Black Holes at the LHC? Bryan Webber, Cambridge

- =	0 Myr		
			122
			20
			10 kpc/h

Large Extra Dimensions

For n extra dimensions compactified at scale R

• Hence for $M_{PL} = 1$ TeV we need

 $10^{19} \,\mathrm{GeV} \sim 10^3 \,\mathrm{GeV} \times (10^4 \,R/\mathrm{fm})^{n/2}$

 \rightarrow mm for n=2, nm for n=3, pm for n=4

Black Holes in Particle Collisions

- Black hole production
- Black hole decay
- Event simulation & model uncertainties
- Measuring black hole mass
- Determining the number of extra dimensions

Black hole production

Parton (quark or gluon)-level cross section:

$$\hat{\sigma}(\hat{s}=M_{BH}^2)=F_n\pi r_S^2$$

• $r_S =$ Schwarzschild radius in 4+n dimensions:

$$r_{S} = \frac{1}{\sqrt{\pi}M_{PL}} \left[\frac{8\Gamma\left(\frac{n+3}{2}\right)M_{BH}}{(n+2)M_{PL}} \right]^{\frac{1}{n+1}}$$

- $F_n =$ form factor of order unity (hoop conjecture)
- Usually set Planck scale $M_{PL} = 1$ TeV for illustration (Dimopoulos-Landsberg $M_{PL} \equiv \left[G_{(4+n)}\right]^{-\frac{1}{n+2}}$)

BH formation factor (I)

$$b_{max} = 2r_h = 2r_s \left[1 + a_*^2\right]^{-\frac{1}{n+1}}$$
$$a_* = \frac{(n+2)J}{2r_h M_{BH}}, \quad J \simeq b M_{BH}/2$$
$$\hat{\sigma} = F_n \pi r_S^2 \simeq \pi b_{max}^2$$

$$\Rightarrow F_n \simeq 4 \left[1 + \left(\frac{n+2}{2} \right)^2 \right]^{-\frac{2}{n+1}} \quad \text{("geometric")}$$

BH formation factor (2)

H Yoshino & Y Nambu, gr-qc/0209003 H Yoshino & VS Rychkov, hep-th/0503171

Yoshino-Rychkov Bound on $\hat{\sigma}_{BH}$

• YN bound is πb_{max}^2 for AH on past lightcone (boundary of region I)

- YR bound is πb_{max}^2 for AH on future lightcone (boundary of regions II & III)
- Area of AH sets limits on M_{BH} and J_{BH}

Limits on MBH and JBH

• $\mu \equiv \sqrt{\hat{s}}/2$, so $M/2\mu = 1$ implies $M_{BH}^2 = \hat{s}$

• We'll assume $M_{BH}\simeq 2\mu=\sqrt{\hat{s}}$, $J_{BH}\simeq b\mu\simeq bM_{BH}/2$

BH cross section vs Planck mass

➡ Little sensitivity to n
➡ Sensitive to assumption that M_{BH} $\simeq \sqrt{\hat{s}}$

BH cross sections at LHC

Several 5 TeV BH per minute at LHC!

Black hole decay (I)

Balding phase

Ioses `hair' and multipole moments, mainly by gravitational radiation

Spin-down phase

 loses angular momentum, mainly by Hawking radiation

Schwarzschild phase

 loses mass by Hawking radiation, temperature increases

• Planck phase

mass and/or temperature reach Planck scale: remnant = ??

Black hole decay (2)

• We'll assume Schwarzschild phase is dominant

all types of SM particles emitted with Hawking spectrum

$$\frac{dN}{dE} \propto \frac{\gamma E^2}{(e^{E/T_H} \mp 1)T_H^{n+6}}$$

Hawking temperature

$$T_H = \frac{n+1}{4\pi r_{BH}} \propto (M_{BH})^{-\frac{1}{n+1}}$$

Y is (4+n)-dimensional grey-body factor

Grey-body factors

Integrated Hawking flux

N.B. $F^{tot} r_s \gg 1$ at large n Transit time \gg time between emissions Decay no longer quasi-stationary at large n

Black hole lifetime

Spin-down phase (I)

• Some results becoming available for spinning BH

Power spectrum for scalar emission on brane (n=1)

Spin-down phase (2)

Angular distribution of scalar & vector emission

M Casals, P Kanti & E Winstanley, hep-th/0511163

Black Hole Event Generators

- TRUENOIR (Dimopoulos & Landsberg, hep-ph/0106295)
 - → J=0 only; no energy loss; fixed T; no g.b.f.
- CHARYBDIS (Harris, Richardson & BW, hep-ph/0307305)
 - J=0 only; no energy loss; variable T; g.b.f. included
- CATFISH (Cavaglia et al., hep-ph/0609001)
 - → J=0 only; energy loss option; variable T; g.b.f. included
- All need interfacing to a parton shower and hadronization generator (PYTHIA or HERWIG)

Main CHARYBDIS parameters

Name	Description	Values	Default	
TOTDIM	Total dimension (n+4)	6-11	6	
MPLNCK	Planck mass (GeV)	real	1000	
GTSCA	Use scale (I/r _s) not M _{BH}	logical	.FALSE.	
TIMVAR	Use time-dependent T _H	logical	.TRUE.	
MSSDEC	Include t,W,Z(2), h(3) decay	I-3	3	
GRYBDY	Include grey-body factors	logical	.TRUE.	
KINCUT	Use kinematic cutoff	logical	.TRUE.	

CHARYBDIS Event at LHCTOTDIM = 10MPLNCK = 1 TeVMBH = 8 TeV

Effects of grey-body factors

		Primary photons from 5 TeV BH (n=2)					
		neglecting g.b.f.		Particle emissivity (%)			
	6000			GRYBDY=	.TRUE.	GRYBDY=	.FALSE.
0000 events			Particle type	Generator	Theory	Generator	Theory
			Quarks	63.9	61.8	58.2	56.5
	4000		Gluons	11.7	12.2	16.9	16.8
//100		including both	Charged leptons	9.4	10.3	8.4	9.4
s/25 GeV			Neutrinos	5.1	5.2	4.6	4.7
	2000 -		Photon	1.5	1.5	2.1	2.1
oton			Z^0	2.6	2.6	3.1	3.1
Ρh			W^+ and W^-	4.7	5.3	5.7	6.3
			Higgs boson	1.1	1.1	1.0	1.1
	0					I	
	C	0 500 1000 1500 2000 250 Energy of photon (GeV)	00				

Vector boson suppression 20-30%

Generator-theory differences due to masses & charge conservation

Exploring Higher Dimensional Black Holes at the Large Hadron Collider

- C.M. Harris[†], M.J. Palmer[†], M.A. Parker[†], P. Richardson[‡], A. Sabetfakhri[†] and B.R. Webber[†]
 - [†] Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, UK.
 - [‡] Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, UK.

 hep-ph/0411022, JHEP05(2005)053; see also CM Harris, PhD thesis, hep-ph/0502005; CM Harris et al (CHARYBDIS event generator) hep-ph/0307035, JHEP08(2003)033
earlier work: SB Giddings & S Thomas, hep-ph/0106219;

S Dimopoulos & G Landsberg, hep-ph/0106295

Missing transverse energy

 \Rightarrow Typically larger \not{E}_T than SM or even MSSM

Measuring black hole masses

• Need $\not \! E_T < 100$ GeV for adequate resolution

$$\Rightarrow \Delta M_{BH}/M_{BH} \sim 4\%$$

Effect of energy cutoff E $< M_{\rm BH}/2$

Energy distribution of primary emissions vs M_{BH}

Cutoff affects spectrum at low mass and/or high n

Effects of time dependence

Fits to primary electron spectrum for n=2

Neglecting time variation of T_H leads to over-estimate of n

Combined measurement of M_{PL} and n

 $\Rightarrow \Delta M_{PL}/M_{PL} \sim 15\%$, $\Delta n \sim 0.75$

Conclusions

- Large cross section if Planck mass ~ I TeV
- Clear signature, with large \not{E}_{T}
- But BH mass measurement needs small $\not \! E_T$
- BH decay not well understood: early phases, time variation, spectrum cutoff, Planck-scale remnant
- Measuring n difficult but may be possible
- Soon: spin-down phase in CHARYBDIS