
GAUGE FIELD THEORY

Lent Term 2006 B.R. Webber
SYNOPSIS

This course is an introduction to the gauge field theories of modern Particle Physics. It
includes the necessary relativistic quantum field theory, but with emphasis on applica-
tions rather than mathematical rigour. There are no formal prerequisites for the course,
but it would be helpful to have attended the Part III Particle Physics and Concepts
in Theoretical Physics Major Options. For those who have not, the revision handout
covers the essential material.

1. Introduction (revision handout): Notation for relativity; transition rates; phase
space; two-body decay and scattering; interaction and scattering via particle exchange;
Feynman graphs; Klein-Gordon equation; Klein paradox; Dirac equation; spin and
magnetic moment of Dirac particle; covariant notation and free-particle spinors.

2. Relativistic quantum mechanics (3 lectures): Electromagnetic waves and
interactions; Dirac and Klein-Gordon density and current; electromagnetic scattering;
charge conjugation and parity invariance; gamma matrix algebra; Compton scattering;
massless Dirac particles; charged and neutral weak currents; weak scattering.

3. Relativistic quantum fields (4 lectures): Classical field theory; electromag-
netic waves; Klein-Gordon field; Fourier analysis; second quantization; single-particle
and two-particle states; number operator; quantizing the electromagnetic field; vacuum
energy and normal ordering; the Casimir effect; complex fields; symmetries and con-
servation laws; Noether’s theorem; phase (gauge) invariance; Dirac field; spin-statistics
theorem.

4. Gauge theory of electroweak interactions (3 lectures): Gauge symmetry
in QED; non-Abelian gauge symmetry; weak interactions; electroweak interactions;
Higgs mechanism; parameters of the Standard Model; spontaneous symmetry breaking;
properties of the Higgs boson.

5. Renormalization (2 lectures): Ultraviolet divergences; renormalizability; di-
mensions of fields and couplings; unrenormalizable interactions and effective theories.

RECOMMENDED BOOKS
Quantum Field Theory, F Mandl and G Shaw (Revised edn, Wiley, 1993)
Gauge Theories in Particle Physics, I J R Aitchison and A J G Hey (2 vols, 3rd edn,
IoP, 2003)
The latter has a wider coverage and a more explanatory style but either would be
adequate. A more advanced book, for those planning to continue in particle physics, is
Introduction to Quantum Field Theory, M E Peskin and D V Schroeder (Addison-
Wesley 1995)
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1 Notation for Relativity

Define coordinates x0 = ct, x1 = x, x2 = y, x3 = z. Consider a homogeneous Lorentz
tranformation (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3). This means any combination of ve-
locity tranformations and rotations. A set of four quantities aµ (µ = 0, 1, 2, 3) tran-
forming according to the rule

aµ −→ a′µ =
∂x′µ

∂x0
a0 +

∂x′µ

∂x1
a1 +

∂x′µ

∂x2
a2 +

∂x′µ

∂x3
a3 (1)

≡ ∂x′µ

∂xν
aν (2)

is called a contravariant 4-vector, written with an upper index. (Note the summa-
tion convention above — every index repeated on the same side of an equation is to
be summed over, from 0 to 3.) Clearly xµ is an example of a contravariant 4-vector.

There are also covariant 4-vectors, written with a lower index, which transform
according to

aµ −→ a′µ =
∂xν

∂x′µ aν . (3)

An obvious example is the vector operator ∂µ = ∂/∂xµ.
The scalar product of a covariant and a contravariant 4-vector

aµbµ ≡ a0b
0 + a1b

1 + a2b
2 + a3b

3 , (4)

is Lorentz invariant:

a′µb′µ =
∂xν

∂x′µ
∂x′µ

∂xλ
aνb

λ =
∂xν

∂xλ
aνbλ = δν

λaνb
λ = aνb

ν , (5)

where δν
λ = 1 for ν = λ, 0 for ν $= λ. But we know that s2 = c2t2 − x2 − y2 − z2 is

Lorentz invariant. We can write this as s2 = xµxµ where

x0 = ct, x1 = −x, x2 = −y x3 = −z . (6)

xµ is a covariant 4-vector formed from the contravariant 4-vector xµ by the operation

xµ = gµνxν (7)

where the metric tensor gµν has all elements zero except the diagonal ones g00 = 1,
g11 = g22 = g33 = −1. Thus we can make a covariant 4-vector from any contravariant
one (“lower an index”) by multiplying by the matrix gµν . Similarly, we can “raise an
index” with gµν , which has identical components to gµν :

aµ = gµνaν . (8)

Note that
gµ

ν = gµλgλν = δµ
ν . (9)

Some important 4-vectors, in their contravariant form, are
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• 4-momentum
pµ = (E/c, px, py, pz) (10)

• 4-momentum operator

ih̄∂µ = ih̄gµν∂ν = ih̄
(1

c

∂

∂t
,
−∂

∂x
,
−∂

∂y
,
−∂

∂z

)
(11)

(note signs)

• 4-potential
Aµ = (V/c,Ax, Ay, Az) . (12)

Lorentz transformations are usually written

a′µ = Λµ
νa

ν ; Λµ
ν =

∂x′µ

∂xν
(13)

a′µ = Λµ
νaν ; Λµ

ν =
∂xν

∂x′µ . (14)

You can check that
Λµ

ν = gµλgνσΛλ
σ (15)

as expected. Lorentz transformations have the important property

Λµ
νΛµ

λ =
∂xν

∂x′µ
∂x′µ

∂xλ
= δν

λ . (16)

Hence
Λµ

ν = (Λ−1)νµ . (17)

You can check this explicitly for a pure velocity transformation along the x-axis:

Λµ
ν =





γ −γv/c 0 0
−γv/c γ 0 0

0 0 1 0
0 0 0 1



 , γ = (1 − v2/c2)−
1
2 . (18)

(Λ−1)µν is the same except v → −v.
We can write

Λµ
ν = [exp(ωKx)]µν (19)

(which you can verify by expanding the exponential as a power series) where ω is the
rapidity,

ω = tanh−1(v/c) , (20)

and Kx is the generator of velocity transformations (boosts) along the x-axis,

(Kx)µν =





0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0



 . (21)
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For successive boosts in the same direction

Λ1Λ2 = exp(ω1Kx) exp(ω2Kx) = exp[(ω1 + ω2)Kx] , (22)

so ω is additive.
To write the Dirac equation

ih̄
∂Ψ
∂t

= βmc2Ψ− ih̄c(α · (∇Ψ (23)

in “covariant” notation we multiply on the left by β/c and rearrange terms to get

ih̄γµ∂µΨ− mcΨ = 0 (24)

where
γ0 = β , γj = βαj (j = 1, 2, 3) . (25)

If we need to use explicit matrices, we shall use those that follow from our choice for β
and αj in the lectures:

γ0 =
(

I 0
0 −I

)

γj =
(

0 σj

−σj 0

)

(26)

where the “elements” are 2 × 2 submatrices, e. g. I =
(

1 0
0 1

)

.

The γ matrices have the property

γµγν + γνγµ = 2gµνI (27)

where I represents a 4×4 unit matrix (often omitted). Note that γµ is not a 4-vector.
It is simply a set of four constant matrices, invariant under Lorentz transformations. Ψ
has 4 components but it is neither an invariant nor a 4-vector — it is called a spinor
and has special Lorentz transformation properties, which we shall not use in this course.

The Feynman slash notation is often used for brevity:

$a ≡ γµaµ = gµνγ
µaν . (28)

Explicitly

$a =





a0 0 −a3 −a1 + ia2

0 a0 −a1 − ia2 a3

a3 a1 − ia2 −a0 0
a1 + ia2 −a3 0 −a0



 . (29)

The Dirac equation is then
(ih̄ $∂ − mc)Ψ = 0 , (30)

i. e.
($p − mc)Ψ = 0 . (31)

In practice we shall usually set h̄ = c = 1.
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2 Transition Rates: Fermi’s Golden Rule

Much of particle physics is about the calculation of decay rates and scattering cross
sections. These are derived from quantum mechanical transition rates. Let us start by
recalling how transition rates are obtained in non–relativistic quantum mechanics.

Suppose we have a Hamiltonian H0 with eigenstates φn((r) normalized in some
volume element V :

H0φn = Enφn ,
∫

V
φ∗

mφnd3r = δmn . (32)

Consider some perturbation H ′:

(H0 + H ′)Ψ = i
∂Ψ
∂t

(33)

(remember that h̄ = c = 1). We want to know the transition rate to some state φf

given that we start (say, at t = −T/2) in some state φi. We write

φ(x) =
∑

n

cn(t)φn((r) e−iEnt (34)

(x represents the 4-vector (t,(r)), where cn(−T/2) = δni. We easily find

dcf

dt
= −i

∑

n

cn(t)
∫

d3r φ∗
fH ′φn ei(Ef−En)t (35)

' −i 〈f |H ′|i〉 ei(Ef−Ei)t (36)

(assuming that the perturbation is small), where

〈f |H ′|i〉 ≡
∫

φ∗
fH ′φi d

3r . (37)

Hence
cf (t) ' −i

∫ t

−T/2
dt′ 〈f |H ′|i〉 ei(Ef−Ei)t′ . (38)

The transition amplitude (in the far future, t = +T/2) is thus

Afi = cf (+T/2) = −i
∫ +T/2

−T/2
dt 〈f |H ′|i〉 ei(Ef−Ei)t . (39)

We can write in covariant notation

lim
T→∞

Afi = −i
∫

φ∗
f (x)H ′φi(x) d4x (40)

where
φn(x) = φn((r)e−iEnt . (41)

If H ′ is time-independent we have a transition probability

lim
T→∞

|Afi|2 = |〈f |H ′|i〉|2
∫ +T/2

−T/2
dt ei(Ef−Ei)t

∫ +T/2

−T/2
dt′ ei(Ef−Ei)t′ (42)

= 2π |〈f |H ′|i〉|2 δ(Ef − Ei)T . (43)
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Thus the transition rate is

Γ(i → f) = lim
T→∞

|Afi|2

T
= 2π |〈f |H ′|i〉|2 δ(Ef − Ei) . (44)

If we want to integrate over a number of possible final states with density ρ(Ef ) around
energy Ef , we get

Γ(i → f) = lim
T→∞

1
T

∫
|Afi|2ρ(Ef ) dEf (45)

= 2π |〈f |H ′|i〉|2 ρ(Ei) , (46)

which is Fermi’s Golden Rule.
We can obtain the next correction by successive substitution:

dcf

dt
' −i 〈f |H ′|i〉 ei(Ef−Ei)t (47)

+(−i)2
∑

n &=i

〈f |H ′|n〉 ei(Ef−En)t
∫ t

−T/2
dt′ 〈n|H ′|i〉 ei(En−Ei)t′ . (48)

Since we are assuming the perturbation was not present at t = −T/2 but was constant
after that, we should interpret

∫ t

−T/2
dt′ 〈n|H ′|i〉 ei(En−Ei)t′ = 〈n|H ′|i〉 ei(En−Ei)t

i(En − Ei)
, (49)

so
dcf

dt
= −iei(Ef−Ei)t



 〈f |H ′|i〉 +
∑

n &=i

〈f |H ′|n〉 〈n|H ′|i〉
Ei − En

+ . . .



 . (50)

Then Fermi’s Golden Rule becomes

Γ(i → f) = 2π |Tfi|2 ρ(Ei) (51)

where
Tfi = 〈f |H ′|i〉 +

∑

n &=i

〈f |H ′|n〉 〈n|H ′|i〉
Ei − En

+ . . . . (52)

Problem 1:
By further successive substitution, find the next (i. e. third–order) term in equation
(52).

3 Phase Space

Consider now the transition rate for the general decay process a → 1 + 2 + 3 + . . . + n.
There are (n− 1) independent momenta in the final state (because (p1 + . . . + (pn = (pa)
and if all wavefunctions are normalized to one particle per unit volume there is one per
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volume h3 of momentum space, i. e. one per (2π)3 volume since h̄ = 1 implies h = 2π.
Therefore the total decay rate per initial particle is

Γ = 2π
∫

d3(p1

(2π)3
· · · d3(pn−1

(2π)3
|Tfi|2δ



Ea −
n∑

j=1

Ej



 (53)

= (2π)4−3n
∫

d3(p1 . . . d3(pn |Tfi|2 δ3
(
(pa −

∑
(pj

)
δ

(
Ea −

∑
Ej

)
. (54)

However, normalizing to one particle per unit volume is not a Lorentz invariant
procedure: it is only true in one frame since volume elements are Lorentz contracted
(the particle density increased by γ) in other frames. Now the density is the timelike
component of a 4-vector, transforming like E, so a relativistic normalization should
be proportional to E particles per unit volume. The usual convention is to normalize
to 2E particles per unit volume (the reason will appear shortly). The corresponding
invariant matrix element for a → 1 + 2 + . . . + n is then

Mfi = (2Ea · 2E1 · · · 2En)1/2Tfi , (55)

and

Γ =
(2π)4−3n

2Ea

∫
d3(p1

2E1
. . .

d3(pn

2En
|Mfi|2 δ3

(
(pa −

∑
(pj

)
δ

(
Ea −

∑
Ej

)
. (56)

Now Ej = ((p 2
j + m2

j )1/2 so inside the integral we can write

d3(pj

2Ej
= d3(pj dEj δ(pµ

j pj µ − m2
j) . (57)

This is Lorentz invariant so the integral is now frame–independent. Γ is proportional
to E−1

a due to the time–dilatation of lifetime: τa = Γ−1 ∼ Ea. The integral in (56) is
called a phase-space integral.

We normalize to 2E particles because of the simple relation (57), which follows from
the useful general relation

∫
dE δ[f(E)] = 1

/∣∣∣∣
df

dE

∣∣∣∣
f(E)=0

. (58)

4 Two-body Decay

Consider the decay a → b + c in the rest–frame of a, where

pµ
a = (Ea, (pa) = (ma, 0) . (59)

Equation (56) gives

Γ =
(2π)−2

2ma

∫
d3(pb

2Eb

d3(pc

2Ec
|Mfi|2 δ3((pb + (pc) δ(ma − Eb − Ec) (60)

=
(2π)−2

2ma

∫
d3(pb

4EbEc
|Mfi|2 δ(ma − Eb − Ec) . (61)
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We can write d3(pb = p2
b dpb sin θ dθdφ. Also

Eb = (p2
b + m2

b)
1/2 , Ec = (p2

b + m2
c)

1/2 (62)

since (pc = −(pb. Now

∫
dpb δ

[
m2

a − (p2
b + m2

b)
1/2 − (p2

b + m2
c)

1/2
]

=
[

pb

(p2
b + m2

b)1/2
+

pb

(p2
b + m2

c)1/2

]−1

=
EbEc

mapb
, (63)

where we used eq. (58) with pb in the place of E. Hence

Γ =
pb

32π2m2
a

∫
|Mfi|2 sin θdθdφ . (64)

If |Mfi|2 is independent of the decay angles θ and φ, then it is just a number and

Γ(a → b + c) =
pb

8πm2
a
|Mfi|2 . (65)

Remember that pb here means the 3-momentum of b in the rest frame of a.

Problem 2:
Show that

pb = [(ma + mb + mc)(ma + mb − mc)(ma − mb + mc)(ma − mb − mc)]1/2 /(2ma) .
(66)

5 Two-body Scattering

We can also use Fermi’s Golden Rule to calculate the transition rate for a scattering
process such as a + b → c + d. The invariant matrix element will again be normalized
to 2E particles per unit volume, so

Mfi = (2Ea · 2Eb · 2Ec · 2Ed)1/2Tfi , (67)

Γ(a + b → c + d) =
(2π)−2

2Ea 2Eb

∫
d3(pc

2Ec

d3(pd

2Ed
|Mfi|2 × (68)

×δ3((pa + (pb − (pc − (pd) δ(Ea + Eb − Ec − Ed) .

The integral is invariant; we choose to calculate it in the c. m. frame, where (pa = −(pb.
Then the integral is the same as for two–body decay, with

√
s = E +a+Eb in the place

of ma:

Integral =
p∗c

4
√

s

∫
|Mfi|2 dΩ∗ . (69)

From now on in case of ambiguity we shall put a star on quantities defined in the c. m.
frame; dΩ∗ is the element of solid angle, dΩ∗ = sin θ∗dθ∗dφ∗.
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We are interested in the cross section σ rather than the rate. It is defined in terms
of the following quantities in the lab (rest frame of b):

Γ = (Flux of a) × (Density of b) × σ . (70)

Remember Γ is defined in terms of Tfi, i. e. for unit density. Hence the flux of a is va

in the lab frame, i. e. pa/Ea. Also Eb = mb in the lab, so

σ(ab → cd) =
Ea

pa

(2π)−2

4Eamb

p∗c
4
√

s

∫
|Mfi|2 dΩ∗

=
p∗c

64π2pamb
√

s

∫
|Mfi|2 dΩ∗ . (71)

Remember that pa is the 3-momentum of a in the lab while p∗c is that of c in the c. m.
frame.

Problem 3:
Show that the lab and c. m. 3-momenta of particle a are related by

pamb = p∗a
√

s . (72)

Using the results of problem 3 we may write the differential cross section in the c. m.
frame as

dσ

dΩ∗ (ab → cd) =
1

64π2s

(
p∗c
p∗a

)
|Mfi|2 . (73)

The differential cross section is also often expressed in terms of the invariant 4-
momentum transfer squared t (sometimes loosely referred to as just the momentum
transfer)

t ≡ (pc − pa)2 = m2
a + m2

c − 2pa · pc , (74)

where from now on pa etc. refer to 4-momenta, so that p2
a ≡ paµpµ

a = m2
a, pa ·pc ≡ paµpµ

c

etc.
In the c. m. frame, choosing the z axis along (p∗a and (p∗c in the x-z plane:

pµ
a = (E∗

a, 0, 0, p∗a) , (75)
p∗c = (E∗

c , p∗c sin θ∗, 0, p∗c cos θ∗) , (76)

so
pa · pc = E∗

aE∗
c − p∗ap

∗
c cos θ∗ (77)

and
dt = −2p∗ap

∗
c sin θ∗dθ∗ . (78)

Assuming no φ∗ dependence of |Mfi|2, we can write dΩ∗ = −2π sin θ∗dθ∗. Hence

dσ

dt
(ab → cd) =

1
64πs(p∗a)2

|Mfi|2 . (79)
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In addition to s = (pa + pb)2 = (pc + pd)2 and t = (pc − pa)2 = (pb − pd)2, another
commonly–encountered invariant for the scattering process a + b → c + d is

u ≡ (pa − pd)2 = (pb − pc)2 . (80)

The quantities s, t and u are called the Mandelstam variables.

Problem 4:
Show that the three Mandelstam variables are not independent but satisfy the equation

s + t + u = m2
a + m2

b + m2
c + m2

d . (81)

6 Interaction via Particle Exchange

In particle physics we regard all forces as arising from particle exchange (exchange of
quanta of the interaction field). This is really just a way of looking at the terms in the
perturbation theory expansion. Consider the shift in energy of the state |i〉 due to the
interaction term H ′ in the Hamiltonian:

∆Ei = 〈i|H ′|i〉 +
∑

j &=i

〈i|H ′|j〉〈j|H ′|i〉
Ei − Ej

+ . . . . (82)

Suppose H ′ can cause emission or absorption of particles of rest–mass m. By this we
mean that if |i〉 contains a point source of strength g at (r = (r1 and |j〉 contains the source
plus a particle of momentum (k(= h̄(k), i. e. with wavefunction φ((r) = ei$k·$r (normalized
to one particle per unit volume), then the contribution from particle emission to 〈j|H ′|i〉
is

g√
2Ek

∫
d3(rφ∗((r)δ3((r − (r1) =

g√
eEk

e−i$k·$r1 (83)

where Ek = ((k2 + m2)1/2. (N. B. g gives the invariant matrix element, normalized to
2Ek particles per unit volume, so the normalization factor must be divided out).

Similarly for absorption of the particle by a source at (r2 we have a contribution to
〈i|H ′|j〉 of g√

2Ek
e+i$k·$r2 . Therefore exchange of the particles from source 1 to source 2

gives a contribution to ∆Ei, via the second term in the expansion (82), of

∆E1→2
i =

∑̃

j

g2

2Ek

e−i$k·($r2−$r1)

Ei − Ej
, (84)

which can be represented by the diagram:

1

2

i ij
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The intermediate state j consists of the sources plus the particle, so Ej = Ei + Ek.
Note that the actual production of this state would violate energy conservation. It is a
virtual state and the exchanged object is a virtual paricle. The diagram should not
be taken too literally. In only depicts a contribution in the perturbation expansion.

The sum
∑̃

represents a phase space integration over all momenta (k of the ex-
changed particle, with (as usual) one state per (2π)3 of momentum space. Therefore

∆E1→2
i =

g2

(2π)3

∫
d3(k

2Ek

ei$k·($r2−$r1)

−Ek
(85)

= − g2

2(2π)3

∫
d3(k

ei$k·$r

(k2 + m2
((r ≡ (r2 − (r1) . (86)

To do the integral choose the z axis along (r. Then (k · (r = kr cos θ and d3(k becomes
2πk2 dk d(cos θ), and the cos θ integration gives

∆E1→2
i = − g2

2(2π)3

∫ ∞

0

k2dk

k2 + m2

eikr − e−ikr

ikr
. (87)

Write this integral as one half of the integral from −∞ to ∞, which can be done by
residues:

∆E1→2
i =

−g2

8π
e−mr

r
. (88)

The contribution from emission from source 2 and absorption by 1 turns out to be the
same:

∆E2→1
i =

−g2

8π
e−mr

r
. (89)

It is represented by the diagram

1

2

i ij

These diagrams are called time-ordered (or old-fashioned) perturbation theory di-
agrams. The sum of all time orderings is represented by a Feynman diagram (or
graph):

+ =
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Because the intermediate state is virtual, the time ordering of emission and absorp-
tion is frame dependent, but the sum of all orderings (the Feynman graph) is frame
independent:

∆Ei =
−g2

4π
e−mr

r
. (90)

This is the Yukawa potential, due to single particle exchange. The exponential de-
crease has range R = m−1, i. e. R = h̄/(mc), the Compton wavelength of the exchanged
particle. In electromagnetism we have zero–mass photon exchange and hence “infinite
range”, R = ∞. In this case the Yukawa formula (90) reduces to the Coulomb potential.

7 Scattering via One-Particle Exchange

We can use the same method as for the Yukawa potential to find the differential cross
section for the scattering process a + b → c + d via exchange of particle x. Instead of
potential energy of two point sources, we now want the invariant matrix element Mfi

where |i〉 consists of a and b with momenta (pa and (pb and |f〉 is c + d with momenta
(pc, (pd.

Consider first the contribution from the time ordering a → c + x, x + b → d:

a

b

i j

c

d

x

f

The corresponding term in the perturbation expansion (52) of the non–invariant tran-
sition matrix element Tfi is

Tfi =
〈f |H ′|j〉 〈j|H ′|i〉

Ei − Ej
, (91)

i. e.
T a→b

fi =
〈d|H ′|x + b〉 〈c + x|H ′|a〉

(Ea + Eb) − (Ec + Ex + Ed)
. (92)

Notice that the momentum of x is fixed by (px = (pa − (pc so there is no phase space
integration. If the invariant matrix element for a → c + x is ga, we have as usual

〈c + x|H ′|a〉 =
ga

(2Ea 2Ex 2Ec)1/2
. (93)

Similarly, define
〈d|H ′|x + b〉 =

gb

(2Eb · 2Ex · 2Ed)1/2
. (94)

Then
Mfi = (2Ea · 2Eb · 2Ec · 2Ed)1/2Tfi , (95)
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giving

Ma→b
fi =

1
2Ex

gagb

Ea − Ec − Ex
. (96)

For the other time ordering

a

b

i j

c

d

f

x̄

the quantum numbers are such that the exchanged particle must be x̄, the antiparticle
of x. For example, for p̄p → n̄n we could have x = π− and then x̄ = π+. We assume
crossing symmetry

〈c|H ′|a + x̄〉 = 〈c + x|H ′|a〉 , etc. (97)

Then
M b→a

fi =
1

2Ex̄

gagb

Eb − Ed − Ex̄
. (98)

But (px̄ = (pb − (pd and (pa + (pb = (pc + (pd, so (px̄ = (pc − (pa = −(px and

Ex̄ = Ex =
[
((pa − (pc)2 + m2

x

]1/2
. (99)

The

Mfi = Ma→b
fi + Ma→b

fi (100)

=
gagb

2Ex

( 1
Ea − Ec − Ex

+
1

Eb − Ed − Ex

)
(101)

=
gagb

2Ex

( 1
Ea − Ec − Ex

+
1

Ea − Ec + Ex

)
, (102)

since Ea + Eb = Ec + Ed. Combining the two terms gives

Mfi =
gagb

2Ex

2Ex

(Ea − Ec)2 − E2
x

(103)

=
gagb

(Ea − Ec)2 − ((pa − (pc)2 − m2
x

(104)

=
gagb

t − m2
x

, (105)

where t is the 4-momentum transfer squared, (pa − pc)2, which is negative for the
processes we shall encounter, so no infinity occurs in the differential cross section.
Using our previous result (79), we have

dσ

dt
=

1
64πs(p∗a)2

g2
ag

2
b

(t − m2
x)2

, (106)

assuming that ga,b are real. The differential cross section has a forward (t = 0) peak
with width of order m2

x, corresponding to the range of interaction m−1
x .
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8 Feynman Graphs

As in the calculation of the Yukawa potential, the sum of the time orderings, represented
by a single Feynman graph,

a

b

x

d

c

gb

ga

Mfi =
gagb

(pa − pc)2 − m2
x

, (107)

has a simpler form than either individual term. For particles without spin, there is
a coupling constant ga,b for each vertex and a propagator (q2 − m2)−1 for each
internal line of 4-momentum qµ and mass (i. e. rest–mass) m. Notice that in Feynman
graphs (unlike the old–fashioned, time–ordered graphs) 4-momentum is conserved at
the vertices but internal lines are not constrained to have q2 = m2 as real particles
must. These lines represent both a virtual particle going one way and a virtual an-
tiparticle going the other. They are said to be off mass shell when q2 $= m2 because
the surface in 4-momentum space described by qµqµ = m2 (on which real particles lie)
is called the mass shell.

Problem 5:
Using old–fashioned perturbation theory, verify that the invariant matrix element due
to the Feynman graph

b

a

g1

c

d

x

g2

is
Mfi =

g1g2

s − m2
x

. (108)

(Hint: Don’t forget to include all time–orderings.)
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