
Ultraviolet Divergences
● In higher-order perturbation theory we encounter Feynman graphs with closed

loops, associated with unconstrained momenta.

● For every such momentum kµ, we have to integrate over all values, i.e.
∫

d4k

(2π)4

E.g. “electron self-energy” in QED:
q p’p
k

Afi =
∫

d4k

(2π)4
d4q

(2π)4
ū(p′)γµ−igµν

k2

i("q + m)
q2 −m2

γνu(p)

× (−ie)(2π)4δ4(p− q − k)(−ie)(2π)4δ4(q + k − p′)

= −e2(2π)4δ4(p− p′)

× ū(p)
∫

d4k

(2π)4
γµ("p− "k + m)γµ

k2[(p− k)2 −m2]
u(p)

●
∫∞

d4k k
k2(p−k)2 is divergent!
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● We say that
∫

d4k kD−4 has superficial degree of divergence D

D = 0 ⇒ log-divergent

1 ⇒ linearly divergent

2 ⇒ quadratically divergent

● The actual degree of divergence may be less, e.g. due to cancellations required
by gauge invariance. For example, the electron self-energy is actually only
log-divergent. Putting an upper cut-off Λ on the integral, one finds

Afi ∼ −i(2π)4 δ4(p− p′)
3α
2π

m ln
(

Λ
m

)
+ . . .

● If the theory has only a finite set of (classes of) divergent (i.e. cut-off
dependent) diagrams, their contributions can be absorbed into redefinitions of
the coupling constant(s) and masses. This is called renormalization.

● For example, iteration of the electron self-energy leads to renormalization of
the electron mass. Defining Σ = − 3m

8π2 ln Λ
m + . . . we have
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i("p + m)
p2 −m2

≡ i

"p−m
i

"p−m
ie2Σ

i

"p−m

i

"p−m

∑

n

[
ie2Σ

i

"p−m

]n

=
i

"p−m

[
1− ie2Σ

i

"p−m

]−1

=
i

"p−m + e2Σ

● Hence m→ m + δm where

δm

m
=

3α
2π

ln
Λ
m

+ . . .

The real, observed mass is m + δm. The bare mass, i.e. the parameter in the
Lagrangian, is not observable, and indeed depends on Λ if we keep the
observed mass fixed.
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Renormalizability

● How many classes of superficially divergent graphs are there in QED? We have

❖
∫

d4k for every loop (unconstrained momentum)

❖ i
"k−m

for every internal fermion line (electron)

❖ −igµν

k2 for every internal boson line (photon)

⇒ D = 4L− FI − 2BI where

L = number of unconstrained momenta

FI = number of internal fermion lines

BI = number of internal boson lines

● But if V is the number of vertices,

L = FI + BI − V + 1
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● If vertex involves FV fermions and BV bosons, we have by ‘conservation of
ends’:

∑

V

FV = 2FI + FE

∑

V

BV = 2BI + BE

where

FE = number of external fermion lines

BE = number of external boson lines

● In QED, FV = 2, BV = 1

⇒ V = FI + 1
2FE = 2BI + BE

⇒ D = 4− 3
2FE −BE
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Note that D is independent of L and V .

● Thus there is only a finite number of classes of superficially divergent diagrams
in QED, with

D = 4− 3
2FE −BE ≥ 0

● There are only 5 classes of superficially divergent graphs in QED, of which 3
are actually (log) divergent.
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FE BE D Diagrams Remarks

0 2 2 photon self-energy: log-divergent

⇒ charge renormalization

0 3 1 = 0 to all orders

0 4 0 light-by-light scattering

actually convergent

2 0 1 electron self-energy: log-divergent

⇒ mass & charge renorm’n

2 1 0 vertex correction: log-divergent

⇒ charge renormalization
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N.B. In QED, charge renormalization from electron self-energy and vertex
correction cancel, so it can be ascribed entirely to photon self-energy (vacuum
polarization).
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Dimensions of Fields and Couplings

● In natural units we have only mass (equivalently, energy or momentum)
dimensions: x ∼ ct ∼ !c/E ∼ !/mc.

! = c = 1⇒ [L] = [T ] = [E]−1 = [M ]−1

● Hence action S (units !) is dimensionless, and

S =
∫
L d4x ⇒ [L] = [x]−4 = [M ]4

Furthermore [∂µ] = [pµ] = [M ]. From this we can deduce dimensions of fields
and couplings:

LKG = ∂µφ†∂µφ−m2φ†φ ⇒ [φ] = [M ]

LD = iψ̄γµ∂µψ −mψ̄ψ ⇒ [ψ] = [M ]3/2

Lem = − 1
4FµνFµν ⇒ [F µν ] = [M ]2

Fµν = ∂µAν − ∂νAµ ⇒ [Aµ] = [M ]
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Higgs self-coupling:

λ(φ†φ)2 ⇒ [λ] = [M ]0

Gauge couplings:

Dµ = ∂µ + ieAµ(+igW µ) ⇒ [e] = [g] = [M ]0

Fermi coupling:

GF (ψ̄γµψ)(ψ̄γµψ) ⇒ [GF ] = [M ]−2

Yukawa coupling:

gfφψ̄ψ ⇒ [gf ] = [M ]0

● Thus in any theory we can associate dimension 4 with any vertex, as follows

4 = 3
2FV + BV + PV + gV

where PV = number of momentum factors, gV = dimension of coupling.

For example. . .
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Fermi 4 = 3
2(4) + 0 + 0 + (−2)

3-gauge-boson 4 = 3
2(0) + 3 + 1 + 0

● Now we can derive superficial degree of divergence in any theory:

D = 4L− FI − 2BI +
∑

V

PV

Recall that L = FI + BI − V + 1 and
∑

V

FV = 2FI + FE ,
∑

V

BV = 2BI + BE

D = 4− 4V + 3FI + 2BI +
∑

V

PV
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= 4− 4V − 3
2FE −BE +

∑

V

( 3
2FV + BV + PV = 4− gV )

= 4− 3
2FE −BE −

∑

V

gV

● Standard Model couplings are all dimensionless, so
∑

V gV = 0 and the
situation is similar to QED:
❖ Finite number of divergent sub-graphs (‘primitive divergences’)
❖ Can absorb cut-off dependence in bare parameters of Lagrangian
❖ Hence theory is renormalizable
N.B. Lots of work needed to prove this (’t Hooft and Veltman ⇒ Nobel prize).

● Non-standard vertices have gV < 0, so D gets larger and larger in higher orders
of perturbation theory ⇒ theory becomes unrenormalizable. For example

6-Higgs coupling:

λ6(φ†φ)3 ⇒ [λ6] = [M ]−2

Fermi coupling:

GF (ψ̄γµψ)(ψ̄γµψ) ⇒ [GF ] = [M ]−2
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2-boson Yukawa coupling:

λfφ†φψ̄ψ ⇒ [λf ] = [M ]−1

● Is it surprising that Nature provides only renormalizable interactions? Maybe
not, because unrenormalizability ⇒ bad (divergent) high-energy behaviour.

E.g. Fermi theory:

σ(νee) ∼ G2
F

[GF ] = [M ]−2 , [σ] = [M ]−2

⇒ σ(νee) ∼ G2
F E2 →∞

● Thus if we suppose there exists a finite theory at very high energies (GUT?
SUSY? Strings?), all unrenormalizable interactions will have shrunk to
negligible values in going from that high scale to present energies:
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GUT
scale

Present
scale

renorm.

unrenorm.

σ

E
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