Determining Masses and Spins of New Particles (with missing energy)

> Bryan Webber Cambridge University

KEK seminar 18 September 2009

Outline

- Mass determination
 - M_{T2} variable
 - Jet contamination
 - Solving decay chains
 - Inclusive' observables
- Spin determination
 - Decay chains
 - Dileptons
 - Three-body decays
 - Cross sections

Mass determination with M_{T2}

M_{T2} variable

 $m_{T2}^{2}(\mu_{N}) \equiv \min_{\substack{\mathbf{p}_{T}^{1} + \mathbf{p}_{T}^{2} = \not{p}_{T}}} \left[\max\{m_{T}^{2}(\mathbf{p}_{T}^{1}, \mathbf{p}_{T}^{a}; \mu_{N}), m_{T}^{2}(\mathbf{p}_{T}^{2}, \mathbf{p}_{T}^{b}; \mu_{N}) \} \right]$ $\leq m_{Y}^{2} \text{ when } \mu_{N} = m_{N}$

CDF top mass from MT2

CDF note 9679

• 0.2 $fb^{-1} \Rightarrow m_{t} = 168.0 \pm 5.6/-5.0$ GeV (prelim.)

Top mass from M_{T2} at LHC

Cho, Choi, Kim & Park, 0804.2185

Input mass 170.9 GeV; PYTHIA+PGS; b-tagging 50%

• 10 fb⁻¹ @ LHC (14 TeV) => $m_t = 171.1 + / - 1.1 \text{ GeV}$

Initial-state QCD radiation

Irreducible source of "jet contamination"

Jet contamination

- Fully leptonic $t\overline{t}$: 2 jets (+2 leptons + MET)
- Matched = top decay parton within ΔR =0.5 and $\Delta E/E$ =0.3
- Generated with MC@NLO (no underlying event)

Half of events have an extra jet

E_T ordering of jets

P(1 or both leading jets unmatched) > 50%

Reducing jet contamination

Idea: demand more jets, select lowest M_{T2}
 As long as one is correct, this cannot raise edge

Alwall, Hiramatsu, Nojiri & Shimizu, 0905.1201

- 7 fb⁻¹ MC@NLO, no b-tagging
- > 50% events have extra jets
- Hardest 2 jets (red) =>
 ISR contaminates edge
- Smallest M_{T2} from 3 hardest (blue) => less contamination

Solving decay chains

- Measure visible momenta I...n, I'...n' and missing pT
 - 6 unknown momentum components per event
 - n+n'+2 on-mass-shell constraints per event

■ N_m unknown masses → we need $N_{ev}(n+n'-4) \ge N_m$ to solve for masses

• Identical chains: n=n', $N_m = n+1 \rightarrow need N_{ev} = 2$ for n=3,4Non-identical (N=N'): $N_m = n+n'+1 \rightarrow need N_{ev} = 6$ for n+n'=5

Solving pairs of events

12

• Two identical chains

• SPS la masses

$\widetilde{\chi}_1^0$	$\widetilde{\chi}_2^0$	\widetilde{u}_L	\widetilde{e}_R
96	177	537	143

Chen, Gunion, Han, McElrath 0905.1344

Fitting decay chains

- Assume a mass hypothesis: if n+n' > 4 then each event is over-constrained
- E.g. if n, n'=3, can solve for p_N, p_{N'}
 Nojiri, Polesello, Tovey 0712.2718
- Measure goodness of fit by

$$\xi^2 = (p_N^2 - M_N^2)^2 + (p_{N'}^2 - M_{N'}^2)^2$$

• N.B.
$$p_N^2 - M_N^2 = p_Z^2 - M_Z^2 = p_Y^2 - M_Y^2 =$$

Best-fit points for 100 samples of 25 events (all combinations)

Y

Y۲

2'

Ζ

Z

Kawagoe, Nojiri, Polesello,

hep-ph/0410160

BW 0905.1344

n

Ν

N'

 n^{2}

Effects of jet contamination and background under study

Global Inclusive Observables

Inclusive observables

- How can jets from hard subprocess be distinguished from ISR jets?
- In principle, there is no way! So let's look at "global inclusive" observables
- Consider e.g. the total invariant mass M visible in the detector:

$$M = \sqrt{E^2 - P_z^2 - \not\!\!E_T^2}$$

or (Konar, Kong & Matchev, 0812.1042)

$$\hat{s}_{\min}^{1/2}(M_{\rm inv}) = \sqrt{M^2 + \not\!\!E_T^2} + \sqrt{M_{\rm inv}^2 + \not\!\!E_T^2}$$

Inclusive observables: MC results

Konar, Kong, Matchev, 0812.1042

Mass & Spin Determination

ISR effects on inclusive observables

$$\frac{d\sigma}{dM^2} = \int \frac{d\bar{x}_1}{\bar{x}_1} \frac{d\bar{x}_2}{\bar{x}_2} dx_1 dx_2 f(\bar{x}_1, Q_c) f(\bar{x}_2, Q_c) K\left(\frac{x_1}{\bar{x}_1}; Q_c, Q\right) K\left(\frac{x_2}{\bar{x}_2}; Q_c, Q\right) \hat{\sigma}(x_1 x_2 S) \delta(M^2 - \bar{x}_1 \bar{x}_2 S)$$

• ISR at
$$\theta > \theta_c \sim \exp(-\eta_{\max})$$
 enters detector
• Hard scale $Q^2 \sim \hat{s} = x_1 x_2 S$ but $M^2 = \bar{x}_1 \bar{x}_2 S$
• PDFs sampled at $Q_c \sim \theta_c Q$

A Papaefstathiou & BW, 0903.2013

Mass & Spin Determination

KEK 18/09/2009

ISR Effects: MC Results

$$\hat{s}_{\min}^{1/2}(M_{\rm inv}) = \sqrt{M^2 + \not\!\!E_T^2} + \sqrt{M_{\rm inv}^2 + \not\!\!E_T^2}$$

$$M = \sqrt{E^2 - P_z^2 - E_T^2} \qquad H_T = E_T + E_T$$

Mass & Spin Determination

KEK 18/09/2009

Dependence on η_{max}

• E, M, \hat{s}_{min} strongly dependent; \not{E}_T , E_T , H_T not

Conclusions on Masses

- M_{T2} will be an important observable
 - New ideas on reducing ISR jet contamination
- Decay chains: solving vs fitting
 - Which is more robust w.r.t. ISR & background?
- Global inclusive observables
 - Only transverse observables are robust
 - Scale information from others?

Spin Determination with ...

- Sequential decay chains
- Dileptons
- Three-body decays
- Cross sections

See also: review by Wang & Yavin, 0802.2726

• Two distinct helicity structures, with different spin correlations:

- Process 1: $\{q, l^{\text{near}}, l^{\text{far}}\} = \{q_L, l_L^-, l_L^+\}$ or $\{\bar{q}_L, l_L^+, l_L^-\}$ or $\{q_L, l_R^+, l_R^-\}$ or $\{\bar{q}_L, l_R^-, l_R^+\}$;
- Process 2: $\{q, l^{\text{near}}, l^{\text{far}}\} = \{q_L, l_L^+, l_L^-\}$ or $\{\bar{q}_L, l_L^-, l_L^+\}$ or $\{q_L, l_R^-, l_R^+\}$ or $\{\bar{q}_L, l_R^+, l_R^-\}$.

Smillie, Webber, hep-ph/0507170 Datta, Kong, Matchev hep-ph/0509246

$\stackrel{\bullet}{\rightarrow} \theta^* \text{ defined in } \widetilde{\chi}_2^0/Z^* \text{ rest frame}$ $\stackrel{\bullet}{\rightarrow} \theta, \phi \text{ defined in } \widetilde{l}/l^* \text{ rest frame}$

Invariant masses

•
$$ql^{near}$$
: $m_{ql}/(m_{ql})_{max} = \sin(\theta^*/2)$
• $l^{near}l^{far}$: $m_{ll}/(m_{ll})_{max} = \sin(\theta/2)$
• ql^{far} : $m_{ql}/(m_{ql})_{max} = \frac{1}{2} \left[(1-y)(1-\cos\theta^*\cos\theta) + (1-y)(\cos\theta^*-\cos\theta) - 2\sqrt{y}\sin\theta^*\sin\theta\cos\phi \right]^{\frac{1}{2}}$

where
$$x = m_{Z^*}^2 / m_{q^*}^2$$
, $y = m_{l^*}^2 / m_{Z^*}^2$, $z = m_{\gamma^*}^2 / m_{l^*}^2$

Helicity dependence

• Process I (UED, transverse Z^* : $P_T/P_L = 2x$)

$\begin{array}{c|c} & & & & \\ \hline q_L & q^* & Z^* & \\ \hline l^* \end{array}$

 \blacksquare Both prefer high $(ql^-)^{near}$ invariant mass

UED and **SUSY** mass spectra

• UED models tend to have quasi-degenerate spectra

γ^*	Z^*	q_L^*	l_R^*	l_L^*
501	536	598	505	515

Table 1: UED masses in GeV, for $R^{-1} = 500 \text{GeV}, \Lambda R = 20, m_h = 120 \text{GeV}, \overline{m}_h^2 = 0$ and vanishing boundary terms at cut-off scale Λ .

 $(M_n \sim n/R)$ broken by boundary terms and loops, with low cutoff)

• SUSY spectra typically more hierarchical

$\widetilde{\chi}_1^0$	$\widetilde{\chi}^0_2$	\widetilde{u}_L	\widetilde{e}_R	\widetilde{e}_L
96	177	537	143	202

(high-scale universality)

Table 2: SUSY masses in GeV, forSPS point 1a.

ql^{near}mass distribution

UED and SUSY not distinguishable for UED masses

ql^{far} mass distribution

UED masses

Correlation weak but slightly enhances UED-SUSY difference

Jet + lepton mass distribution

Not resolvable for UED masses, maybe for SUSY masses
 Charge asymmetry due to quark vs antiquark excess

Production cross sections (pb)

Masses	Model	$\sigma_{ m all}$	σ_{q^*}	$\sigma_{ar{q}^*}$	f_q
UED	UED	253	163	84	0.66
UED	SUSY	28	18	9	0.65
SPS 1a	UED	433	224	80	0.74
SPS 1a	SUSY	55	26	11	0.70

 $\Rightarrow \sigma_{\text{UED}} \gg \sigma_{\text{SUSY}} \text{ for same masses (100 pb = 1/sec)}$ $\Rightarrow q^*/\bar{q}^* \sim 2 \Rightarrow \text{ charge asymmetry}$

Charge asymmetry at detector level

A Barr, hep-ph/0405052

- Same decay chain: $\tilde{q}_L \rightarrow \tilde{\chi}_2^0 q_L \rightarrow \tilde{l}_R^{\pm} l^{\mp} q_L$
- Different MSSM point (now excluded)
- Compared with no spin (i.e. phase space) only
- More careful study of background and detector effects
- Points are for 500 fb⁻¹

0.2 parton level x 0.6 0.15 detector level 0.1 no spin 0.05 0 -0.05 -0.1 -0.15 100 200 300 **400 500** () m_{la} / GeV

See also: Goto, Kawagoe, Nojiri, hep-ph/0406317

Used HERWIG

Gluino spin correlations

Lowest mass dijet ~ (12)

Medium mass dijet ~ (23)

Krämer, Popenda, Spira, Zerwas, 0902.3795

Production/Decay Spin Correlations in Herwig

• Example: top quark pairs in e+e- annihilation:

$$\rho_{\text{prod}}^{\lambda_c \lambda'_c \lambda_d \lambda'_d} = \mathcal{M}_{ab \to cd}^{\lambda_c \lambda_d} \mathcal{M}_{ab \to cd}^{*\lambda'_c \lambda'_d},$$
$$D_c^{\lambda_c \lambda'_c} = \mathcal{M}_c^{\lambda_c} \operatorname{decay} \mathcal{M}_c^{*\lambda'_c} \operatorname{decay},$$
$$|\mathcal{M}|^2 = \rho_{\text{prod}}^{\lambda_c \lambda'_c \lambda_d \lambda'_d} D_c^{\lambda_c \lambda'_c} D_d^{\lambda_d \lambda'_d}$$
$$= \rho_{\text{prod}}^{\lambda_c \lambda_c \lambda_d \lambda_d} \left(\frac{\rho_{\text{prod}}^{\lambda_c \lambda'_c \lambda_d \lambda_d} D_c^{\lambda_c \lambda'_c}}{\rho_{\text{prod}}^{\lambda_c \lambda_c \lambda_d \lambda_d}} \right)$$
$$\times \left(\frac{\rho_{\text{prod}}^{\lambda_c \lambda'_c \lambda_d \lambda'_d} D_c^{\lambda_c \lambda'_c} D_d^{\lambda_d \lambda'_d}}{\rho_{\text{prod}}^{\lambda_c \lambda'_c \lambda_d \lambda_d} D_c^{\lambda_c \lambda'_c}} \right)$$

Richardson, hep-ph/0110108

Top spin correlations in Herwig

SM, SUSY & UED in Herwig++

Hw++ manual: Bähr et al., 0803.0883

Dileptons

Dileptons in "classic" chain

 $\frac{dP^{UED}}{d\widehat{m}_{ll}} = \frac{4\widehat{m}_{ll}}{(2+y)(1+2z)} \left[y + 4z + (2-y)(1-2z)\widehat{m}_{ll}^2 \right]$ • $y = m_{l^*}^2 / m_{z^*}^2$ and $z = m_{\gamma^*}^2 / m_{l^*}^2$ • UED: y = 0.92 z = 0.95• SPS Ia: y = 0.65 z = 0.45Sensitivity greatest at small y and z

Dilepton mass distribution

Dilepton mass distribution (2)

 $y = m_{l^*}^2/m_{Z^*}^2 = 0.65$, $z = m_{\gamma^*}^2/m_{l^*}^2 = 0.95 - 0.05$

Independent of masses and spins at $\hat{m} = 1/\sqrt{2}$ ($\theta = \pi/2$)

All possible spin assignments

Athanasiou, Lester, Smillie, Webber, hep-ph/0605286

All possible assignments (2)

Allowing arbitrary mixtures of L and R couplings:

Proces	ses P_{11}	Proces	ses P_{12}
$\{q_L, \ell_L^-, \ell_L^+\}\ f c_L ^2 b_L ^2 a_L ^2$	$egin{array}{l} \{ar{q}_L,\ell_L^+,\ell_L^-\}\ ar{f} c_L ^2 b_L ^2 a_L ^2 \end{array}$	$ \begin{array}{c c} \{q_L, \ell_L^-, \ell_R^+\} \\ f c_L ^2 b_L ^2 a_R ^2 \end{array} $	$\frac{\{\bar{q}_L, \ell_L^+, \ell_R^-\}}{\bar{f} c_L ^2 b_L ^2 a_R ^2}$
$\{ar{q}_L, \ell^R, \ell^+_R\}\ ar{f} c_L ^2 b_R ^2 a_R ^2$	$\{q_L, \ell_R^+, \ell_R^-\}\ f c_L ^2 b_R ^2 a_R ^2$	$\frac{\{\bar{q}_L, \ell_R^-, \ell_L^+\}}{\bar{f} c_L ^2 b_R ^2 a_L ^2}$	$ \begin{array}{c} \{q_L, \ell_R^+, \ell_L^-\} \\ f c_L ^2 b_R ^2 a_L ^2 \end{array} $
$\{ q_R, \ell^R, \ell^+_R \} \ f c_R ^2 b_R ^2 a_R ^2$	$\frac{\{\bar{q}_{R}, \ell_{R}^{+}, \ell_{R}^{-}\}}{\bar{f} c_{R} ^{2} b_{R} ^{2} a_{R} ^{2}}$	$egin{array}{l} \{q_R, \ell^R, \ell^+_L\}\ f c_R ^2 b_R ^2 a_L ^2 \end{array}$	$\frac{\{\bar{q}_{R}, \ell_{R}^{+}, \ell_{L}^{-}\}}{\bar{f} c_{R} ^{2} b_{R} ^{2} a_{L} ^{2}}$
$\frac{\{\bar{q}_{R}, \ell_{L}^{-}, \ell_{L}^{+}\}}{\bar{f} c_{R} ^{2} b_{L} ^{2} a_{L} ^{2}}$	$\{ q_R, \ell_L^+, \ell_L^- \} \ f c_R ^2 b_L ^2 a_L ^2$	$\frac{\{\bar{q}_{R}, \ell_{L}^{-}, \ell_{R}^{+}\}}{\bar{f} c_{R} ^{2} b_{L} ^{2} a_{R} ^{2}}$	$\{ q_R, \ell_L^+, \ell_R^- \} \ f c_R ^2 b_L ^2 a_R ^2$
$\{ar{q}_L, \ell^L, \ell^+_L\}\ ar{f} c_L ^2 b_L ^2 a_L ^2$	$\{q_L, \ell_L^+, \ell_L^-\}\ f c_L ^2 b_L ^2 a_L ^2$	$\frac{\{\bar{q}_L, \ell_L^-, \ell_R^+\}}{\bar{f} c_L ^2 b_L ^2 a_R ^2}$	$\{ q_L, \ell_L^+, \ell_R^- \} \ f c_L ^2 b_L ^2 a_R ^2$
$\{q_L, \ell_R^-, \ell_R^+\}\ f c_L ^2 b_R ^2 a_R ^2$	$\{ar{q}_L,\ell_R^+,\ell_R^-\}\ ar{f} c_L ^2 b_R ^2 a_R ^2$	$ \begin{array}{c} \{q_L, \ell_R^-, \ell_L^+\} \\ f c_L ^2 b_R ^2 a_L ^2 \end{array} $	$\frac{\{\bar{q}_L, \ell_R^+, \ell_L^-\}}{\bar{f} c_L ^2 b_R ^2 a_L ^2}$
$\frac{\{\bar{q}_{R}, \ell_{R}^{-}, \ell_{R}^{+}\}}{\bar{f} c_{R} ^{2} b_{R} ^{2} a_{R} ^{2}}$	$\{q_R, \ell_R^+, \ell_R^-\}\ f c_R ^2 b_R ^2 a_R ^2$	$\frac{\{\bar{q}_{R}, \ell_{R}^{-}, \ell_{L}^{+}\}}{\bar{f} c_{R} ^{2} b_{R} ^{2} a_{L} ^{2}}$	$\{q_R, \ell_R^+, \ell_L^-\}\ f c_R ^2 b_R ^2 a_L ^2$
$\{ q_R, \ell_L^-, \ell_L^+ \} \ f c_R ^2 b_L ^2 a_L ^2$	$\frac{\{\bar{q}_{R}, \ell_{L}^{+}, \ell_{L}^{-}\}}{\bar{f} c_{R} ^{2} b_{L} ^{2} a_{L} ^{2}}$	$\{ q_R, \ell_L^-, \ell_R^+ \} \ f c_R ^2 b_L ^2 a_R ^2$	$\frac{\{\bar{q}_{R}, \ell_{L}^{+}, \ell_{R}^{-}\}}{\bar{f} c_{R} ^{2} b_{L} ^{2} a_{R} ^{2}}$
Proces	ses P_{21}	Proces	ses P_{22}

Data	Can this data be fitted by model					
from	SFSF	FSFS	FSFV	FVFS	FVFV	SFVF
SFSF	yes	no	no	no	no	no
FSFS	no	yes	maybe	no	no	no
FSFV	no	yes	yes	no	no	no
FVFS	no	no	no	yes	maybe	no
FVFV	no	no	no	yes	yes	no
SFVF	no	no	no	no	no	yes

Burns, Kong, Matchev, Park, 0808.2472

Dilepton invariant mass-squared

Dislepton production

•
$$q\bar{q} \to Z^0/\gamma \to \tilde{\ell}^+ \tilde{\ell}^- \to \tilde{\chi}_1^0 \ell^+ \tilde{\chi}_1^0 \ell^-$$

• Distribution of $\cos \theta_{ll}^* \equiv \tanh(\Delta \eta_{\ell^+ \ell^-}/2)$ is correlated with Z^0/γ decay angle θ^*

A Barr, hep-ph/0511115

Dislepton production (2)

- Outer error bars: after SUSY & SM background subtraction
- Significance strongly dependent on mass spectrum

Disleptons at CLIC

Azimuthal correlations in e⁺e⁻

Three-body decays

Three-body gluino decays

Csaki, Heinonen, Perelstein, 0707.0014

Sumber of events needed to discriminate

Kullback-Leibler measure:

$$N \sim \log R / \mathrm{KL}(T,S)$$
$$\mathrm{KL}(T,S) = \int_m \log \left(\frac{p(m|T)}{p(m|S)} \right) p(m|T) \, dm$$

Mass & Spin Determination

KEK 18/09/2009

Mass & Spin Determination

KEK 18/09/2009

Cross sections

Cross sections imply spins

Higher spins mean higher cross sections (for given masses)

Datta, Kane, Toharia hep-ph/0510204

	MSSM	U-UED
Production Cross sections	$\sigma_{\tilde{g}\tilde{g}} = 4.51 \text{ pb}$	$\sigma_{g_1g_1}=65.95~\rm{pb}$
Branching	$\tilde{g} \to q\bar{q}'\chi_1^{\pm} = 0.45$ $\tilde{g} \to q\bar{q}\chi_2^0 = 0.28$ $\tilde{g} \to q\bar{q}\chi_1^0 = 0.27$	$g_1 \rightarrow q\bar{q}' W_1^{\pm} = 0.45$ $g_1 \rightarrow q\bar{q}' Z_1 = 0.28$ $g_1 \rightarrow q\bar{q}' B_1 = 0.27$
Fractions	$\chi_1^{\pm} \to q\bar{q}'\chi_1^0 = 0.67$ $\chi_1^{\pm} \to \ell\nu\chi_1^0 = 0.33$	$W_1^{\pm} \to q\bar{q}'B_1 = 0.18$ $W_1^{\pm} \to \ell\nu B_1 = 0.82$
	$\chi_2^0 \to q\bar{q}\chi_1^0 = 0.94$ $\chi_2^0 \to \ell\bar{\ell}\chi_1^0 = 0.04$ $\chi_2^0 \to \nu\bar{\nu}\chi_1^0 = 0.01$	$Z_1^{\pm} \to q\bar{q}B_1 = 0.22$ $Z_1^{\pm} \to \ell\bar{\ell}B_1 = 0.39$ $Z_1^{\pm} \to \nu\bar{\nu}B_1 = 0.39$
Cascade		
Fractions	0.949	0.295
OS 2-lepton	0.030	0.383
SS 2-lepton	0.011	0.068
3-lepton	0.003	0.081
Cascade		
Rates		
1-lepton	1.12 pb	25.39 pb
OS 2-lepton	0.13 pb	12.06 pb
3-lepton	0.014 pb	5.34 pb

Kane, Petrov, Shao, Wang, 0805. 1397

KEK 18/09/2009

1000

ma

(GeV)

800

900

700

 $m_{\widetilde{\sigma}}$

600

Mass

500

400

events/100GeV

Mass & Spin Determination

1

Cross sections imply spins (3)

- Can vary masses to fit cross section and one distribution

Conclusions on Spins

- Sequential decay chains
 - Possibilities -- but difficult for degenerate masses
 - Gluino spin -- some ideas, just starting
- Dileptons
 - SUSY vs UED difficult at LHC -- other cases possible
- Three-body decays
 - MT2 assistance looks useful here (and elsewhere?)
- Cross sections
 - Should be included

Full simulations (and data) needed!