),
and the contribution m = (f3, f1) to eq. (2.7), do not correspond to collinear matrix-element
singularities, but only to soft ones. In the FKS procedure, the choice of the angular variable
does not play any role in the subtraction of soft singularities, since such a subtraction is
dealt with by a variable which is essentially the energy of the parton becoming soft. This
implies that, in the case of eq. (2.6), the contributions m = (f3, f1) and m = (f3, f2) can
be treated together with those m = (f3,±). In the case of eq. (2.7), on the other hand, the
contribution m = (f3, f1) can be treated simultaneously with either m = (f3,±), or with
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m = (f3, f2). Although either choice is possible, in ref. [14] the latter, more logical, option
was adopted.

The bottom line is that, owing to the simplified kinematics of 2 → 1 or 2 → 2 processes,
some of the contributions in the sum over m in eqs. (2.1) and (2.5) can be dealt with
together. In such cases, it is still convenient to use the notation introduced in eqs. (2.1)
and (2.5), but m will need be understood as a set of pairs of particle labels, rather than as
a single pair. For the specific examples considered above, we shall have

m =
{

(f3,+), (f3,−), (f3, f1), (f3, f2)
}

, (2.9)

m =
{

(f3,+), (f3,−)
}

, m =
{
(f3, f1), (f3, f2)

}
, (2.10)

for the processes in eqs. (2.6) and (2.7) respectively. Therefore, in the case of top-pair
production, the sums over m in eqs. (2.1) and (2.5) contain only one term and, thanks
to eq. (2.2), it is actually not necessary to introduce the S function in order to perform
the computation. The case of single-top is only slightly more complicated. The sums over
m contain two contributions; in the original publication, ref. [14], the two values of m in
eq. (2.10) have been denoted by IN and OUT respectively.

We conclude this section by pointing out that, regardless of the number of final-state
particles n, contributions m = (fi,+) and m = (fi,−) for a given particle label fi can be
always treated simultaneously in the context of the FKS subtraction – see appendix E of
ref. [13] for a discussion on this matter.

2.3 MC subtraction terms for Herwig++

As discussed previously, the MC subtraction terms Σ(MC)

µ|m are determined by formally ex-
panding the results of the PSMC in αS, and by keeping the contribution that has the
same power in αS as the NLO cross section (which we shall denote by O(αb+1

S )). This
contribution can be written in full generality as follows:

dσ
∣∣∣
MC

=
∑

µ,m

∑

L∈m

∑

l

dσ(L,l)
µ

∣∣∣
MC

. (2.11)

The sum over µ has precisely the same meaning (and range) as that in eqs. (2.1) and (2.5),
since the order in αS at which we are working is the same as in those equations, and hence
the partonic processes that contribute to the cross sections are the same. The sums over m

and L can be understood as follows. At O(αb+1
S ), the PSMC gets contributions from the

diagrams that can be constructed by attaching to Born-level diagrams all possible 1 → 2
(QCD) branchings stemming from external legs. These diagrams are therefore a subset of
those contributing to real-emission matrix elements, and in particular are all diagrams that
may give rise to collinear and/or soft singularities. Hence, they can be identified by means
of the index m introduced previously. According to the discussion in sect. 2.2, each m is a
set of pairs of particle labels, with one (in the straightforward implementation described in
sect. 2.1) or more (in the case simplifications are possible) elements. Either way, the index
L in eq. (2.11) runs over the elements of a given m. This implies that each element in the
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double sum over m and L in eq. (2.11) identifies unambiguously one “branching” in a real-
emission configuration. Note, therefore, that at fixed µ there is a one-to-one correspondence
between L and a particle in the underlying Born-level process; such a particle may thus be
referred to as the branching leg. Finally, for each branching leg the PSMC may give rise
to different showers, depending on the colour partner of the branching leg. The sum over
the choice of colour partners is that over the index l in eq. (2.11); note that, at fixed L, a
given particle can play the role of colour partner more than once, depending on the colour
flows of the underlying Born process.

The similarities between Fortran HERWIG (denoted henceforth by HERWIG6) and
Herwig++ are such that the forms of the cross sections dσ(L,l)

µ |MC are the same as those
given in ref. [14]. They read:

dσ(+,l)
µ

∣∣∣
MC

=
1
z+

f (H1)
a (x̄1i/z+)f (H2)

b (x̄2i) dσ̂(+,l)
µ

∣∣∣
MC

dx̄1i dx̄2i , (2.12)

dσ(−,l)
µ

∣∣∣
MC

=
1
z−

f (H1)
a (x̄1i)f

(H2)
b (x̄2i/z−) dσ̂(−,l)

µ

∣∣∣
MC

dx̄1i dx̄2i , (2.13)

dσ(fα,l)
µ

∣∣∣
MC

= f (H1)
a (x̄1f )f (H2)

b (x̄2f ) dσ̂(fα,l)
µ

∣∣∣
MC

dx̄1f dx̄2f , (2.14)

where, consistently with sect. 2.2, we have denoted by + and − the two initial-state branch-
ing legs, and with fα the final state ones. In eqs. (2.12)–(2.14) we have shortened the no-
tation, denoting e.g. L = (fi,±) and L = (fi, fα) simply by ± and fα respectively, for any
given particle label fi. This does not result in any ambiguities, since clearly the equations
above are formally identical for any fi.

The distribution function of parton p in hadron Hi is denoted by f (Hi)
p , and the iden-

tities of initial-state partons a and b depend on µ. In spite of the fact that eqs. (2.12)
and (2.13) are formally identical to the analogous equations of ref. [14], we stress that the
variables z± are different in the two cases, being (one of) the shower variables of Herwig++
here, and of HERWIG6 in ref. [14]. On the other hand, the variables x̄1i, x̄2i, x̄1f , and x̄2f

(i.e. the Bjorken x’s used by the PSMC) are the same for Herwig++ as for HERWIG6.
This statement is trivial in the context of standalone PSMC usage (given that the Bjorken
x’s are just integration variables), but it is not when eqs. (2.12)–(2.14) are used for the
construction of the MC subtraction terms. In such a case, in fact, the PSMC Bjorken
x’s need be computed in terms of those used in the NLO computation, and this is done
in MC@NLO by means of the procedure called event projection, described in details in
ref. [1]. Ultimately, event projection depends on the treatment of the kinematics of the
hard process by the PSMC. Since it is possible to use the same procedure in Herwig++ as
in HERWIG6, it follows that the variables above have the same analytic forms in the two
cases.

The short-distance cross sections that appear in eqs. (2.12)–(2.14) read as follows:

dσ̂(±,l)
µ

∣∣∣
MC

=
αS

2π
dq̃2

±
q̃2
±

dz±Pa′b′(z±) dσ̄(±,l)
µ′ Θ(±,l)

dead , (2.15)

dσ̂(fα,l)
µ

∣∣∣
MC

=
αS

2π
dq̃2

fα

q̃2
fα

dzfαPa′b′(zfα , q̃2
fα

) dσ̄(fα ,l)
µ′ Θ(fα,l)

dead . (2.16)
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Their forms follow in a straightforward manner from considering how any (collinear-based)
PSMC deals with 1 → 2 branchings. They are constructed by multiplying the Born-level
cross section dσ̄(L,l)

µ′ by the relevant collinear or quasi-collinear Altarelli-Parisi splitting
kernels (here both denoted by P ), times the measure that appears in the Sudakov form
factors. This is PSMC-specific, and depends in particular on the shower variables. Those
of Herwig++ are denoted by zL and q̃2

L, and are discussed in appendix A. Finally, the Θ
functions in eqs. (2.15) and (2.16) are due to the fact that in general there are phase-space
regions where the PSMC cannot emit radiation (called dead zones). The dead zones are
PSMC-specific; those relevant to Herwig++ are given in appendix A. The identities of
the partons involved in the branching, a′ and b′, and of the Born process, µ′, are fully
determined by µ and by (L, l) – their particular values are irrelevant in what follows.

3. Illustrative results

In this section we present some illustrative results of the implementation of MC@NLO
for Herwig++, compared in each case with results from the HERWIG6 implementation.
Both are available for the same range of processes: Higgs boson, single vector boson,
vector boson pair, heavy quark pair, single top (with and without associated W ), lepton
pair and associated Higgs+W/Z production in hadron collisions. In most processes the
results are very similar. This is reassuring, since the showering algorithms in the two
event generators, and the corresponding modified subtractions in the NLO calculations,
are quite different. Where differences are seen, they can be ascribed to changes in the
parton showering algorithm, particularly for heavy quarks, and to different modelling of
non-perturbative physics. There is an overall tendency for slightly more but softer gluon
radiation in Herwig++.

For these comparisons MC@NLO was interfaced to the current versions of the event
generators, Herwig++ v2.4.2 and HERWIG v6.520. All results are for the LHC at centre-
of-mass energy 7 TeV, using the CTEQ6.6 NLO parton distributions [16], and without the
inclusion of the underlying event. Finally, we have switched the intrinsic pT off in both
Herwig++ and HERWIG6.

3.1 Higgs boson production

In general the MC@NLO results on electroweak boson production using Herwig++ and
HERWIG6 show few significant differences. Changes in the boson transverse momentum
distributions at low pT can be ascribed to the softer QCD radiation in Herwig++. For
example, fig. 1 shows the transverse momentum and rapidity distributions of a Standard-
Model Higgs boson with a mass of 160 GeV. Compared to HERWIG6, an increase is observed
for pt < 20 GeV, due to the slight softening of QCD radiation, but the rapidity distribution
is not affected.

Figure 2 shows the charged lepton correlations when the Higgs boson decays to WW →
lνlν. These distributions are not much affected by soft QCD radiation and there is close
agreement between the two implementations. However, clear differences are seen if earlier
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versions of HERWIG6 are used (up to v6.510, shown dotted), since spin correlations between
the W bosons were not implemented before v6.520.

Figure 1: MC@NLO results on Higgs boson production: Higgs transverse momentum (left) and
rapidity (right) distributions with Herwig++ (solid) and HERWIG6 (dashed).

Figure 2: MC@NLO results on Higgs → WW → lνlν for Herwig++ (solid) and for HERWIG6
with (dashed) and without (dotted) spin correlations. Left panel: azimuthal angle between the
charged leptons. Right panel: dilepton invariant mass.

In refs. [17, 18] the effects of acceptance cuts on searches for a Higgs boson in the
WW → lνlν decay channel were studied. The cuts were chosen to mimic realistic event
selection as applied in experimental searches for Higgs bosons in this channel:

1. the leading charged lepton should be within |η| < 2 and 30GeV < pT < 55GeV;

2. the trailing charged lepton has to fulfill |η| < 2 and pT > 25GeV;

3. the invariant mass of the charged lepton pair is restricted to 12GeV < mll < 40GeV;

4. the missing transverse energy has to exceed 50GeV;
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5. the opening angle between the two charged leptons in the transverse plane has to be
smaller then φll < π/4;

6. there should be no jet with pT > 25GeV and |η| < 2.5 in the event (jet-veto).

Higher-order QCD corrections were seen to have significant impact on the efficiency of
these cuts, and MC@NLO with HERWIG6 was found to give good agreement with NNLO
calculations of acceptance effects. In table 1 we show the corresponding results for MC@NLO
with Herwig++. As can be seen, the efficiencies predicted by the two event generators
are similar, though not identical. The cuts applied can be divided into two sets: cuts on
kinematic variables of the final state leptons (such as invariant mass, transverse momentum,
rapidity), and cuts on the hadronic structure of the event (jet-veto). While the acceptances
of the leptonic cuts are very similar between Herwig++ and HERWIG6 (see also figure 2),
the difference in the overall efficiency arises from the different hadronic structure in the low
momentum region (see also figure 1). This demonstrates again how the uncertainty on a
jet-veto efficiency has to be studied very carefully when applied in experimental searches.

Generator σinc [fb] σacc [fb] ε [%]

Herwig++ 5.76 0.479 8.32 ± 0.04
HERWIG6 5.76 0.444 7.71 ± 0.04

Table 1: MC@NLO results on the acceptance for Higgs → WW → lνlν after the cuts indicated
in the text. The errors on the efficiencies are the statistical uncertainties.

3.2 Top quark pair production

The HERWIG6 and Herwig++ event generators differ significantly in their treatment of
heavy quarks. The main differences are

1. The kinematics of the parton shower. The energy-angle shower variables used in
HERWIG6 led to a sharp angular cutoff at θ ∼ m/E in the radiation pattern from a
quark of mass m and energy E (the so-called dead cone), whereas Herwig++ uses a
more covariant formulation that allows emission at lower angles [19].

2. The introduction of mass corrections to the parton splitting functions in Herwig++,
following the ‘quasi-collinear’ prescription of ref. [20].

3. An improved treatment of QCD radiation in top decay in Herwig++, developed in
refs. [19, 21], which ensures a better angular distribution and removes the need for
an ad hoc infrared cutoff.

As a result of these improvements, differences in the results of MC@NLO with HERWIG6
and Herwig++ for processes involving heavy quarks are somewhat more pronounced than
those in electroweak boson production. The most significant effect is a softer spectrum of
QCD radiation in top quark production and decay in Herwig++.
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Figures 3 and 4 show the resulting effects on the tt̄ transverse momentum spectrum
and azimuthal separation, respectively. In these and subsequent figures we also show the
distributions after acceptance cuts. For top quark pair production, these are defined as
follows: in figs. 3 and 4, we require the transverse momenta of the t and t̄ to be larger than
30 GeV, and the absolute values of their rapidities to be smaller than 2.5. On the other
hand, in figs. 5–8, which were obtained by letting the top quarks decay leptonically, we
require the transverse momenta (absolute values of the rapidities) of the “visible” decay
products, i.e. the b and b̄ quarks and the charged leptons l±, to be larger than 30 GeV
(smaller than 2.5).

Figures 5 and 6 show aspects of the distribution of b quarks from decay of the top
pair: the transverse momentum relative to the beam direction in fig. 5 and relative to the
direction of motion of the parent top in fig. 6. Decay angular correlations due to the top
polarization are included following the prescription of ref. [15]. Here again there is some
softening and smearing of the distribution in Herwig++. A corresponding softening of the
transverse momentum and invariant mass distributions of the pair of b quarks may be seen
in figs. 7 and 8.

Figure 3: MC@NLO results on top quark pair production: log10 of the tt̄ transverse momen-
tum distribution with Herwig++ (solid) and HERWIG6 (dashed). Left/right panel: without/with
acceptance cuts.

3.3 Single top production

Comparisons between results on single top production4 from MC@NLO with Herwig++
and HERWIG6 reveal similar basic features to those in top quark pair production. There is
a general softening of distributions due to softer QCD radiation in Herwig++, illustrated
here by the top plus leading jet transverse momentum distribution, fig. 9. The jets have
been defined with the kT algorithm as implemented by FastJet [22], with R = 0.5 and
by requiring each jet to have transverse momentum larger than 10 GeV. Furthermore, we
have eliminated from the list of our jets the one that contains the b-flavoured hadron that

4We have limited ourselves to considering here top quark production (i.e., antitop quark production is

not included) in the t channel.
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Figure 4: MC@NLO results on top quark pair production: tt̄ azimuthal separation with Herwig++
(solid) and HERWIG6 (dashed). Left/right panel: without/with acceptance cuts.

Figure 5: MC@NLO results on top quark pair production: b-quark transverse momentum distri-
bution with Herwig++ (solid) and HERWIG6 (dashed). Left/right panel: without/with acceptance
cuts.

emerges from the decay of the top. Apart from the jet cuts, when imposing acceptance
cuts (except in the case of fig. 11, see below) we have required the top to have transverse
momentum larger than 20 GeV, and the absolute value of its rapidity to be smaller than
2.5.

The distribution of the top–leading jet relative azimuth (fig. 10) shows an increase in
same-side emission, while the angular separation (measured in the rest frame of the top)
between the charged lepton in leptonic top decays and the hardest non-b jet (fig. 11) tends
to be slightly larger. In the right panel of fig. 11, we have imposed the same acceptance
cuts as in ref. [15]; namely, pT (b) > 20 GeV, |η(b)| < 2, pT (l) > 10 GeV, |η(l)| < 2.5,
pT (ν) > 20 GeV, pT (j) > 20 GeV, and |η(j)| < 2.5.

In accordance with the general tendency for more radiation in Herwig++, the overall jet
activity (fig. 12, left panel) is somewhat higher than in HERWIG6. The relative azimuthal
distributions of the leading and next-to-leading jets (fig. 12, right panel) are similar apart
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Figure 6: MC@NLO results on top quark pair production: b-quark transverse momentum (relative
to the direction of flight of the top) distribution with Herwig++ (solid) and HERWIG6 (dashed).
Left/right panel: without/with acceptance cuts.

Figure 7: MC@NLO results on top quark pair production: bb̄ transverse momentum distribution
with Herwig++ (solid) and HERWIG6 (dashed). Left/right panel: without/with acceptance cuts.

from an unexpected feature in the Herwig++ distribution at low values. The corresponding
jets have different rapidities but are aligned in azimuth. This appears to be a feature of
the non-perturbative splitting of high-mass clusters connected to the beam remnant in
Herwig++.

In other respects the treatment of non-perturbative effects looks more physical in
Herwig++. Figures 13 and 14 show the transverse momentum and rapidity distributions
of b-hadrons not from top decay, which come mainly from parton showering of initial-state
b quarks. In HERWIG6 these distributions have pathologies at low pT and high rapidity,
arising from its simplified treatment of heavy quark showering and the model of non-
perturbative g → bb̄ splitting used in matching the shower to the beam hadron. The latter
gives rise to a deficit at pT < mb and peaks around |y| ∼ 5, which are less prominent
in the model used in Herwig++, which has a smoother transition to the non-perturbative
regime. As shown in the right-hand panels of figs. 13 and 14, a cut on y or pT removes most
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Figure 8: MC@NLO results on top quark pair production: bb̄ invariant mass distribution with
Herwig++ (solid) and HERWIG6 (dashed). Left/right panel: without/with acceptance cuts.

Figure 9: MC@NLO results on single top production: log10 of the transverse momentum distribu-
tion of the top-hardest jet pair, with Herwig++ (solid) and HERWIG6 (dashed). Left/right panel:
without/with acceptance cuts.

of the model dependence and yields much closer agreement between results from the two
generators. In particular, in the kinematic region in which the b-hadrons are observable,
the differences between Herwig++ and HERWIG6 are small. This also implies that, owing
to the fact that the inclusive b-hadron cross section predicted by the two PSMCs is identical
(up to events with multiple b-hadrons, arising from g → bb̄ branchings in the shower), the
impact of a veto cut will be similar in Herwig++ and in HERWIG6.

We conclude this section by mentioning that we have also considered single-top pro-
duction in association with a W boson, and compared Herwig++ with HERWIG6 results
for both the DR and DS definitions of the Wt cross section (see ref. [23]). We did not
attempt a full phenomenological study of this process, but limited ourselves to considering
the impact of a pT -veto imposed on the second-hardest b-hadron, which as discussed in
ref. [23] is a rather effective way of reducing the Wt-tt̄ interference. We have found that
Herwig++ follows the same pattern as HERWIG6. This is reassuring, since it implies that
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Figure 10: MC@NLO results on single top production: relative azimuth distribution between
the top and the hardest jet, with Herwig++ (solid) and HERWIG6 (dashed). Left/right panel:
without/with acceptance cuts.

Figure 11: MC@NLO results on single top production: angle (in the top rest frame) between
lepton from top decay and hardest non-b jet with Herwig++ (solid) and HERWIG6 (dashed).
Left/right panel: without/with acceptance cuts.

the definition of Wt production as a separate process at the NLO is independent of the
PSMC used in the simulations.

4. Conclusions

In this paper we have presented the calculations necessary to match the Parton Shower
Monte Carlo Herwig++ with any NLO QCD computation in the context of the MC@NLO
formalism. The matching has then been achieved in practice for all processes which were
already interfaced to Fortran HERWIG. A few selected MC@NLO/Herwig++ results ob-
tained in this way have also been shown here, and compared to those obtained with
MC@NLO/HERWIG.

From the technical point of view, the calculations performed here are of a complex-

– 15 –



Figure 12: MC@NLO results on single top production: number of jets (left panel) and azimuthal
separation between the two hardest jets (right panel), with Herwig++ (solid) and HERWIG6
(dashed).

Figure 13: MC@NLO results on single top production: transverse momentum distributions of
b-hadrons not from top decay with Herwig++ (solid) and HERWIG6 (dashed). Left/right panels:
without/with a cut on rapidity |y| < 3.

ity comparable with those reported in refs. [1, 11, 14], which were relevant to Fortran
HERWIG. The corresponding computer programmes also behave in a fairly similar way.
As expected, in those phase-space regions dominated by hard emissions, the results of
MC@NLO/Herwig++ and MC@NLO/HERWIG6 coincide. On the other hand, differences
(usually small) can be seen where multiple-parton emission plays a dominant role, with
Herwig++ typically giving a larger number of partons than HERWIG, but with smaller
energies. In a very few cases larger discrepancies can be seen, and we have commented
them in the text.

The results presented here provide all the ingredients needed for matching a low-
multiplicity NLO calculation to Herwig++. They also give the necessary and sufficient
information for the matching of large-multiplicity processes, which we believe is best carried
out in the context of a fully automated approach to NLO cross sections, and which we intend
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Figure 14: MC@NLO results on single top production: rapidity distributions of b-hadrons not
from top decay with Herwig++ (solid) and HERWIG6 (dashed). Left/right panels: without/with
a cut on transverse momentum pT > 10 GeV.

to pursue exploiting the work done in ref. [13].
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A. Parton showering in Herwig++

As discussed in sect. 2.3, to evaluate the Monte Carlo subtraction terms (2.15) and (2.16)
we need three kinds of information concerning the PSMC:

1. The shower variables, z and q̃2 in the case of Herwig++, and their expressions in
terms of the variables used for the NLO calculation. In general, these expressions
will be different for initial and final state showering, as indicated by eqs. (2.15) and
(2.16) respectively.

2. The regions of phase space, if any, that are not covered by the parton showers at
NLO (the so-called dead zones).

3. The splitting kernels used to generate the showers, Pab(z, q̃2) in the case of Herwig++.

The showering formalism adopted in Herwig++ is that described in ref. [19]. We recall the
relevant features here and derive the necessary formulae relating the shower variables to
the invariants defined in earlier MC@NLO publications: see for example table 4 of ref. [14].

In Herwig++, as in all parton shower event generators, one starts with a (usually 2 → 2)
hard subprocess and develops the external coloured legs into jets according to the showering
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formalism. The jets are then combined according to some kinematic reconstruction method
that conserves 4-momentum, preserves the internal structure of the jets and in some sense
maintains the configuration of the hard subprocess. This is not an unambiguous procedure,
and Herwig++ includes options for different methods. We assume the one corresponding
to the parameter values ReconstructionOption=General and (for initial-state showering)
InitialInitialBoostOption=LongTransBoost. These ensure that the jets, once formed,
are treated in the same way as in Fortran HERWIG, so the formulae in earlier MC@NLO
papers apply once the invariant properties of a jet have been expressed in terms of the new
shower variables.

Initial-state partons are always treated as massless in Herwig++, whereas final states
may involve partons with non-zero, possibly unequal, masses. We treat the more compli-
cated case of final-state showering first. Then in many (but not all) respects, the initial-
state case simply corresponds to the massless limit of the same formalism.

A.1 Final-state emission

In showering from final-state partons, Herwig++ with MC@NLO runs in a reconstruction
mode that preserves the 4-momentum of the hard subprocess. This is achieved by aligning
the shower axes with the directions of their parent partons in the subprocess rest frame
and then boosting the showers along their axes by appropriate amounts. In order to be
definite, we consider the case of the 2 → 2 Born subprocess

a+(p̄1) + a−(p̄2) −→ af1(k̄1) + af2(k̄2) (A.1)

and the associated real-emission process

a+(p1) + a−(p2) −→ af1(k1) + af2(k2) + af3(k3) . (A.2)

The masses of the outgoing partons af1 and af2 will be denoted by m1 and m2, while the
initial-state partons a± and the emitted parton af3 are always treated as massless. The
2 → 2 kinematics are defined by barred invariants:

s̄ = 2 p̄1 · p̄2 = 2 k̄1 · k̄2 + m2
1 + m2

2 ,

t̄ = −2 p̄1 · k̄1 = −2 p̄2 · k̄2 − m2
1 + m2

2 ,

ū = −2 p̄1 · k̄2 = −2 p̄2 · k̄1 + m2
1 − m2

2 , (A.3)

0 = s̄ + t̄ + ū .

The definitions of the 2 → 3 invariants used here are as in table 4 of ref. [14]. The
relationships between the 2 → 3 and and 2 → 2 invariants implied by the Herwig++
kinematic reconstruction method are complicated but, as mentioned above, they are the
same as in HERWIG6, so we also refer the reader to ref. [14] for them.

The properties of an emission from a particular external line, say af1 → af1 + af3 ,
that are invariant under kinematic reconstruction are: (i) the invariant mass of the pair
(k1 + k3)2, and (ii) the ‘+’ momentum fraction of the emitted massless parton,

ζ1 ≡ n · k3

n · (k1 + k3)
, (A.4)
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where n is a light-like reference vector antiparallel to the boost axis (i.e. along af2 in this
case). In terms of the invariants defined in ref. [14], i.e. s = 2 p1 · p2, w1 = 2 k1 · k3 and
w2 = 2 k2 · k3, we have

(k1 + k3)2 = w1 + m2
1 (A.5)

and one can prove (see ref. [14]) that the definition of ζ1 corresponds to

ζ1 =
(2s − (s − w1)ε2)w2 + (s − w1)[(w1 + w2)β2 − ε2w1]

(s − w1)β2[2s + (s − w1)(β2 − ε2)]
, (A.6)

with

ε2 = 1 − m2
1 − m2

2

s − w1
,

β2 =

√

ε22 −
4sm2

2

(s − w1)2
. (A.7)

For showering by a final-state parton of mass m1, the shower variables of Herwig++
are

z =
n · k1

n · (k1 + k3)
= 1 − ζ1 ,

q̃2 =
k2

T

z2(1 − z)2
+

m2
1

z2
, (A.8)

where kT is the transverse momentum of the emission, which is related to the invariant w1

via eq. (A.5):
k2

T = (1 − z)[zw1 − (1 − z)m2
1] , (A.9)

so that
q̃2 =

w1

z(1 − z)
=

w1

ζ1(1 − ζ1)
. (A.10)

In the case of emission from final-state parton af2 , one should simply replace m1 ↔ m2

and w1 ↔ w2.
The upper limit on the variable q̃2, which sets the initial scale for the shower, is related

to the colour connection structure of the 2 → 2 hard subprocess. If the final-state partons
af1 and af2 are colour connected, as in s-channel single top production, the scale is set by
the c.m. energy squared s̄ = 2 p̄1 · p̄2. Since the hard subprocess 4-momentum is preserved
in final-state emission, in this case we have s̄ = s. Then, as discussed in ref. [19], in order
to yield the correct distribution of soft gluon radiation the regions filled by emissions from
partons af1 and af2 should extend up to q̃2

f1
and q̃2

f2
, respectively, where

(q̃2
f1

− m2
1)(q̃

2
f2

− m2
2) =

1
4
(s − m2

1 − m2
2 + λ)2 (final-final colour connection), (A.11)

with

λ = λ(
√

s,m1,m2) ≡
√

(s + m2
1 − m2

2)2 − 4sm2
1 =

√
(s − m2

1 + m2
2)2 − 4sm2

2 . (A.12)
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The default choice, which is adopted in MC@NLO, is to take

q̃2
f1

=
1
2
(s + m2

1 − m2
2 + λ) , q̃2

f2
=

1
2
(s − m2

1 + m2
2 + λ) . (A.13)

If a given value of the NLO invariants corresponds to q̃2 > q̃2
fα

for emission from parton
afα (α = 1 or 2), then that value lies in the dead zone for emission from that parton, and
the corresponding MC subtraction term (2.16) vanishes there.

The splitting kernels used in Herwig++ include mass corrections appropriate to the
quasi-collinear limit, as derived in ref. [20]. In terms of the above shower variables, for
emission from parton afα , this limit corresponds to mα, q̃ → 0 with mα/q̃ finite. For the
splitting q → qg, we then have

Pqq(z, q̃2) =
CF

1 − z

[
1 + z2 −

2m2
q

zq̃2

]
. (A.14)

Recalling from eq. (A.8) that the collinear limit kT → 0 corresponds to mq/q̃ → z, we see
that emission extends down to zero angle, so that (unlike in HERWIG6) there is no empty
“dead cone” around the collinear direction, although emission is suppressed in this region.

In the case of g → gg there are of course no mass corrections. For completeness, we
note also the quasi-collinear kernel for g → qq̄,

Pqg(z, q̃2) = TR

[
1 − 2z(1 − z) +

2m2
q

z(1 − z)q̃2

]
, (A.15)

although the mass correction for this splitting does not enter into any of the MC@NLO
calculations considered here.

If the colour structure of the hard subprocess is such that an emitting final-state
parton, say af1 , is colour connected to an initial-state parton, say a+, the upper limit
for its shower and that of a+ is set by the corresponding momentum transfer in the hard
subprocess, given in this case by the variable t̄, for which the expression in terms of 2 → 3
invariants may be found in ref. [14]. Again as discussed in ref. [19], in order to yield the
correct distribution of soft gluon radiation the regions filled by emissions from partons a+

and af1 should extend up to q̃2
+ and q̃2

f1
, respectively, where now

q̃2
+(q̃2

f1
− m2

1) = (2 p̄1 · k̄1)2 = |t̄|2 (initial-final colour connection). (A.16)

In MC@NLO we use the default choice q̃2
+ = |t̄|, q̃2

f1
= |t̄| + m2

1.
If the colour connection of af1 is instead to parton a−, then |t̄| is replaced by 2 p̄2 · k̄1 =

|ū| + m2
1 − m2

2. Similarly, if parton af2 is connected to a+, we have

q̃2
+(q̃2

f2
− m2

2) = (2 p̄1 · k̄2)2 = |ū|2 , (A.17)

with the default choice q̃2
+ = |ū|, q̃2

f2
= |ū|+ m2

2, while if af2 is connected to a−, then |ū| is
replaced by 2 p̄2 · k̄2 = |t̄|− m2

1 + m2
2.

We discuss in the next subsection how the shower variable q̃2 is defined for initial-state
emission.
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A.2 Initial-state emission

In showering from initial-state partons, the 4-momentum of the hard subprocess is not
preserved: it recoils longitudinally and transversely from the emissions in the showers.
Herwig++ with MC@NLO runs in a reconstruction mode that preserves the invariant mass
and rapidity of the hard subprocess. Considering again the 2 → 2 hard subprocess (A.1)
and the corresponding real emission (A.2), suppose that the massless parton af3 is emitted
from a+, also taken to be massless. The Herwig++ variables for an initial-state shower are

z = 1 − n · k3

n · p1
, q̃2 =

k2
T

(1 − z)2
. (A.18)

Since the two initial-state showers are (anti-)aligned and the other incoming massless parton
a− does not emit, we can take n = p2. In terms of the invariants of [14], i.e. s = 2 p1 · p2,
v1 = −2 p1 · k3 and v2 = −2 p2 · k3, we then have

z = 1 +
v2

s
(A.19)

and k2
T = −(1 − z)v1, so that

q̃2 =
v1 s

v2
. (A.20)

For emission from incoming parton a−, interchange v1 ↔ v2.
For subprocesses where the initial-state partons a+ and a− are colour connected, the

scales for their showers are set by the hard subprocess invariant mass squared, s̄. The
showers from partons a+ and a− should extend up to q̃2

+ and q̃2
− such that

q̃2
+q̃2

− = s̄2 (initial-initial colour connection). (A.21)

and we adopt the default values q̃2
+ = q̃2

− = s̄. This looks similar to the case of final-final
colour connection for massless partons, eq. (A.11). Note however that in the present case
we have s̄ $= s due to recoil effects; in fact

s̄ = s + v1 + v2 . (A.22)

If on the other hand the colour connection is from a+ to final-state parton af1, then
we follow the prescription (A.16) instead of (A.21), and the upper limit on q̃2

+ is given by
q̃2
+ = |t̄|. If the colour connection is instead to parton af2, then the limit is |ū|. The limits

for initial-final connections of parton a− follow analogously.
Table 2 summarizes the limits on q̃2 for all the possible colour connections. If the emit-

ted parton af3 is a light quark instead of a gluon, as can happen in initial-state showering,
for example in gq → Z0q, the same limits apply, even though the soft gluon radiation
pattern is not relevant. This is because Herwig++ evolves the shower downwards from
the limiting scale and does not determine in advance whether a quark or a gluon will be
emitted in the first splitting.
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Parton Col. con. Limit

a+ a− s̄

a+ af1 |t̄|
a+ af2 |ū|
a− a+ s̄

a− af1 |ū| + m2
1 − m2

2

a− af2 |t̄|− m2
1 + m2

2

af1 a+ |t̄| + m2
1

af1 a− |ū| + 2m2
1 − m2

2

af1 af2
1
2(s + m2

1 − m2
2 + λ)

af2 a+ |ū| + m2
2

af2 a− |t̄|− m2
1 + 2m2

2

af2 af1
1
2(s − m2

1 + m2
2 + λ)

Table 2: Limits on q̃2 for showering partons with different colour connections. The kinematic
invariants are defined in eqs. (A.3) and (A.12).

B. Construction of MC subtraction terms

In this section we again consider the case of the real-emission process (A.2) and label the
relevant S functions by

m± =
{
(f3,+), (f3,−)

}
, m1 = (f3, f1) , m2 = (f3, f2) , (B.1)

which is more general than either eq. (2.9) or eq. (2.10), and in fact allows one to deal with
any 2 → 3 real-emission process (possibly after relabeling of the partons in eq. (A.2)). The
subtracted real-emission contribution to the NLO cross section read [12, 13]

dσ̂(3)
µ|m±

=
1
2

(
1
ξ

)

c

[(
1

1 − y±

)

δ

+
(

1
1 + y±

)

δ

](
(1 − y2

±)ξ2M(3)
µ

)
Sµ|m±

× dξdy±dϕ±dφ̃(m±)
2 , (B.2)

dσ̂(3)
µ|mfα

=
(

1
ξ

)

c

(
1

1 − yfα

)

δ

(
(1 − yfα)ξ2M(3)

µ

)
Sµ|mfα

dξdyfαdϕfαdφ̃
(mfα )
2 . (B.3)

The variables used in these equations are always defined in the c.m. frame of the colliding
partons. We have denoted by ξ the energy of parton af3 , divided by

√
s/2, with s the

c.m. energy squared. In eq. (B.2), y± denotes the cosine of the angle between partons af3

and a+, while in eq. (B.3) yfα denotes the cosine of the angle between partons af3 and
afα . The quantities ϕ± and ϕfα are azimuthal angles, whose definitions are not relevant in
what follows. The plus distributions in ξ, y±, and yfα that appear in eqs. (B.2) and (B.3)
subtract the soft, initial-state collinear, and final-state collinear singularities respectively.
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By construction, the three-body phase space is

dφ3 = ξdξdy±dϕ±dφ̃(m±)
2 (B.4)

= ξdξdyfαdϕfαdφ̃
(mfα )
2 , (B.5)

where the measures dφ̃(m)
2 have the same dimensionality of the two-body phase space

dφ2, and are proportional to it in the relevant soft and collinear limits. Using eqs. (B.4)
and (B.5), we see that the unsubtracted real-emission cross sections (i.e., the quantities
obtained from eqs. (B.2) and (B.3) by replacing the plus distributions with ordinary func-
tions) are such that

dσ(3)
µ|m±

= M(3)
µ Sµ|m± dφ3 , (B.6)

dσ(3)
µ|mfα

= M(3)
µ Sµ|mfα

dφ3 . (B.7)

Hence, one defines

dΣ(3)
µ|m±

= L dσ(3)
µ|m±

, dΣ(3)
µ|mfα

= L dσ(3)
µ|mfα

, (B.8)

which is eq. (2.4).
The equations given above can now be used for the explicit construction of the MC

subtraction terms dΣ(MC)

µ|m used in the MC@NLO generating functional, eq. (2.1). In par-
ticular, the idea is to express the short-distance cross sections of MC origin, eqs. (2.15)
and (2.16), in the same form as the NLO ones, eqs. (B.2) and (B.3). Then, these cross
sections are multiplied by the luminosity factors that appear in eqs. (2.12)–(2.14) to obtain
the MC subtraction terms, by analogy with eq. (B.8).

The manipulations of the MC short-distance cross section are based on the following
observations. Firstly, the variables ξ and y± (or ξ and yfα), introduced in the FKS subtrac-
tion method for the integration of the NLO cross sections, are in one-to-one correspondence
with the Herwig++ shower variables z± and q̃2

± (or zfα and q̃2
fα

); hence, the two pairs can
be related by a change of variables. Secondly, the Born-level cross sections that appear in
eqs. (2.15) and (2.16) can be written as [24]

dσ̄(L,l)
µ′ = M(b;L,l)

µ′ dφ2 , (B.9)

with

M(b;L,l)
µ′ =

1
NL

Df(L,l)∑
f ′ Df ′

M(b)
µ′ , lim

Nc→∞
M(b)

µ′ =
∑

f ′

Df ′ . (B.10)

Here, Df ′ is the leading-Nc contribution to the Born matrix element squared, M(b)
µ′ , for a

given colour flow f ′, with f(L, l) the colour flow identified by L and l. The pre-factor NL

is equal to one or two in the case of a branching of a quark or a gluon line respectively
(the latter choice is due to the fact that a gluon has two colour partners for a given colour
flow, and one of them is chosen at random with probability equal to 1/2). In eq. (B.9),
dφ2 is the two-body phase-space, whose explicit parametrization depends on the leg that
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will eventually branch. It is clear, thus, that such a phase-space can easily be related to
dφ̃(m±)

2 or to dφ̃
(mfα )
2 .

We start by dealing with eq. (2.15), which we re-write as follows:

dσ̂(±,l)
µ

∣∣∣
MC

=
1
2ξ

[
1

1 − y±
+

1
1 + y±

](
(1 − y2

±)ξ2
dς(±,l)

µ

dφ3

∣∣∣∣∣
MC

)
dφ3

ξ
, (B.11)

dς(±,l)
µ

dφ3

∣∣∣∣∣
MC

=
αS

(2π)2
Pa′b′(z±)
ξ q̃2

±
M(b;±,l)

µ′ Θ(±,l)
dead

∂(z±, q̃2
±)

∂(ξ, y±)
dφ2

dφ̃(m±)
2

. (B.12)

In order to be able to express the measure that appears in eq. (2.15) in terms of the three-
body phase space dφ3, we have inserted a trivial factor dϕ±/(2π) on its r.h.s., and made
use of eq. (B.4). We can now insert the luminosity factors. Equations (2.12) and (2.13)
suggest we define

dL(+) = L(+)dx̄1i dx̄2i ≡ 1
z+

f (H1)
a (x̄1i/z+)f (H2)

b (x̄2i) dx̄1i dx̄2i , (B.13)

dL(−) = L(−)dx̄1i dx̄2i ≡ 1
z−

f (H1)
a (x̄1i)f

(H2)
b (x̄2i/z−) dx̄1i dx̄2i . (B.14)

As discussed in sect. 2.3, when matching a PSMC with an NLO computation, variables x̄1i

and x̄2i can be expressed in terms of their analogues used in the NLO computation (which
we have denoted by x1 and x2 in eq. (2.5)). Hence we can write

dL(±) = L(±) ∂(x̄1i, x̄2i)
∂(x1, x2)

dx1dx2 . (B.15)

Putting everything together, we are led to define

dΣ(MC)

µ|m±

dφ3
=
∂(x̄1i, x̄2i)
∂(x1, x2)

∑

l

(
L(+) dς

(+,l)
µ

dφ3

∣∣∣∣∣
MC

+ L(−) dς
(−,l)
µ

dφ3

∣∣∣∣∣
MC

)
. (B.16)

We explicitly point out that, as the notation suggests, the variables x̄1i and x̄2i have the
same functional form w.r.t. x1 and x2 regardless of whether the branching parton is a+ or
a−, and therefore one is able to factor out the jacobian factor in eq. (B.16). We also stress
that the damping factor (1 − y2

±)ξ2 that appears in eq. (B.11) is cancelled by an identical
factor in the denominator of that equation. The reason for writing eq. (B.11) in that way
is to make an explicit connection with its real-emission counterpart, eq. (B.2). In fact, in
numerical codes it turns out to be convenient to define as core functions the real-emission
matrix elements, or the MC subtraction terms, times the damping factor, for the simple
reason that these quantities are finite in the soft and collinear limits.

The treatment of final-state branchings is completely analogous to that discussed
above. We have

dσ̂(fα,l)
µ

∣∣∣
MC

=
1
ξ

1
1 − yfα

(

(1 − yfα)ξ2
dς(fα,l)

µ

dφ3

∣∣∣∣∣
MC

)
dφ3

ξ
, (B.17)

dς(fα,l)
µ

dφ3

∣∣∣∣∣
MC

=
αS

(2π)2
Pa′b′(zfα , q̃2

fα
)

ξ q̃2
fα

M(b;fα,l)
µ′ Θ(fα,l)

dead

∂(zfα , q̃2
fα

)
∂(ξ, yfα)

dφ2

dφ̃
(mfα )
2

. (B.18)
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Furthermore, from eq. (2.14) we have

dL(fα) = L(fα)dx̄1f dx̄2f ,≡ f (H1)
a (x̄1f )f (H2)

b (x̄2f ) dx̄1f dx̄2f . (B.19)

As discussed in ref. [14], in the case of final-state branchings we have x̄1f = x1 and x̄2f = x2.
Therefore

dΣ(MC)

µ|mfα

dφ3
=

∑

l

L(fα) dς
(fα,l)
µ

dφ3

∣∣∣∣∣
MC

. (B.20)
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