QCD and Collider Phenomenology

Bryan Webber
IPMU/KEK Lectures 2009

Lecture 2: Jet Fragmentation and Hadron-Hadron Processes

Jet Fragmentation

[1 Fragmentation functions

[1 Coherent parton branching

[1 Small-x fragmentation and average multiplicity
Hadronization Models

[1 General ideas

[1 Cluster model

[] String model

Hadron-Hadron Processes

[1 Parton-parton luminosities

[1 Lepton pair, jet and heavy quark production
[1 Higgs boson production

Survey of NLO Calculations for LHC



Jet Fragmentation

Fragmentation functions Fih(ac, t) gives distribution of momentum fraction = for hadrons
of type h in a jet initiated by a parton of type ¢, produced in a hard process at scale t.

Like parton distributions in a hadron, D?(w, t), these are factorizable quantities, in which
infrared divergences of PT can be factorized out and replaced by experimentally measured

factor that contains all long-distance effects.

In eTe™ annihilation, for example, the hard process is e" e~ — @ at scale equal to c.m.

energy squared s; distribution of x = 2p; /+/s is (for s K M%)

;ZG_BOOZQ {F (x, s)—I—F (x, s)}

where o is eTe™ — puTp” cross section.

Fragmentation functions satisfy DGLAP evolution equation
dz o
t—F (2, 1) = Z/ 220 P, as) Y (/% 1)

Splitting functions P;; have perturbative expansions of the form

Pii(z, as) = PY(2) + 5= PP (z) + - -



Leading terms Pj(zp)(z) were given earlier. Notice that splitting function is P;; rather than
P;; since th represents fragmentation of final parton j.

e Solve DGLAP equation by taking moments as explained for DIS. As in that case, scaling
violation is clearly seen.
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Soft Gluon Coherence

e Parton branching formalism discussed so far takes account of collinear enhancements to all
orders in PT. There are also soft enhancements: When external line with momentum p and
mass m (not necessarily small) emits gluon with momentum ¢, propagator factor is

1 +1 +1

(p£q)2—m2 2p-q - 2wE(1 — vcos )

where w is emitted gluon energy, FZ and v are energy and velocity of parton emitting it,
and 6 is angle of emission. This diverges as w — 0, for any velocity and emission angle.

® Including numerator, soft gluon emission gives a colour factor times universal, spin-
independent factor in amplitude
p-e€
p-q
where € is polarization of emitted gluon. For example, emission from quark gives numerator
factor N - €, where

F. soft —

N* = F+d+m)yulp) =, (VP + " "m)ulp)

w—0

= (2" ="+ y"'m)u(p) = 2p"u(p) .

(using Dirac equation for on-mass-shell spinor u(p)).

e Universal factor Fy.n coincides with classical eikonal formula for radiation from current p*,
valid in long-wavelength limit.



e No soft enhancement of radiation from off-mass-shell internal lines, since associated
denominator factor (p + q)2 —m? — p2 — m? # 0asw — 0.

e Enhancement factor in amplitude for each external line implies cross section enhancement
is sum over all pairs of external lines {z, j}:

dw dS2
do,i1 = doy, v s Z CiiWi;

W 27 2T “—

2V

where df2 is element of solid angle for emitted gluon, C;; is a colour factor, and radiation
function Wj; is given by

w2pi Py o 1 — V;V; COS Qij

Di-qp;-q N (1 —v;cos6;,)(1 —vjcosbj,) .

Wij =

Colour-weighted sum of radiation functions C;; W, is antenna pattern of hard process.



e Radiation function can be separated into two parts containing collinear singularities along
lines 2 and j. Consider for simplicity massless particles, v; ; = 1. Then W;; = W/ + ij

J
where
W — 1 (W N 1 1 )
w9 71 — cos 0iq 1 — cosbj,

e This function has remarkable property of angular ordering. Write angular integration in polar
coordinates w.r.t. direction of %, d{) = dcos 0;, d¢;,. Performing azimuthal integration,
we find

T dbig 1 . .
Wz" = If Qiq < Qij, otherwise 0.
0 27 71— cosby,

Thus, after  azimuthal averaging,
i contribution from ij is confined to
cone, centred on direction of 2, extending
in angle to direction of 5. Similarly, WZJJ
_ averaged over ¢;,, Is confined to cone
] centred on line 5 extending to direction of
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Angular Ordering

e To prove angular ordering property, write
1 —cosf;;, = a — bcos ¢

where
a=1-—cosb;;cosl;;,, b=sinb;;sinb;, .

Defining z = exp(i¢iq), we have

i _/%dqﬁiq T 4
W= Jo 27 1— cos 64 Cinb ) (2 —2) (2 — 2)

where z-integration contour the unit circle and

_a a?
Zi—g:l: ﬁ_l

Now only pole at z = z_ can lie inside unit circle, so

Il = - = 1
ij Cl,2—b2_ |C089iq—COSQij| .




Hence

/% W L[+ (cos 0.:)1.)
= cos0;; —cos0;;)1,.
o 2m Y 2(1 — cos 6;,) ! 77

1
= if 0;,, < 0;;, otherwise 0.
1 — cos 0y,

e Angular ordering is coherence effect common to all gauge theories. In QED it causes
Chudakov effect — suppression of soft bremsstrahlung from e*e™ pairs, which has simple
explanation in old-fashioned (time-ordered) perturbation theory.

Zp+kT

(1-z)p—ky
[1 Consider emission of soft photon at angle 6 from electron in pair with opening angle
O.. < 6. For simplicity assume 0.., 0 < 1.
[1 Transverse momentum of photon is k7 ~ zpf and energy imbalance at e — e~y vertex is

AFE ~ k%/zp ~ 2p6* .



[]

Time available for emission is At ~ 1/AFE. In this time transverse separation of pair will
be Ab ~ 6..At.
For non-negligible probability of emission, photon must resolve this transverse separation of
pair, so
Ab > \/0 ~ (zpf)~"

where X is photon wavelength.
This implies that

066(2p92)_1 > (zp@)_1 :
and hence 6., > 6. Thus soft photon emission is suppressed at angles larger than opening
angle of pair, which is angular ordering.
Photons at larger angles cannot resolve electron and positron charges separately — they see
only total charge of pair, which is zero, implying no emission.

More generally, if ¢ and j come from branching of parton k, with (colour) charge
Q. = Q, + Q,, then radiation outside angular-ordered cones is emitted coherently by %
and 7 and can be treated as coming directly from (colour) charge of k.



Coherent Branching

e Angular ordering provides basis for coherent parton branching formalism, which includes
leading soft gluon enhancements to all orders.

e |n place of virtual mass-squared variable t in earlier treatment, use angular variable

_pb'pc

= ~1—cosb
E, E.

¢

as evolution variable for branching @ — bc, and impose angular ordering ¢’ < ¢ for
successive branchings. Iterative formula for n-parton emission becomes

d .
do,i1 = dan—cdzgpba(z) .
¢ 27

e In place of virtual mass-squared cutoff ¢y, must use angular cutoff (o for coherent branching.
This is to some extent arbitrary, depending on how we classify emission as unresolvable.
Simplest choice is {§ = to/E2 for parton of energy E.

e For radiation from particle ¢ with finite mass-squared %, radiation function becomes

2 pi-pj p; N1<1_ to)
pi-qpj-q (pi-q)? ¢ E%¢)
so angular distribution of radiation is cut off at { = to/E2. Thus tg can still be interpreted
as minimum virtual mass-squared.




e With this cutoff, most convenient definition of evolution variable is not ( itself but rather
e 2
F=EC>t.

Angular ordering condition (3, (. < (, for timelike branching a — bc (a outgoing)
becomes

ty < z2f, te < (1 — 2)25
where t = t, and z = Ey/E,. Thus cutoff on z becomes

\Vito/t < z<1—1/tg/t.

® Neglecting masses of b and ¢, virtual mass-squared of a and transverse momentum of
branching are
t =2z(1— 2)t, pf = 2°(1 — 2)°t.

Thus for coherent branching Sudakov form factor of quark becomes

1_\/W Z 2,/I\ £
(t) = exp /t dr / d—ag(z (1 —2)t)Pyy(2)

Vto/t!

At large t this falls more slowly than form factor without coherence, due to the suppression
of soft gluon emission by angular ordering.

10



e Note that for spacelike branching a — bc (a incoming, b spacelike), angular ordering
condition is
0, > 0, > 0. .
However, kinematics implies E,0, > FE .0, at small  and in this case E, < E,, so angular
ordering does not impose an extra constraint on branching. Therefore gluon emission is not
suppressed by coherence in spacelike branching at small x.

[1 This permits the rapid rise of structure functions at small x.
[1 We shall see that the production of low-momentum hadrons in jet fragmentation at small x,
controlled by timelike branching, is quite different — strongly suppressed by QCD coherence.

11



Small-x fragmentation

e Evolution of fragmentation functions at small = sensitive to moments near N = 1.
However, anomalous dimensions 'yég), fyég) are not defined at N = 1: moment integrals

for N < 1 are dominated by small z, where P,;(z) diverges due to soft gluon emission.

e At small z must take into account coherence effects. Recall evolution variable becomes
t = E2[1 — cos 6], with angular ordering condition ' < 2?t. Thus, redefining ¢ as ¢,
evolution equation in integrated form is

Fz'(iU,t) == Fi(ai‘,to)

dz [~* %t dt o
+Z/ / - Py(=) Fy(e) 2, )
to
or in differential form

t—F(:c t) = Z/ %%PJZ(Z)F (z/2, 2t) .

e Only difference from DGLAP equation is z-dependent scale on the right-hand side — not
important for most values of x but crucial at small x.
e For simplicity, consider first ag fixed and neglect sum over 5. Taking moments as usual,

o - ! _
t—F(N,t) = ﬁ/ dz 2N P(2)F(N, 2%t) .
ot 271 J .,

12



0 Try solution of form F(N,t) o< t7™:@S)  Then anomalous dimension ~ (N, cs) must
satisfy

1
+(N, ag) = as / N Was) py
27 0

[0 For N — 1 not small, we can neglect 2+v(N, as) in exponent and obtain usual formula for

anomalous dimension. For N ~ 1, z — 0 region dominates, where Py,(z) >~ 2C4/z.
Hence

Caas 1
N —1+ Q’ygg(N, Oés)

_ [\/(N _q)2 4 3G oy 1)]

- \/CA“S——<N—1>+ (N = 1)

e To take account of running ai, write

799(N7 O‘S) —

F(N,t) ~ exp [/tvgg(N as)d—t} :

13



and note that v,,(N, as) should be ~v,,(N, as(t’)). Use

t dt' ag(t) y (N, OéS)
Yoo (N, as(t))— = / 77 das
[ N ast) e

where B(as) = —baZ + - - -, to find

_ 1 j2C 1
F(N,t) ~ expl|- 4 (N —1)
b\ mas 4bag
1 27T 2
+ (N —1)% +
48b \| Caa
Aas OcS:Ocs(t)
e In eTe™ annihilation, scale t ~ s and behaviour of F(N,s) near N = 1 determines

form of small-z fragmentation functions. Keeping terms up to (N — 1)2 In exponent gives
Gaussian function of N which transforms into Gaussian function of & = In(1/x):

1
xF(x,s) « exp [—@(5 — §p)2] :

14



e \Width of distribution
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e Peak position
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e Energy-dependence of the peak position &, tests suppression of hadron production at small
x due to soft gluon coherence. Decrease at very small x is expected on kinematical grounds,
but this would occur at particle energies proportional to their masses, i.e. at x o< m/+/s,
giving &, ~ %11{1 s. Thus purely kinematic suppression would give &, increasing twice as
fast.

e In pp — dijets, \/s is replaced by M ;;sin 6 where M ;; is dijet mass and 6 is jet cone
angle.
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CDF Preliminary
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Average Multiplicity

® Mean number of hadrons is N = 1 moment of fragmentation function:

(n(s)) = / dz F(z,s) = F(1,5)

0
1 2C 4 2CA1 ( S )
~N eXp—4/——— ~ ex ——In | —
P Tas(s) PA o A?

(plus NLL corrections) in good agreement with data.
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Hadronization Models

General ideas

Local parton-hadron duality

[1 Hadronization is long-distance process, involving small momentum transfers.
Hence hadron-level flow of energy-momentum, flavour should follow parton level.

[I Implicit in earlier discussion of jet fragmentation.

[1 Results on spectra and multiplicities support this.

Universal low-scale as

[1 PT works well down to very low scales, Q ~ 1 GeV.
[ Assume as(Q) defined (non-perturbatively) for all Q.
[1 Good description of heavy quark spectra, event shapes.

19



Universal low-scale og

Infrared renormalon

det
F ~ ——as(py)
o Q

Q 27"
— ag(Q)Z/O % [bag(Q)ln%]

= as(@) 3" n![2bas(Q)]"
i ; S ~~O~~O~—~0O

Divergent series: truncate at smallest term (n,, = [2bas(Q)] ') = uncertainty in F

OF ~ ’I’Lm'[QbOés(Q)]nm ~ e—nm )

Ol =

Renormalon is due to infrared divergence of as
[J Postulate universal infrared-regular acs. Then 1/Q power corrections depend on

1 I
ao(pr) = —/ as(pt) dp:
wr Jo

[1 Match PT and NP at pu; ~ 2 GeV
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Specific Hadronization Models

e General ideas do not describe hadron formation. Main current models are cluster and string.

),

i

Qi -
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e Cluster (HERWIG)

[1 Non-perturbative g — qq splitting after parton shower.
[1 Colour singlet qg clusters have lower mass due to preconfinement property of parton shower.

%)
% Ll 50 GeV
S N e B 500 GeV
S/ N 5000 GeV
--------- 50000 GeV

0.8

0.6

0.4

0.2

4
log,, Mass (GeV/cZ)

[1 Clusters decay according to 2-hadron density of states.
[1 Few parameters: natural p7 and heavy particle suppression
[1 Problems with massive clusters, baryons, heavy quarks
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e String (PYTHIA)
[1 Uses string dynamics: colour string stretched between initial gg breaks up into hadrons via

qq pair production.
[J String gives linear confinement potential, area law for matrix elements.

[1 Gluons produced in shower give ‘kinks' on string.
h1 n

IM(qq — by h)|? o< e

[1 Extra parameters for pr and heavy particle suppression.

[1 Some problems with baryons.

_|_

e Both models describe e e~ data well . ..
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e Jet rates and mean number of jets
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e L7 or Durham algorithm:
[J Define jet resolution yc,: (dimensionless).
O For final-state momenta p;, p; define y;; = 2 min{ E?, Ej2}(1 — cosb,,)/s
O If yr; = min{yi;} < Yeur, combine I, J into one object K with px = pr + p.
[1 Repeat until y7;7 > ycut. Then remaining objects are jets.
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e Light quark and gluon fragmentation functions
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Hadron-Hadron Processes

e |n hard hadron-hadron scattering, constituent partons from each incoming hadron interact
at short distance (large momentum transfer Qz).

: / : -
Q=< {7 =

u

e For hadron momenta Py, P, (S = 2P, - P5), form of cross section is
o(S) = Z/dwldezDi(th p)Dj(x2, )6 (8 = 1225, as(p), Q/ 1)

where i is factorization scale and &5 is subprocess cross section for parton types ¢, j.

[1 Factorization scale is in principle arbitrary: it affects only what we call part of subprocess or
part of initial-state evolution (parton shower).

0 Rapidity of subprocess c.m. frame p* = p{' + ph:

y =1 [(p"+p2)/ (0’ — pa)| = $1n(21/22)
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e Unlike eTe™ or ep, we may have interaction between spectator partons, leading to soft
underlying event and/or multiple hard scattering.
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Double Parton Scattering

e CDF Collaboration [PR D56 (1997) 3811] studied v+ 3 jets.
[1 DPS has ‘best-balanced’ (v+ jet) and dijet uncorrelated in azimuth.

CDF 16 GeV v/n° + 3 Jets

1—Vertex Events

8

-l
8
T

® Data

8

D DP component, frem background
subtraction method (52.6%)

a8
i=]
T

— Monte Carlo admixture. +
52.6%DP + 47.47%PYTHIA

8

Nuémber of Events / 0.052 radians

oLlllllllllllllllllllllllllllllll
Q Q.5 1 1.5 2 2.5 3

AS, g—angle between pairs (radians)

+1.7
2

0 They found opps = 0+;0;;/0est Where oeg = 14 £ 1.755" mb
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Parton-Parton Luminosities

Useful to define the differential parton-parton luminosity dL;;/dsdy and its integral
szj/d§
dL;; 1 1
= — Dz I, D.(x y 1 2 .
35 dy Sl—l—éij[ (@1, p)Dj(x2, p) + (1 < 2)]

Factor with Kronecker delta avoids double-counting when partons are identical.
We have ds dy = S dx1 dxs and hence

= S [ dsd ERNE

7 iJ / e <d§dy> 7i(%)
A dL?:. A A
— ZEj /dS ( d§J> O'ij(S)

This can be used to estimate the production rate for subprocesses at LHC.
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e Figure shows parton-parton luminosities at v/s = 14 TeV for various parton combinations,

calculated using the CTEQ6.1 parton distribution functions and scale 1 = v/§. Widths of
curves estimate PDF uncertainties.

1010[ ! II|IIII| ! II|IIII| ! II|II%

dL/ds [pb]

10—3 | | ||||||| | | ||||||| | | |||
0.01 0.05 0.10 0.50 1.00 5.00 10.00

Sqrt(s) [TeV]

Green = gg, Blue = gq + 9q + qg9 + qg, Red = q@+ qq (¢ = d + uw + s + ¢+ b).
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Lepton Pair Production

e Inverse of ete™ — g is Drell-Yan process. At O(ag), mass distribution of lepton pair is
given by

dé B . _ Ara’l 9 9 R
ad =y = ) = ——2Q8(M” = 3)

[J Factor of 1/3 = 1/N instead of 3 = N because of average over colours of incoming q.

>M + }m + E«\m + }mﬂ
(a)
—=— N —— =
S NP
—=—00 —— =

(b) (c)

O In higher orders vertex corrections (a) have M? = 3,
gluon emission (b) and QCD Compton (c) diagrams give M? < 3.
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d°c/dM dy [pb/GeV]
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101 K
5 Vs=1.8 TeV, |y|<1
ol & CDF data
10 s
107 RO
107?
107
107*
10-5 | | | | | | | | | |
0 100 200 300 400 500 600

M [GeV]

33



e W boson production is similar, except sensitive to different parton distributions, e.g.

ud — W — l+1/l

e Transverse momentum of lepton pair, pr measures net transverse momentum of colliding
partons plus any intrinsic pr:

1000 £ T T T T T T T T T T3
- W' + W production at large pr -
B Vs = 1.8 TeV, CDF data ]
100 —
> - ]
v
2 — ]
\ L _
0
B 10 _
= = -
s, = -
T - ]
g - ]
) |
o B | N
1 =
1 T S RO N N S N SR N S MO S B
0 o0 100 150
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Jet Production

Lowest-order subprocess for purely hadronic jet production is 2 — 2 scattering p; + ps —
D3 + P4

dé  E3E.d°s
1

= Z|M|254(P1—|—P2—P3—P4) :

327238

Many processes even at O(az):

Y

K

e S 1
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e Single-jet inclusive cross section obtained by integrating over one outgoing momentum:

Ed’s d’6 1 d’s
d3p  d2ppdy 2w Er dEr dn
1 —_—

= S IMIP S5+t + a)

16725

where (neglecting jet mass)

Epr = Esinf = |pg| = —Intan(0/2) = y .

e Jets can be defined by the k7 algorithm:
[l For each final-state momentum p; and each pair of final-state momenta p;, p;, define

kri = Er; , krij = min{E7;, Er;}AR;;/D

where AR;; = /(i — n;)? + (¢i — ¢;)? and D = dimensionless parameter for angular
size of jets (D = 0.5 — 1.0)

O If krr is the smallest in the list of {kr;, k7i;}, define I as a jet and remove from list.

LI If k7ryis the smallest, combine I, J into one object K with px = p;r + pJ.

[1 Repeat until list is empty.

e Use 7 rather than 0 for invariance under longitudinal boosts: 7y — axi, T2 — x2/a
gives 1; — m; + In a, so n; — m; Is invariant.
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e NLO predictions and data agree very well:
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e Rapidity dependence:
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e Contribution of different parton combinations determined by subprocess cross sections and

parton distributions.

Fraction of jets

I I | I | I |
Vs=1.8 TeV, 0.1<|n|<0.7 -

qq+qq

gq+gq

100 200 300 400 500
E; [GeV]

e Quarks dominate at large E7 since this selects large z; o

S = x1x285 > 4E%
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Heavy Quark Production

Lowest-order subprocesses for heavy quark production are (a) light quark-antiquark

annihilation (10% at LHC) and (b) gluon-gluon fusion (90% at LHC)

NLO top quark cross section
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Standard Model Higgs Boson Production

e Lowest-order subprocesses for Higgs boson production at hadron colliders:

(a) Gluon-gluon fusion (via top loop)

b) Vector boson fusion

c) Associated production with W, Z boson
d) Associated production with tt.

(
(
(

() (b)

CY)

41



NLO Higgs cross sections
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e Discovery decay channels depend on Higgs mass

BR
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Status of NLO Calculations for LHC (2007)

e 2 — 2 parton processes — all available, e.g. in MCFM (CaEI")

e 2 — 3 parton processes

Final State Authors™ Comments

3 jets KuSiTr,BerDixKo, GiKi,Na Public code available
V+ 2jets ElCa,CaGIMi Public code available
Vbb ElCa Massless b quarks
Vbb ReFeWa Massive b quarks
H+ 2jets FiOlZep Vector boson fusion
H+ 2jets CaElZa Gluon fusion

VV+ 2jets JaOlZep Vector boson fusion
Yy jet deFKu,DelMalNaTr,BiGuMah

ttH,bbH ReDaWaOr,BeeDitKrPISpZer

tt jet DitUwWe

HHH PIRa,BiKarKauRu

WW jet DiKalUw

L7 LaMePe

*Beenakker, Bern,Binoth,Campbell,Dawson,deFlorian,DelDuca,Dittmaier,Dixon,Ellis,FebresCordero,Figy,
Giele,Glover,Guillet,Jager,Kallweit, Karg,Kauer,Kilgore, Kramer,Kosower,Kunszt,Lazopoulos,Mahmoudi,
Maltoni,Melnikov,Miller,Nagy,Oleari,Orr,Petriello,Plehn,Plumper,Rauch,Reina,Ruckl,Signer,Spira,
Troscsanyi,Uwer,Wackeroth,Weinzierl,Zanderighi,Zeppenfeld,Zerwas



NLO Update (Glover, LP2009)

Final State  Authors™ Comments

W+ 3jets BBDFFGIKM“

VVbb vHPP?

H-+ 3jets FHZ® Vector boson fusion

ttbb BDDPY, BCPPW*

ttZ LMMP/

VvvvVv BOPPY WZZ WWZ, WWW
multijets Gzh gg — up to 20 gluons

“Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre
byan Hameren, Papadopoulos, Pittau

“Figy, Hankele, Zeppenfeld

dBredenstein, Denner, Dittmaier, Pozzorini
®Bevilacqua, Czakon, Papadopoulos, Pittau, Worek
fLazopoqus, McElmurry, Melnikov, Petriello
9Binoth, Ossola, Papadopoulos, Pittau

hGiele, Zanderighi
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® Les Houches 2007 wish list of “feasible” NLO calculations

Final State Relevance Progress?

V'V jet ttH, new physics VV =y, WW
VvV SUSY trilepton Done

V V bb VBF— H — V'V, ttH, new physics | Done

VV +2jets | VBF— H —- VV VBF

V 4+ 3 jets various new physics signatures W+ 3jets

tt + 2 jets ttH ttZ

tt bb ttH Done

bb bb ttH

4 jets various new physics signatures Jgg — 9gggg

e "“Done” does not necessarily mean a (parton-level) event generator exists

NN I I I

Time for matrix element generation?
Sum over spins and colours?

Decays of unstable particles (with spin correlations)?
Efficient phase space generation and unweighting?
Interfacing to parton showers and hadronization?
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Summary of Lecture 2

e Jet fragmentation functions also obey DGLAP evolution equations.

0 Scaling violation seen in eTe™.

[1 Soft gluon coherence =- angular-ordered branching.

[1 Small-z fragmentation sensitive to coherence effects.

[ Gaussian peak in In(1/x), peak position shows coherence.
[]

Average hadron multiplicity predicted.

e Hadronization models needed for simulation of full final states.

[1 General ideas describe spectra and event shapes.
[] Local parton-hadron duality = small-z hadron spectra.
[ Universal low-scale s = (as(q < 2 GeV)) ~ 0.5.
[1 Specific models needed for hadron distributions.
[ String model (PYTHIA).
(1 Cluster model (HERWIG).

e |n hadron-hadron processes, factorization permits cross section calculations.

[1 Parton-parton luminosities important: uncertainties ~ 10 — 20%.
[J Lepton-pair, jet, top and Higgs production reliably predicted (NLO or NNLO).
[J All 2 — 2 and many 2 — 3 subprocesses predicted to NLO.
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