MC Theory Overview

Bryan Webber, University of Cambridge MC4BSM-3, CERN 10-11 March 2008

- General-purpose event generators
 - Issues

- Improving precision & modelling
 - Matching ME & PS
 - UE & intrinsic pt
 - PDFs for MC
- Conclusions?

MC4BSM3

Bryan Webber

Black Hole Event at LHC

TOTDIM = 10 MPLNCK = 1 TeV M_{BH} = 8 TeV

Issues for Event Generators

- Interfacing to BSM models
 - LH Accords, PDG codes, ..., but ...
 - Spin, showering, widths, off-shell effects
- Precision & modelling
 - Mass effects, I/N_c
 - Matching to NLO, LO n-jets, ...
 - NP: hadronization, underlying event, intrinsic pt, ...
 - Parton distributions for MC

General-Purpose Event Generators

• HERWIG

Angular-ordered shower, cluster hadronization

v6 Fortran, now Herwig++

PYTHIA

Virtuality/k_T-ordered shower, string hadronization

v6 Fortran, v8 C++

SHERPA

Virtuality-ordered shower, string/cluster hadronization

♦ C++

http://www.hepforge.org/projects

HERWIG 6

- Current status:
- Version 6.510 released on October 31st 2005
 - http://projects.hepforge.org/fherwig/
 - ~ 64,000 lines of FORTRAN, 11 authors (5 currently active)
- 6.51* will be the last FORTRAN version
- Some features:
 - Many built-in SM and MSSM processes
 - Les Houches Accord interface for arbitrary hard processes
 - Spin correlation algorithm
 - Interface to MC@NLO program (Frixione & Webber)
 - Interface to JIMMY multiple interaction underlying event model
 - Angular cutoff $\theta > m/E \ \Rightarrow$ "dead cone" for heavy quarks

Production/Decay Spin Correlations

 Example: top quark pairs in e+e- annihilation: $\rho_{\text{prod}}^{\lambda_c \lambda'_c \lambda_d \lambda'_d} = \mathcal{M}_{ab \to cd}^{\lambda_c \lambda_d} \mathcal{M}_{ab \to cd}^{*\lambda'_c \lambda'_d},$ Full spin correlations included, by factorized, $D_c^{\lambda_c \lambda_c'} = \mathcal{M}_c^{\lambda_c}_{c \text{ decay}} \mathcal{M}_c^{*\lambda_c'}_{c \text{ decay}},$ step-by-step algorithm $|\mathcal{M}|^2 = \rho_{\text{prod}}^{\lambda_c \lambda'_c \lambda_d \lambda'_d} D_c^{\lambda_c \lambda'_c} D_d^{\lambda_d \lambda'_d}$ $= \rho_{\rm prod}^{\lambda_c \lambda_c \lambda_d \lambda_d} \left(\frac{\rho_{\rm prod}^{\lambda_c \lambda_c' \lambda_d \lambda_d} D_c^{\lambda_c \lambda_c'}}{\rho_{\rm prod}^{\lambda_c \lambda_c \lambda_d \lambda_d}} \right)$ $\mathcal{M}_{\lambda_{\overline{t}}}^{\overline{t}
ightarrow\overline{b}\ell
u}\mathcal{M}_{\lambda_{\overline{t}}'}^{*\overline{t}
ightarrow\overline{b}\ell
u}$ $\times \left(\frac{\rho_{\text{prod}}^{\lambda_c \lambda'_c \lambda_d \lambda'_d} D_c^{\lambda_c \lambda'_c} D_d^{\lambda_d \lambda'_d}}{\rho_{\text{prod}}^{\lambda_c \lambda'_c \lambda_d \lambda_d} D_c^{\lambda_c \lambda'_c}} \right)$

P Richardson, JHEP11(01)029 [hep-ph/0110108]

Production/Decay Spin Correlations

• Top quark pairs in e+e- annihilation:

PYTHIA 6 status

PYTHIA has its roots in JETSET, begun in 1978 \rightarrow almost 30 years.

PYTHIA 6 still being (slightly) developed and (fully) maintained:

- multiple interactions and underlying event, with
- transverse-momentum-ordered showers
- SUSY interfaces (SLHA) and simulation
- regular bug fixes and minor improvements
- moved to CEDAR HepForge (code management, bugtracking)

Currently PYTHIA 6.413:

- 75,000 lines of code (including comments/blanks)
- 580 page PYTHIA 6.4 Physics and Manual
 - T. Sjöstrand, S. Mrenna and P. Skands,

JHEP05 (2006) 026 [hep-ph/0603175]

• + update notes, sample main programs, etc.

...but

- only add, never subtract
- \Rightarrow has become bloated and unmanageable
- is in Fortran 77, so not understood by young people

Mass Effects in PYTHIA

- Dead cone only exact for
- emission from spin-0 particle, or
- infinitely soft emitted gluon

colour	spin	γ_5	example
$1 \rightarrow 3 + \overline{3}$		_	(eikonal)
$1 \rightarrow 3 + \overline{3}$	$1 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$Z^0 \to q \overline{q}$
$3 \rightarrow 3 + 1$	$\frac{1}{2} \rightarrow \frac{1}{2} + 1$	$1,\gamma_5,1\pm\gamma_5$	$t \rightarrow bW^+$
$1 \rightarrow 3 + \overline{3}$	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	${ m H^0} ightarrow { m q} \overline{ m q}$
$3 \rightarrow 3 + 1$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	$1,\gamma_5,1\pm\gamma_5$	$t \rightarrow bH^+$
$1 \rightarrow 3 + \overline{3}$	$1 \rightarrow 0 + 0$	1	$Z^0 ightarrow \widetilde{q} \overline{\widetilde{q}}$
$3 \rightarrow 3 + 1$	$0 \rightarrow 0 + 1$	1	$\tilde{q}\to \tilde{q}'W^+$
$1 \rightarrow 3 + \overline{3}$	$0 \rightarrow 0 + 0$	1	${\sf H}^0 o {\widetilde q} {\overline {\widetilde q}}$
$3 \rightarrow 3 + 1$	$0 \rightarrow 0 + 0$	1	$\tilde{q} \to \tilde{q}' H^+$
$1 \rightarrow 3 + \overline{3}$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	$1,\gamma_5,1\pm\gamma_5$	$\chi ightarrow q\overline{\tilde{q}}$
$3 \rightarrow 3 + 1$	$0 \to \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$\mathbf{\tilde{q}} ightarrow \mathbf{q} \chi$
$3 \rightarrow 3 + 1$	$\frac{1}{2} \rightarrow 0 + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$t \rightarrow \tilde{t}\chi$
$8 \rightarrow 3 + \overline{3}$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	$1,\gamma_5,1\pm\gamma_5$	$\tilde{g} \to q \overline{\tilde{q}}$
$3 \rightarrow 3 + 8$	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$\tilde{q} \to q \tilde{g}$
$3 \rightarrow 3 + 8$	$\frac{1}{2} \to 0 + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$t\to \tilde{t}\tilde{g}$

- In general, depends on
- energy of gluon
- colour and spin of emitting particle & partner
- process-dependent mass corrections

PYTHIA Underlying Event Models

Parameter	Value	Description
MSTP(81)	0,10,20	Multiple-Parton Scattering off, for old, intermediate & new models
	1,11,21	Multiple-Parton Scattering on, for old, intermediate & new models
MSTP(82)	1 2	Multiple interactions with fixed probability & abrupt cut-off PTmin=PARP(81) or smooth turn-off at PARP(82)
MSTP(82)	3	Multiple interactions with varying impact parameter & hadronic matter overlap with single Gaussian matter distribution, with smooth turn-off at PARP(82)
MSTP(82)	4	Multiple interactions with varying impact parameter and a hadronic matter overlap with double Gaussian matter distribution (governed by PARP(83) and PARP(84)), or distribution PARP(83), both with smooth turn-off at PARP(82)

Object Oriented Event Generators

- ThePEG: Toolkit for High Energy Physics Event Generation, used by Herwig++ (and ARIADNE++?)
- Herwig++: Physics improvements from HERWIG 6
- PYTHIA 8: Implementation of physics of PYTHIA 6 plus some improvements: see http://www.thep.lu.se/~torbjorn
- SHERPA: Completely new event generator

http://www.hepforge.org/projects

Hard Processes in Herwig++

- In FORTRAN HERWIG each hard process and decay matrix element was typed in by hand.
 - Isn't a good use of time.
 - Meant that models of new physics were very hard to include.
- Herwig++ uses an entirely different philosophy.
 - A C++ helicity library based on the HELAS formalism is used for all matrix element and decay calculations.
 - Code the hard $2 \rightarrow 2$ matrix elements based on the spin structures.
 - Code the 1→2 decays in the same way and use phase space for the 1→3 decays to start with.
 - Easy to include spin correlations as we have access to the spin unaveraged matrix elements.

Herwig++ Physics and Manual, M Bähr et al. arXiv:0803:0883 M Gigg and P Richardson EPJ C51(07)989 [hep-ph/0703199]

Herwig++ New Physics: UED

PYTHIA 8 status

task

administative structure hard processes, internal resonance decays hard processes, external SUSY(+more) parameters initial-state showers final-state showers matching ME's to showers multiple interactions beam remnants & colour flow parton densities string fragmentation decays & particle data **Bose-Einstein** analysis graphical user interface tuning testing

status

operational; extensions planned much of PYTHIA 6; SUSY & TC & more to do much of PYTHIA 6; SUSY & TC & more to do interfaces to LHA F77, LHEF, PYTHIA 6 primitive SLHA2; more needed operational operational some exists; much more needed operational; extensions planned operational; alternatives to come only 2 internal, but interface to LHAPDF operational; improvements planned operational; may need updates operational; off by default (tuning) some simple tools; may be enough operational; could be extended major task for MCnet postdocs! major task for experimentalists!

Key differences between PYTHIA 6.4 and 8.1

Old features definitely removed include, among others:

- independent fragmentation
- mass-ordered showers

Features omitted so far include, among others:

- \bullet ep, $\gamma {\rm p}$ and $\gamma \gamma$ beam configurations
- several processes, especially SUSY & Technicolor

New features, not found in 6.4:

- interleaved p_{\perp} -ordered MI + ISR + FSR evolution
- richer mix of underlying-event processes (γ , J/ ψ , DY, ...)
- possibility for two selected hard interactions in same event
- possibility to use one PDF set for hard process and another for rest
- elastic scattering with Coulomb term (optional)
- updated decay data

Preliminary plans for the future:

- rescattering in multiple interactions
- NLO and L-CKKW matching

Introducing SHERPA

Automatic cross section calculators

Example: AMEGIC++

F.K., R.Kuhn, G.Soff, JHEP 0202 (2002) 044.

- Uses helicity method + multi-channeling.
 Operational mode: 2 runs.
 - Generation run:
 - Generate Feynman diagrams,
 - construct and simplify helicity amplitudes,
 - produce integration channels,
 - write out library files.
 - Compile & link libraries.
 - Production run:
 - cross section calculations,
 - parton level events.

• Implemented & tested models: SM, MSSM, ADD.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

F. Krauss

Basics of event generation for high-energy experiments

TUD

Standard Model @ Linear Collider

Consistency of HELAC/PHEGAS & AMEGIC++

T.Gleisberg, F.K., C.Papadopoulos, A.Schälicke and S.Schumann, Eur. Phys. J. C 34 (2004) 173

▲□▶▲□▶▲□▶▲□▶▲□ シ へ ??

F. Krauss

Basics of event generation for high-energy experiments

MC4BSM3

Bryan Webber

TUD

Comparison with data from Tevatron

p_{\perp} of Z-bosons in $p\bar{p} \rightarrow Z + X$

Data from CDF, Phys. Rev. Lett. 84 (2000) 845

F. Krauss

Basics of event generation for high-energy experiments

ME-PS Matching

- Two rather different objectives:
- Matching parton showers to NLO matrix elements, without double counting
 - MC@NLO
 - POWHEG
- Matching parton showers to LO n-jet matrix elements, minimizing jet resolution dependence
 - CKKW
 - Dipole
 - MLM Matching
 - Comparisons

MC@NLO

Illustrate with simple one-dim. example:

$$|\mathcal{M}_{m+1}|^2 \equiv \frac{1}{x}\mathcal{M}(x)$$

x = gluon energy or two-parton invariant mass.

Divergences regularized by $d = 4 - 2\epsilon$ dimensions. $|\mathcal{M}_m^{\text{one-loop}}|^2 \equiv \frac{1}{\epsilon}\mathcal{V}$

Cross section in d dimensions is:

$$\sigma = \int_0^1 \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) F_1^J(x) + \frac{1}{\epsilon} \mathcal{V} F_0^J$$

Infrared safety: $F_1^J(0) = F_0^J$
KLN cancellation theorem: $\mathcal{M}(0) = \mathcal{V}$

Subtraction Method

Exact identity:

$$\sigma^{J} = \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) F_{1}^{J}(x) - \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} \mathcal{V} F_{0}^{J} + \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} \mathcal{V} F_{0}^{J} + \frac{1}{\epsilon} \mathcal{V} F_{0}^{J} = \int_{0}^{1} \frac{dx}{x} \left(\mathcal{M}(x) F_{1}^{J}(x) - \mathcal{V} F_{0}^{J} \right) + \mathcal{O}(1) \mathcal{V} F_{0}^{J}.$$

→ Two separate finite integrals.

Modified Subtraction

$$\sigma^J = \int_0^1 \frac{dx}{x} \left(\mathcal{M}(x) F_1^J(x) - \mathcal{V} F_0^J \right) + \mathcal{O}(1) \, \mathcal{V} F_0^J$$

Now add parton shower:

 $F_{0.1}^J \Rightarrow$ result from showering after 0,1 emissions. But shower adds \mathcal{M}_{MC}/x to 1 emission. Must subtract this, and add to 0 emission (so that $F_{0,1}^{\text{tot}} = 1 \Rightarrow \sigma^{\text{tot}}$ fixed) $\sigma^J = \int_0^1 \frac{dx}{x} \left\{ \{\mathcal{M}(x) - \mathcal{M}_{\mathrm{MC}}(x)\} F_1^J(x) \right\}$ $- \{ \mathcal{V} - \mathcal{M}_{\mathrm{MC}}(x) \} F_0^J + \mathcal{O}(1) \mathcal{V} F_0^J$ MC good for soft and/or collinear $\Rightarrow \mathcal{M}_{MC}(0) = \mathcal{M}(0)$ 0 & 1 emission contributions separately finite now! (But some can be negative "counter-events")

MC@NLO Results

WW production at LHC

- Interpolates between MC & NLO in $p_{\rm T}^{\rm (WW)}$
- Above both at $\Delta \phi^{(WW)} \simeq 0$

S Frixione & BW, JHEP 06(2002)029

W^+W^- Spin Correlations

Plots from W. Quayle (preliminary)

H→WW: MC@NLO vs NNLO

C Anastasiou, G Dissertori, F Stöckli & BW, JHEP03(2008)017 [arXiv:0801.2682]

MC4BSM3

Bryan Webber

Underlying Event

http://projects.hepforge.org/jimmy

- Affects jet observables
- Extrapolation to LHC uncertain

UE in H→WW

- Effect of UE increases with jet size
- Effect of hadronization decreases
- May cancel in jet veto

MC@NLO & UE: bb-dijets

Intrinsic pt

3.5

2.5

1.5

0.5

SC

3

2

1

0

 $\alpha^{(\text{pert})}(\text{p}_{\perp}) + \alpha^{(\text{pert})}_{\alpha}$

- Low-scale effective $\alpha_{\rm S}$ in showers: predicts energy dependence
- Similar to ResBos (CSS resummation)

CKKW Matching

- Use Matrix Elements down to scale Q1
- Use Parton Showers below Q1
- Correct ME by reweighting
- Correct PS by vetoing
- Ensure that Q₁ cancels (to NLL)

S Catani, F Krauss, R Kuhn & BW, JHEP11 (2001) 063

Example: e⁺e⁻→ hadrons

• 2- & 3-jet rates at scale Q₁:

$$R_{2}(Q,Q_{1}) = \left[\Delta_{q}(Q,Q_{1})\right]^{2},$$

$$R_{3}(Q,Q_{1}) = 2\Delta_{q}(Q,Q_{1})\int_{Q_{1}}^{Q}dq \frac{\Delta_{q}(Q,Q_{1})}{\Delta_{q}(q,Q_{1})}\Gamma_{q}(Q,q)$$

$$\times \Delta_{q}(q,Q_{1})\Delta_{g}(q,Q_{1})$$

$$= 2\left[\Delta_{q}(Q,Q_{1})\right]^{2}\int_{Q_{1}}^{Q}dq \Gamma_{q}(Q,q)\Delta_{g}(q,Q_{1})$$

$$\Gamma_{q}(Q,q) = \frac{2C_{F}}{\pi}\frac{\alpha_{S}(q)}{q}\left(\ln\frac{Q}{q} - \frac{3}{4}\right)$$

CKKW reweighting

- Choose n according to $R_n(Q, Q_1)$ (LO) - use $[\alpha_S(Q_1)]^n$
- Use exact LO ME to generate n partons
- Construct "equivalent shower history"
 preferably using k_T-type algorithm
- Weight vertex at scale q by $\alpha_{\rm S}(q)/\alpha_{\rm S}(Q_1) < 1$
- Weight parton of type i from Q_j to Q_k by

$$\Delta_i(Q_j, Q_1) / \Delta_i(Q_k, Q_1)$$

CKKW shower veto

- Shower n partons from "creation scales"

 includes coherent soft emission
- Veto emissions at scales above Q1

 cancels leading (LL&NLL) Q1 dependence

Comparisons with Tevatron data

from JM Campbell, JW Huston & WJ Stirling, Rept. Prog. Phys. 70(2007)89

M.E. + PYTHIA CKKW looks good

Dipole Matching

- Implemented in ARIADNE dipole MC
- Dipole cascade replaces parton shower
- Construct equivalent dipole history {p_{Ti}}
- Rejection replaces Sudakov weights

- cascade from p_{Ti} , reject if $p_T > p_{Ti+1}$

L Lönnblad, JHEP05(2002)046

MLM Matching

- Use cone algorithm for jet definition: $R_{ij}^{2} = (\eta_{i} - \eta_{j})^{2} + (\phi_{i} - \phi_{j})^{2}$ $E_{Ti} > E_{Tmin}, R_{ij} > R_{min}$
- Generate n-parton configurations with $E_{Ti} > E_{Tmin}, R_{ij} > R_{min}$ (no Sudakov weights)
- Generate showers (no vetos)
- Form jets using same jet definition
- Reject event if njets \neq npartons

Comparisons

- ALPGEN: MLM matching
- ARIADNE: Dipole matching
- HELAC: MLM matching
- MadEvent: hybrid MLM/CKKW
- SHERPA: CKKW matching

J.Alwall el al., EPJ C53(08)473 [arXiv:0706.2569]

W + Multijets (Tevatron)

W + Multijets (LHC)

W + Multijets (LHC)

MC4BSM3

Bryan Webber

PDFs for LO MCs

- Lack of NLO \Rightarrow large LO gluon
- Fast evolution at low $Q^2 \Rightarrow$ large α_s
- Proposal: use NLO α_s , no mom. cons'n \Rightarrow Good fits, close to NLO

A Sherstnev & RS Thorne arXiv:0711.2473

LO* PDFs

Drell-Yan Cross-section at LHC for 80 GeV with Different Orders

pp	\rightarrow	jj

pdf type	matrix	$\sigma~(\mu { m b})$	K-factor
	element		
NLO	NLO	183.2	
LO	LO	149.8	1.22
NLO	LO	115.7	1.58
LO*	LO	177.5	1.03

 $pp \to H$

pdf type	matrix	σ (pb)	K-factor
	element		
NLO	NLO	38.0	
LO	LO	22.4	1.70
NLO	LO	20.3	1.87
LO*	LO	32.4	1.17

Conclusions?

- New generation of OO MCs
 More adaptable for BSM
 Need user feedback and tuning
 Continuous improvements
 Precision: NLO & n-jet matching
 - Modelling: UE, PDFs, intrinsic pt, ...