QCD and Collider Phenomenology

> Bryan Webber IPMU/KEK Lectures

September 2009

Lecture 3: Matching Fixed Order Matrix Elements with Parton Showers

QCD and Collider Phenomenology

ME-PS Matching

- Two rather different objectives:
- Matching parton showers to NLO matrix elements, without double counting
 - MC@NLO
 - POWHEG
- Matching parton showers to LO n-jet matrix elements, minimizing jet resolution dependence
 - CKKW
 - Dipole
 - MLM Matching
 - Comparisons

MC@NLO

Consider a simple one-dim. example:

$$|\mathcal{M}_{m+1}|^2 \equiv \frac{1}{x}\mathcal{M}(x)$$

x = gluon energy or two-parton invariant mass.

Divergences regularized by $d = 4 - 2\epsilon$ dimensions.

$$|\mathcal{M}_m^{\text{one-loop}}|^2 \equiv \frac{1}{\epsilon} \mathcal{V}$$

Cross section in d dimensions is:

$$\sigma = \int_0^1 \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) F_1^J(x) + \frac{1}{\epsilon} \mathcal{V} F_0^J$$

Infrared safety: $F_1^J(0) = F_0^J$
KLN cancellation theorem: $\mathcal{M}(0) = \mathcal{V}$

Subtraction Method

Exact identity:

$$\sigma^{J} = \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) F_{1}^{J}(x) - \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} \mathcal{V} F_{0}^{J} + \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} \mathcal{V} F_{0}^{J} + \frac{1}{\epsilon} \mathcal{V} F_{0}^{J} = \int_{0}^{1} \frac{dx}{x} \left(\mathcal{M}(x) F_{1}^{J}(x) - \mathcal{V} F_{0}^{J} \right) + \mathcal{O}(1) \mathcal{V} F_{0}^{J}.$$

→ Two separate finite integrals.

Modified Subtraction

$$\sigma^J = \int_0^1 \frac{dx}{x} \left(\mathcal{M}(x) F_1^J(x) - \mathcal{V} F_0^J \right) + \mathcal{O}(1) \, \mathcal{V} F_0^J$$

Now add parton shower:

 $F_{0.1}^J \Rightarrow$ result from showering after 0,1 emissions. But shower adds \mathcal{M}_{MC}/x to 1 emission. Must subtract this, and add to 0 emission (so that $F_{0,1}^{\text{tot}} = 1 \Rightarrow \sigma^{\text{tot}}$ fixed) $\sigma^J = \int_0^1 \frac{dx}{x} \left\{ \{\mathcal{M}(x) - \mathcal{M}_{\mathrm{MC}}(x)\} F_1^J(x) \right\}$ $- \{ \mathcal{V} - \mathcal{M}_{\mathrm{MC}}(x) \} F_0^J + \mathcal{O}(1) \mathcal{V} F_0^J$ MC good for soft and/or collinear $\Rightarrow \mathcal{M}_{MC}(0) = \mathcal{M}(0)$ 0 & 1 emission contributions separately finite now! (But some can be negative "counter-events")

MC@NLO Processes

IPROC	IV	IL_1	IL_2	Spin	Process
-1350-IL				\checkmark	$H_1H_2 \to (Z/\gamma^* \to) l_{\rm IL}\bar{l}_{\rm IL} + X$
-1360-IL				\checkmark	$H_1H_2 \to (Z \to) l_{\rm IL}\bar{l}_{\rm IL} + X$
-1370-IL				\checkmark	$H_1H_2 \to (\gamma^* \to) l_{\rm IL}\bar{l}_{\rm IL} + X$
-1460 - IL				\checkmark	$H_1H_2 \to (W^+ \to) l_{\rm IL}^+ \nu_{\rm IL} + X$
-1470 - IL				\checkmark	$H_1H_2 \to (W^- \to) l_{\rm IL}^- \bar{\nu}_{\rm IL} + X$
-1396				×	$H_1H_2 \to \gamma^* (\to \sum_i f_i \bar{f}_i) + X$
-1397				Х	$H_1H_2 \to Z^0 + X$
-1497				X	$H_1H_2 \to W^+ + X$
-1498				×	$H_1H_2 \to W^- + X$
-1600-ID					$H_1H_2 \to H^0 + X$
-1705					$H_1H_2 \rightarrow b\bar{b} + X$
-1706		7	7	Х	$H_1H_2 \to t\bar{t} + X$
-1706		i	j	\checkmark	$H_1H_2 \to (t \to)bl_i^+ \nu_i(\bar{t} \to)\bar{b}l_j^- \bar{\nu}_j + X$
-2000 - IC		7		×	$H_1H_2 \to t/\bar{t} + X$
-2000 - IC		i		\checkmark	$H_1H_2 \to (t \to)bl_i^+ \nu_i/(\bar{t} \to)\bar{b}l_i^- \bar{\nu}_i + X$
-2001-IC		7		Х	$H_1H_2 \to \bar{t} + X$
-2001-IC		i		\checkmark	$H_1H_2 \to (\bar{t} \to)\bar{b}l_i^- \bar{\nu}_i + X$
-2004 - IC		7		X	$H_1H_2 \to t + X$
-2004 - IC		i		\checkmark	$H_1H_2 \to (t \to)bl_i^+ \nu_i + X$
-2600 - ID	1	7		Х	$H_1H_2 \to H^0W^+ + X$
-2600-ID	1	i		\checkmark	$H_1H_2 \to H^0(W^+ \to) l_i^+ \nu_i + X$
-2600 - ID	-1	7		Х	$H_1H_2 \to H^0W^- + X$
-2600-ID	-1	i		\checkmark	$H_1H_2 \to H^0(W^- \to) l_i^- \bar{\nu}_i + X$
-2700-ID	0	7		Х	$H_1H_2 \to H^0Z + X$
-2700-ID	0	i		\checkmark	$H_1H_2 \to H^0(Z \to) l_i \bar{l}_i + X$
-2850		7	7	X	$H_1H_2 \to W^+W^- + X$
-2850		i	j	\checkmark	$H_1H_2 \rightarrow (W^+ \rightarrow) l_i^+ \nu_i (W^- \rightarrow) l_j^- \bar{\nu}_j + X$
-2860		7	7	×	$H_1 H_2 \to Z^0 Z^0 + X$
-2870		7	7	×	$H_1 H_2 \to W^+ Z^0 + X$
-2880		7	7	×	$H_1 H_2 \to W^- Z^0 + X$

MC@NLO Results

WW production at LHC

- Interpolates between MC & NLO in $\mathrm{p}_{\mathrm{T}}^{(\mathrm{WW})}$
- Above both at $\Delta \phi^{(WW)} \simeq 0$

S Frixione & BW, JHEP 06(2002)029

QCD and Collider Phenomenology

W^+W^- : MC@NLO vs Resummations

Plots from M. Grazzini JHEP 0601(2006)095

▶ Highly non-trivial test (of both computations) for *shapes* and *rates* !

- $M_{\text{TWW}} = \sqrt{(E_{Tll} + \not\!\!\!E_T)^2 (\mathbf{p}_{Tll} + \not\!\!\!p_T)^2} \text{ where } E_{Tll} = \sqrt{\mathbf{p}_{Tll}^2 + m_{ll}^2}$ and $\not\!\!\!\!E_T \equiv \sqrt{\mathbf{p}_T^2 + m_{ll}^2}$ (Rainwater & Zeppenfeld)
- ► Cuts involved in definition of M_{TWW} : $\Delta \phi_{l^+l^-} < \pi/4$, $M_{l^+l^-} < 35 \text{ GeV}$, $p_{\text{Tmin}}^{(l^+,l^-)} > 25 \text{ GeV}$, $35 < p_{\text{Tmax}}^{(l^+,l^-)} < 50 \text{ GeV}$, $p_{\text{T}}^{\text{WW}} < 30 \text{ GeV}$

QCD and Collider Phenomenology

W^+W^- Spin Correlations

Plots from W. Quayle (preliminary)

Top pair production at Tevatron

- Mass spectrum slightly softer than LO MC
- FB asymmetry: a purely NLO effect

FB asymmetry in tt frame

- Asymmetry increases strongly with invariant mass
- New physics should increase even more strongly

Dilepton correlation at LHC

b Production: PS MC vs MC@NLO

In parton shower MC's, 3 classes of processes can contribute:

• All are needed to get close to data (RD Field, hep-ph/0201112):

QCD and Collider Phenomenology

GSP and FEX contributions in HERWIG PS MC

• GSP, FEX and FCR are complementary and all must be generated

- ♦ GSP cutoff (PTMIN) sensitivity depends on cuts and observable
- \clubsuit FEX sensitive to bottom PDF
- ♦ GSP efficiency very poor, $\sim 10^{-4}$
- All these problems are avoided with MC@NLO!

QCD and Collider Phenomenology

MC@NLO: B Production at Tevatron

• $B \to J/\psi$ results from Tevatron Run II \Rightarrow B hadrons

Good agreement (and MC efficiency)

S Frixione, P Nason & BW, JHEP 0308(2003)007 M Cacciari et al., JHEP 0407(2004)033

MC@NLO Di-b Jet Production

- ► These observables are very involved (*b*-jets at hadron level) and cannot be computed with analytical techniques;
- ► The underlying event in Pythia is fitted to data; default Herwig model (used in MC@NLO) does not fit data well (lack of MPI).

MC@NLO b-Jets: Improved Underlying Event

► The JIMMY underlying event model includes multiple parton interactions and interfaces to Herwig ⇒ interfaces to MC@NLO

► The importance of the underlying event shows the necessity of embedding precise computations in a Monte Carlo framework.

MC@NLO: Higgs Production at LHC

V Del Duca, S Frixione, C Oleari & BW, in prep.

Good agreement with state-of-the-art resummation

QCD and Collider Phenomenology

POWHEG

Positive Weight Hardest Emission Generator

- Method to generate hardest emission first, with NLO accuracy, independent of PSEG
- Can be interfaced to any PSEG
- No negative weights
- Inaccuracies only affect next-to-hardest emission
- In principle, needs 'truncated showers'

P Nason & G Ridolfi, JHEP08(2006)077 S Frixione, P Nason & G Ridolfi, JHEP09(2007)126 S Frixione, P Nason & C Oleari, JHEP11(2007)070

POWHEG

How it works (roughly)

In words: works like a standard Shower MC for the hardest radiation, with care to maintain higher accuracy.

Inclusive cross section \implies NLO inclusive cross section. Positive if NL < LO

$$\Phi_n = \text{Born variables} \\ \Phi_r = \text{radiation vars.} \qquad \bar{B}(\Phi_n) = B(\Phi_n) + \underbrace{\begin{bmatrix} \text{INFINITE} \\ V(\Phi_n) \end{bmatrix}}_{\text{FINITE}} + \underbrace{\int R(\Phi_n, \Phi_r) \, d\Phi_r}_{\text{FINITE}}$$

Sudakov form factor for hardest emission built from exact NLO real emission

$$\Delta_t = \exp\left[-\underbrace{\int \theta(t_r - t) \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} d\Phi_r}_{\text{FINITE because of θ function}}\right]$$

with $t_r = k_T(\Phi_n, \Phi_r)$, the transverse momentum for the radiation.

QCD and Collider Phenomenology

POWHEG and MC@NLO comparison: Top pair production

Good agreement for all observable considered (differences can be ascribed to different treatment of higher order terms)

POWHEG for e⁺e[−]→ hadrons

O Latunde-Dada, S Gieseke, BW, JHEP02 (2007) 051

Truncated Shower

- In angular-ordered shower, hardest emission is not necessarily the first
- Need to add softer, wider-angle emissions
- Checked for up to one such emission in e⁺e⁻

Effect o	f trunca	ted s	hower

Observable	Herwig++ ME	POWHEG with truncated shower	POWHEG w/o truncated shower
1 - T	36.52	9.03	9.81
Thrust Major	267.22	36.44	37.65
Thrust Minor	190.25	86.30	90.59
Oblateness	7.58	6.86	6.28
Sphericity	9.61	7.55	9.01
Aplanarity	8.70	22.96	25.33
Planarity	2.14	1.19	1.45
C Parameter	96.69	10.50	11.14
D Parameter	84.86	8.89	10.88
$M_{ m high}$	14.70	5.31	6.61
$M_{ m low}$	7.82	12.90	13.44
$M_{ m diff}$	5.11	1.89	2.09
$B_{ m max}$	39.50	11.42	12.17
B_{\min}	45.96	35.2	36.16
$B_{ m sum}$	91.03	28.83	30.58
$B_{ m diff}$	8.94	1.40	1.14
N_{ch}	43.33	1.58	10.08
$\langle \chi^2 \rangle / \text{bin}$	56.47	16.96	18.49

Table 2: χ^2 /bin for all observables we studied.

Small but beneficial effect

CKKW Matching

- Use Matrix Elements down to scale Q₁
- Use Parton Showers below Q₁
- Correct ME by reweighting
- Correct PS by vetoing
- Ensure that Q₁ cancels (to NLL)

S Catani, F Krauss, R Kuhn & BW, JHEP11 (2001) 063

Example: e⁺e - hadrons

• 2- & 3-jet rates at scale Q₁:

$$R_{2}(Q,Q_{1}) = [\Delta_{q}(Q,Q_{1})]^{2},$$

$$R_{3}(Q,Q_{1}) = 2\Delta_{q}(Q,Q_{1})\int_{Q_{1}}^{Q}dq \frac{\Delta_{q}(Q,Q_{1})}{\Delta_{q}(q,Q_{1})}\Gamma_{q}(Q,q)$$

$$\times \Delta_{q}(q,Q_{1})\Delta_{g}(q,Q_{1})$$

$$= 2[\Delta_{q}(Q,Q_{1})]^{2}\int_{Q_{1}}^{Q}dq \Gamma_{q}(Q,q)\Delta_{g}(q,Q_{1})$$

$$\Gamma_{q}(Q,q) = \frac{2C_{F}}{\pi}\frac{\alpha_{S}(q)}{q}\left(\ln\frac{Q}{q}-\frac{3}{4}\right)$$

QCD and Collider Phenomenology

 \sim

CKKW reweighting

- Choose n according to $R_n(Q, Q_1)$ (LO) - use $[\alpha_S(Q_1)]^n$
- Use exact LO ME to generate n partons
- Construct "equivalent shower history"
 preferably using k_T-type algorithm
- Weight vertex at scale q by $\alpha_{\rm S}(q)/\alpha_{\rm S}(Q_1) < 1$
- Weight parton of type i from Q_j to Q_k by $\Delta_i(Q_j,Q_1)/\Delta_i(Q_k,Q_1)$

CKKW shower veto

- Shower n partons from "creation scales"

 includes coherent soft emission
- Veto emissions at scales above Q1

 cancels leading (LL&NLL) Q1 dependence

Comparisons with Tevatron data

Figure 8: Jet p_T in $N_{\text{jet}} \ge 1$ and $N_{\text{jet}} \ge 2$ events compared to data from CDF [66].

Figure 9: Jet multiplicity and jet p_T in $N_{jet} \ge 2$ events compared to data from CDF [66].

S Hoeche, F Krauss, S Schumann & F Siegert, JHEP05(2009)053

QCD and Collider Phenomenology

Dipole Matching

- Implemented in ARIADNE dipole MC
- Dipole cascade replaces parton shower
- Construct equivalent dipole history {p_{Ti}}
- Rejection replaces Sudakov weights
 - cascade from p_{Ti} , reject if $p_T > p_{Ti+1}$

L Lönnblad, JHEP05(2002)046

MLM Matching

- Use cone algorithm for jet definition: $R_{ij}^{2} = (\eta_{i} - \eta_{j})^{2} + (\phi_{i} - \phi_{j})^{2}$ $E_{Ti} > E_{Tmin}, R_{ij} > R_{min}$
- Generate n-parton configurations with E_{Ti} > E_{Tmin}, R_{ij} > R_{min} (no Sudakov weights)
- Generate showers (no vetos)
- Form jets using same jet definition
- Reject event if $n_{jets} \neq n_{partons}$

Comparisons

- ALPGEN: MLM matching
- ARIADNE: Dipole matching
- HELAC: MLM matching
- MadEvent: hybrid MLM/CKKW
- SHERPA: CKKW matching

J.Alwall el al., EPJC 53 (2008) 473

W + Multijets (Tevatron)

W + Multijets (Tevatron)

W + Multijets (LHC)

W + Multijets (LHC)

Summary of Lecture 3

- Matching Parton Showers to Matrix Elements comes in different forms:
 - matching to NLO for better precision
 - matching to LO for multijets
- MC@NLO is main scheme for NLO matching
 - newer POWHEG method looks promising
- Several options for LO multijets
 - reasonably consistent
 - spread indicates uncertainties (?)
- Field still very active
 - NLO matching for jets, spin correlations,...
 - building multijet matching into event generators